96[A, C, D, E].-H. S. Uhler, "Recalculation of the modulus and of the logarithms of 2, 3, 5, 7 and 17," Nat. Acad. Sci., Proc., v. 26, 1940, p. 205212. $17.5 \times 25.8 \mathrm{~cm}$.

In the calculation of the table in RMT 95 the series

$$
\ln \frac{p}{q}=2\left\{\frac{p-q}{p+q}+\frac{1}{3}\left(\frac{p-q}{p+q}\right)^{3}+\frac{1}{5}\left(\frac{p-q}{p+q}\right)^{5}+\cdots\right\} \equiv 2 S[(p-q) /(p+q)],
$$

with $p-q=1$, played an important role. With $p=5041=71^{2}, 5040=2^{4} \cdot 3^{2} \cdot 5 \cdot 7$

$$
\ln 71=2 \ln 2+\ln 3+(\ln 5+\ln 7) / 2 \quad S(1 / 10081)
$$

Similarly for $p=226, \ln 113$ involves $S(1 / 451)$. Thus in the present paper, we have $S(1 / 5)$, $S(1 / 239), S(1 / 2449), S(1 / 4999)$, and $S(1 / 8749)$, in connection with $\ln 2, \ln 3, \ln 5, \ln 7$ and $\ln 17$. J. C. P. Adams calculated the first four of these to 262D (1878 and 1887); see MTE 8. These are here extended, with certainty on the author's part, to 328D. The values are also given of the following: $\arctan (1 / 451)$ to 215 D ; $\arctan (1 / 577)$ to 335 D ; $\arctan (1 / 2449)$, $\arctan (1 / 4999)$, and $\arctan (1 / 8749)$ each to 330D; and $\arctan (1 / 10081)$ to 216D.

Adams found M correct to 271D (1887). From his own $\ln 2$ and $\ln 5$ Uhler determined M, correct to 328D.

Five other values found in RMT 94 are here extended, viz: e^{10} to 289D; e^{-10} to 293D; and $\sin 10, \cos 10, \cos 20$, each to 284 D . These latter ranges are also supplementary to results in RMT 81.
R. C. A.

97[A, K].-H. S. Uhler, "The coefficients of Stirling's series for $\log \Gamma(x)$," Nat. Acad. Sci., Proc., v. 28, 1942, p. 59-62. 17.5×25.8 cm.
When n is a positive integer, the asymptotic series of RMT 95 becomes

$$
\ln \Gamma(x)=(1 / 2) \ln 2 \pi+(x+1 / 2) \ln x-x+\sum_{m=1}^{\infty}\left(c_{m} / x^{2 m-1}\right)+R,
$$

where $c_{m} \equiv(-1)^{m-1} B_{m} /[(2 m-1)(2 m)]$. The table of the paper contains the first 71 values of c_{m}, many of which have recurring periods within the range of the table; c_{16} is given to 103S. Values of 100 ! to 158 S , and of \ln (100!) to 156S, are also given.

MATHEMATICAL TABLES-ERRATA

In this issue we have referred to Errata in RMT 89 (Blakesley, Forti, Hayashi, Sakamoto), RMT 92 (Lowan et al., Moors, Bayly, Gauss, Heine, Hobson, Tallquist), RMT 94 (Glaisher), RMT 95 (Parkhurst, Serebrennikov), UMT 2 (Airey), N 4 (Gifford, C. G. Survey), N 5 (C. G. Survey), N 6 (Gifford), and in the first article of this issue (Callet, Brandicourt and Roussilhe, Jordan, Service Géog. 1914).
5. U. S. Coast and Geodetic Survey, Special Publication, no. 231, Natural Sines and Cosines to Eight Decimal Places, 1942; see RMT 77.
End-figures are missing cos $1^{\circ} 44^{\prime} 41^{\prime \prime}$ and $42^{\prime \prime}$, namely: 0 and 5 respectively.
L. J. C.

Sin 36° for 0.58778255 , read 0.58778525.
F. W. Hoffman, 689 East Ave., Pawtucket, R. I.
6. A. N. Lowan, N. Davids, A. Levenson, "Table of the zeros of the Legendre polynomials," 1942; see RMT 92.

$$
\begin{aligned}
& n=11, \text { for } x_{2}=0.519096129110681 \text { read } x_{2}=0.519096129206812 \\
& n=12, \text { for } x_{1}=0.125333408511469 \text { read } x_{1}=0.125233408511469 \\
& n=12 \text {, for } x_{2}=0.367831498918180 \text { read } x_{2}=0.367831498998180
\end{aligned}
$$

A. N. Lowan, and R. C. A.
7. J. T. Peters, Zehnstellige Logarithmentafel, Erster Band, Zehnstellige Logarithmen der Zahlen von 1 bis 100000 nebst einem Anhang mathematischer Tafeln. Berlin, 1922. All of the errors noted below are in the "Anhang," arranged and calculated by J. T. Peters and J. Stein, p. i-xxviii, 1-195.
Table 3, p. 47, 1/425, groups 5 and 6

$$
\text { for } 8545321863 \text { read } 8545231863
$$

It would seem that the check described in the Introduction (sum of the $1 / 42^{n}$, to $32 \mathrm{D}=1 / 41$) must have been applied in ms., not in proof. The columns involved satisfy this check as amended but not as printed. P. VII Stirling's series for $\log n!$, for $\frac{B_{3}}{5 \cdot 6 \cdot n} \operatorname{read} \frac{B_{3}}{5 \cdot 6 \cdot n^{5}}$

C. R. Cosens, Engineering Laboratory, Cambridge, England, Nov., 1941

Table 13, contains, mainly $\ln N, N=2(1) 146$, and all following prime numbers to 9973 . This Table was computed by one of the great calculators of logarithms, J. Wolfram, Lieutenant of the Dutch artillery. After six years of intense application he computed $\ln N, N=1(1) 10009$, to 48D. They were first published in J. C. Schulze, Recueil de Tables Logarithmiques, Trigonometriques et autres nécessaires dans les Mathematiques Pratiques, [also t. p. if German], v. 1, Berlin, 1778, p. 189-259. Space is left for the logarithms of six numbers $9769,9781,9787,9871,9883,9907$ which Wolfram had, up to 1778 , been prevented from computing by a serious illness. These were supplied two years later by Schulze in Berliner Astronomisches Jahrbuch für das Jahr 1783, Berlin, 1780, p. 191, as given to him by Wolfram, and also, from an independent calculation by Barzellini, "Oberbuchhalter der Grafschaften Görz und Gradisca." There have been various reprints or revisions of Wolfram's table; the first of these was in G. Vega, Thesaurus Logarithmorum Completus, Leipzig, 1794; this is the basis of the table of P. \& S., in which there are at least the following ten errors.

	N	pentad	for	read	first discovered by
1.	829	4	67458	97458	Escott
2.	1087	10	598	597	Cosens
3.	1409	4	21666	21696	Gray
4.	3967	6	91589	91389	Duarte
5.	6343	3	23897	33897	Steinhauser
6.	7247	7	24102	25102	Duarte
7.	8837	4	42054	42354	Duarte
8.	8963	7	38152	38153	Duarte
9.	9623	4	83304	83305	Duarte
10.	9883	10	194	193	Cosens

No. 10 was given correctly by Wolfram but incorrectly by Vega and P. \& S.; compare Scripta Mathematica, v. 3, 1936, p. 99-100, and v. 4, 1937, p. 293. There are two cases where Wolfram and Vega (1794 and 1923 reprint) were wrong, while P. \& S. were correct, viz: ln 1087 (pentad 6), and $\ln 3571$ (pentad 4). E. B. Escott communicated the result in no. 1 to L. J. Comrie in 1924. Nos. 2 and 10 were found by C. R. Cosens in 1939, after recalculating the logarithms to 55D, assuming the accuracy of Grimpen's \ln of primes to 127, to 82D.
No. 3 was indicated in Peter Gray, Tables for the Formation of Logarithms \& Anti-Logarithms to twenty-four or any less number of Places, London, 1876, p. [39].
No. 5 was given in Anton Steinhauser, Hilfstafeln zur präcisen Berechnung zwanzigstelliger Logarithmen zu gegebenen Zahlen und der Zahlen zu 20 stelligen Logarithmen, Vienna, 1880, p. 1.
Nos. 4, 6, 7, 8, 9, were given by F. J. Duarte, Nouvelles Tables Logarithmiques a 36 Décimales, Paris, 1933, p. XXII.
R. C. A.

In Table 1, p. 7, M, the modulus of common logarithms is given to 282D. There are at least 14 incorrect digits among the last 19, viz.: 4748049059935535305.

In Table 13, p. 152, $\ln 2, \ln 3, \ln 5, \ln 7$ are each given to 272 places of decimals and the last 9 or 10 digits in each are erroneous as follows:

in	for	read
$\ln 2$	810685015	709532637
$\ln 3$	924540315	756069011
$\ln 5$	6041762480	5805972257
$\ln 7$	2100353795	1831081025

All five of the values as printed by P. \& S. were taken from a paper by J. C. Adams, Royal So. London, Proc., v. 27, 1878, p. 92-93. Corrections were given by Adams in Proc., v. 42, 1887, p. 24-25. See also J. C. Adams, Scientific Papers, Cambridge, v. 1, 1896, p. 464, 469-477. Adams states that M is now true certainly to 272 and probably to 273D. ${ }^{1}$

I have recently evaluated $\ln 127$ to about 104 places to test the illustrative value given by P. \& S. p. XXVII. The last figure [82nd] should be 7 instead of 4 . This finding agrees very well with the comment on p. XXVIII which reads: " . . ; die Endziffern des so bestimmten $\ln 127$ weichen nur um 4 Einheiten von dem vorher erhaltenen Werte ab."
P. \& S. apparently failed to compare their (?) 61-place Table 14b of ordinary logarithms (p. 156-162) with the appropriately abbreviated 84 -place mantissas quoted from A. Grimpen (p. XXV). For the numbers $31,43,47$, and 59 the difference (P. \& S. minus Grimpen) equals $+0.8,-1.0,-0.51$, and +1.35 respectively. Nevertheless P. and S. state (p. III) that they tried to attain an accuracy "of half a unit in the last decimal place." In Table 14b, p. 158, $\ln 227$ is incorrect; in the last 6 digits for 494656 , read 495656.

> H. S. Uhler, Dept. of Physics, Yale University New Haven, Conn., Oct. and Nov. 1936
"A Table of the Common or Brigg's Logarithms for all Numbers to 100; and all Primes, to 1100, true to sixty one Figures" was first given in a work by Abraham Sharp (1651-1742), Geometry Improved . . . , London, 1717, p. [56]-[60]. It has been reprinted many times, for example, in the first stereotyped edition of François Callet, Tables Portatives de Logarithmes, Paris, 1795, and on to the 1899 , and possibly later editions. P. \& S. copied their table from Callet's work. Sharp gave also $\log \pi$ correct to 61D (p. 36-37).-Editor.

I now report the following 37 other errors of P. \& S., who boast of last figure accuracy (p. III, 1. 11-12):

page	no.	$\begin{gathered} \text { for } \\ \text { last figures } \end{gathered}$	read	abbreviation o
XXIII and 1	$\log \pi$	6	5	4999
XXIV	$\ln 23$	81	82	81984
XXIV	ln 41	59	60	59623
XXIV	ln 59	73	74	73593
XXIV	ln 61	11	12	11854
XXV	ln 71	59	60	59662
XXV	ln 73	32	33	32763
XXV	ln 97	54	53	53422
XXV	ln 103	97	96	95917
XXV	$\ln 107$	64	66	65573
XXV	$\log 17$	5795	5796	5795684
XXV	$\log 71$	7501	7500	7499931
XXV	$\log 101$	0771	0770	0770238
XXV	$\log 113$	6837	6838	6837823

${ }^{1}$ H. S. Uhler's recent researches have shown that even this statement concerning M is not absolutely correct; the substitution in the Anhang for the 264th to the 282nd digits should be as follows:

$$
\text { for } 4748049059935535305 \text { read } 5383562228139560305 .
$$

Adams's new 271st to 277 th digits were 2186825 so that his 272 nd digit should be " 2 ," not " 1 "; see RMT 96. J. W. L. Glaisher in his article on "Logarithms," in the ninth edition of the Encyclopadia Britannica (1882), had the incorrect value of M given by Adams in 1878, without the statement of Adams at that time that he did not claim his value to be correct beyond 262D or 263D. The corrected value of 1887 (but still slightly incorrect, as we have seen) is in the eleventh edition of the Britannica (1911).-Editor

151	$\ln \left(1-9 \cdot 10^{-5}\right)$	485	486	485507
152	$\ln \left(1+8 \cdot 10^{-4}\right)$	567	566	566326
151	$\ln \left(1-7 \cdot 10^{-4}\right)$	859	860	859672
151	$\ln \left(1-5 \cdot 10^{-4}\right)$	785	786	785574
152	$\ln \left(1+5 \cdot 10^{-4}\right)$	340	3.39	3.39355
151	$\ln \left(1-2 \cdot 10^{-4}\right)$	811	810	810371
151	$\ln \left(1-1 \cdot 10^{-4}\right)$	7.34	735	7.34571
152	$\ln \left(1+1 \cdot 10^{-4}\right)$	$4(1)$	401	401071
151	$\ln \left(1-8 \cdot 10^{-5}\right)$	613	614	613570
152	$\ln \left(1+8 \cdot 10^{-5}\right)$	796	\%97	796578
151	$\ln \left(1-6 \cdot 10^{-5}\right)$	S99	898	898045
151	$\ln \left(1-5 \cdot 10^{-5}\right)$	S46	845	8454.33
152	$\ln \left(1+5 \cdot 10^{-5}\right)$	980	981	980850
151	$\ln \left(1-4 \cdot 10^{-5}\right)$	446	45	445439
151	$\ln \left(1-3 \cdot 10^{-5}\right)$	774	733	773 3,36
151	$\ln \left(1-1 \cdot 10^{-5}\right)$	682	683	682540
151	$\ln \left(1-9 \cdot 10^{-6}\right)$	599	597	597457
151	$\ln \left(1-8 \cdot 10^{-6}\right)$	358	357	357389
151	$\ln \left(1-7 \cdot 10^{-6}\right)$	606	605	604608
151	$\ln \left(1-5 \cdot 10^{-6}\right)$	448	47	477389
152	$\ln \left(1+5 \cdot 10^{-6}\right)$	457	458	457806
151	$\ln \left(1-1 \cdot 10^{-6}\right)$	855	857	857267
15.	$\ln \left(1+1 \cdot 10^{-6}\right)$	523	524	52, 684
		H. S. Uhler, S Jam. 1943		

On 2 February 194. Mr. Whler drew my attention to the fact that five more last-figure errors in Grimpen's st-place table on p. XWV are suggested by comparison with H. M. Parkhurst's 102-place table (see RMT 86, p. 20); in the cases of $\log 23, \log 41, \log 61$ and $\log 97$ there should be unit increases. but in the case of log $s .3$ there should be a unit decrease. I found that Parkhurst and Grimpen were in complete agreement in the cases of $\log 31, \log 43$ and $\log 50$. referred to above; hence it is Sharp's terminal digits which seem then to be sldghty erroneous. On 3 May 1943 Mr . Uhler reported that he had completely checked both of Grimpen's tables.p. XIIVXXV, and that the only errors were those in the terminal tigure indicated above-Enitor.

The correct value of π to 707 D was calculated by William Shanks and may be found on $p .1$ of the Anhang by P. \& S., and in G. Peano, Formulario Math:matico, 5 ed.. v. 5. Turin, 190s, p. 250. Shanks gave the value of π to 007 D) in his Contributions of Mathematics. comprising chictly the Rectificution of the Circle . . , london, 1853. p. So si. That the last s digits were incorrect, was shown when he extended his value of π to 707 D), giving at the same time aretan (1.5) and arctan (1239), each to $7(9)$ D . R. So. London, Proc., v. 21, 1873. p. 319 . But there were still errors in the $400-46$ Ind, and in the $51,-515$ th decimal places. These were corrected in the value Shanks gave, idem. v. 22. 1sit. p. 45. Two new errors here introduced in the 320 oth and 6 oth decimal places were easily checked from the aretangent values referred to above, and used by Shanks in computing the value of π. See RMT 95. A reference may be given to J. P. Ballantine "The best (?) formula for computing π to a thousand places," Amer. Math. Mo., v. 46. 1930. p. 490-5(01.
R. C. A.

UNPUBLISHED MATHEMATICAL TABLES

We have referred to unpublished mathematical tables (a) of Comrie in RMTT 82 ; and (b) of Riche de Proxy, of Sang, of Peters, and of Princeton Eniversity. in the first article of this issue.

2[D].-J. R. Airfi. Sines and Cosines in Radian Arguments. Ms. in Mr. Comric's possession.
After the death of Airey in 1937, his calculations and manuscript tables came into my possession. Most of thesc had, of course, been published, although in many cases, e.g., the Fresnel integral, more decimals (usually within a unit of the last decimal) thus became available.

