
RECENT MATHEMATICAL TABLES

Details of recent tables are also to be found in our introductory article of

this issue, nos. (33). Dieckvoss and Kox, (34). Comrie; and in N4 Gifford and

C. G. S. Tables, N5 C. G. S. and Peters, N6 Peters and Comrie, N7 Smith-
sonian Tables.

89[D, E].—Project for Computation of Mathematical Tables (A. N.
Lowan, technical director). Tables of Circular and Hyperbolic Sines and

Cosines for Radian Arguments. Prepared by the Federal Works Agency,

Work Projects Administration for the State of New York, conducted under

the sponsorship of the National Bureau of Standards. New York, 1940,

1939. xx, 405 p. 20.9X27 cm. Reproduced by a photo offset process. Sold
by the U. S. Bureau of Standards, Washington, D. C. $2.00; foreign $5.00.

The main part of this volume (p. 1^100) is occupied with a table of the circular and hyperbolic

sines and cosines for the range [0.0000 (0.0001) 1.9999; 9D]. Then follow supplementary tables:

II (p. 402-403), circular and hyperbolic sines and cosines for the range{0.0(0.1)10.0; 9D]; and III

(p. 404-405) a conversion table for radians and degrees, to 6D.

The expansions of the functions involved terms of the form U„(x) = x"/nl The values of this

function for the key arguments »o=0.01, 0.02, • • ■ were computed to 15D for n=0, 1, 2, • • • p,

where p is such that Up(xti) is not greater than one unit in the fifteenth place. The values of U„(x)

for all other arguments were computed with the aid of a recurrence formula, successive applica-

tions of which involved self-checking. But the other checks applied included comparison of the

values of sin x and cos x at intervals of 0.001 with the values given in Van Orstrand's Table, and

in the New York Project's Tables of Sines and Cosines for Radian Arguments, computed by an

independent method; see RMT 81. The values of the hyperbolic functions were also checked

by combining the values of ez and e-* in the New York Project's volume Tables of the Expo-

nential Function e*, for »= [0.0000(0.0001)1,0000; 18D], and [1.000(0.0001)25000; 15D], and
-[0.0000(0.0001)2.5000; 18D]. After these tests, the resulting values of the circular and hyper-

bolic functions were rounded to 9D. The claim that an error in the ninth place does not exceed

0.51 is doubtless well founded.

From the fairly representative bibliography given in RMT 81, it may be noted that so far

as the circular functions are concerned, an appreciable portion of the present table covers new

ground. Among other published tables of the hyperbolic sines and cosines, to 5D or more, and

for real values of x, are the following (compare N 7, IV):

Thomas Holmes Blakesley (1847-1929), A Table of Hyperbolic Cosines and Sines . . . (Pub-

lished by the Physical Society of London), London, 1890, 6 p. 15X24 cm. Cosh x and sinh x for

x= [0.01 (0.01)4.00; 7D]. Comparison of this table with only the values of the above mentioned

Table II showed the following last figure errors in Blakesley: Cosh *—unit errors for a; =1.30,

1.70, 2.10, 2.60, 2.90, 3.40, 3.60, 3.80, 3.90, and two units for » = 3.10, and three units for »=4.00;
sinh »—unit errors for »=1.50, 1.60, 1.80, 2.40, 2.60, 2.80, 3.10, 3.20, 3.30, 3.70, and two units
for 3.50, 3.60, and 3.90.

Johann Otto Wilhelm Ligowski (1821-1893), Tafeln der Hyperbelfunklionen . . . , Berlin,

1890, 16.4X24.6 cm. P. 58-61, 67-79, sinh x and cosh *, for »=[0.00(0.01)2.00; 6D], [2.00(0.01)
8.00; 5D], with differences.

Angiolo Forti, Nuove Tavole delle Funzioni Iperboliche . . . , Rome, 1892. 16.4X23.9 cm. Sinh x

and cosh x for » = [0.0000(0.0001)2.000(0.0010)2.010; 6D], [2.00(0.01)8.00; S-7SJ. Becker and

Van Orstrand note that in these tables there are frequent errors of 1, 2, and 3 units in the last

decimal place.

G. F. Becker and C. E. Van Orstrand, Smithsonian Mathematical Tables. Hyperbolic Functions,

Washington, Smithsonian Institution, 1909; fifth reprint 1942, p. 88-171. 15X22.9 cm. Sinh » and
cosh » for »=[0.0000(0.0001)0.1000; 5D], [0.100(0.001)3.000; 5D], [3.00(0.01)6.00; 4D].
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K. Hayashi, Fünfstellige Tafeln der Kreis- und Hyperbelfunktionen . . . mit natürlichen Zahlen

als Argument. Berlin and Leipzig, Gruyter, 1921. 16X23.1 cm. sin », cos x, sinh x, cosh x, for

*=[0(0.0001)0.100(0.001)3.00(0.01)6.3(0.1)10.0; SD].

Ulpilas Meyer and Adalbert Deckert, Tafeln der Hyperbelfunktionen. Formeln Berlin, 1924,

p. 6-17. 17X24.3. Sinh x and cosh x for »=[0.000(0.001)3.009; SD].

J. R. Airey, Br. Ass. Adv. Sei., Report, 1926, p. 295-296. 21.5X27.9. Sinh x and cosh x for
»=[0.1(0.1)10.0; 15D]; also in Br. Ass. Adv. Sei., Mathematical Tables, v. 1, London, B.A.A.S.,
1931, Table VI, p. 30. 21.5X27.9 cm.

K. Hayashi, Sieben- und mehrstellige Tafeln der Kreis- und Hyperbelfunktionen . . . , Berlin,

Springer, 1926, p. 13-201. 21X27.3. Sinh » and cosh » for » = [0.00000(0.00001)0:00100 ; 20D],

[0.0010(0001)0.0999; 10D], [0.100(0.001)2.999; 10D], (3.00(0.01) 9.99; 10D], [10.0(0.1)20; 15D],
[21(1)39; 15D], [39(1)50; 31-33S], p. 8-201. Also sinh(1r»/360), and cosh(ir»/360), for
*= [0(1)360; 10D], p. 96-166 (alternate pages). Unreliable table. Since

C. E. Van Orstrand gave (Nat. Acad. Sei., Washington, Memoirs, v. 14, 1921, p. 40-45) a table

for e±("w*o> for „=[0(1)360; 23D], values for sinh (t»/360) and of cosh (x»/360), considerably

more extensive than those of Hayashi, are readily found.

J. R. Airey, Br. Ass. Adv. Sei., Report, 1928, p. 308-316. 21.5X27.9. Sinh jt» and cosh ir», for
»=[0.00(0.01)4.00; 15D]; also in Br. Ass. Adv. Sei., Mathematical Tables, v. 1, London, B.A.A.S.,
1931, Table V, p. 28-29. These tables "are required in the computation of the efliptic theta func-

tions with imaginary argument, and of the gamma function with complex argument."

K. Hayashi, Fünfstellige Funktionentafeln Kreis-, zyklomelrische, Exponential-, Hyperbel-, . . .

Funktionen . . ., Berlin, Springer, 1930, p. 3-41, 60-64. 16.5X24.7 cm. sinh » and cosh » for

»=[0.00(0.01)10.00; 5DJ. Also sinh x» and cosh tt» for » = [0.00(0.01)0.1(0.1)10.0; 5D], 7/6,13/6,
19/6, 5/4, • • • , 7/2, • ■ • , 23/6 [21 miscellaneous values]. Unreliable table.

L. J. Comrie, table of sinh *•» and cosh vx for »= [0.0000(0.0001)0.0100; 15D], Br. Ass. Adv. Sei.,
Mathematical Tables, v. 1, London, B.A.A.S., 1931, Table IV, p. 24-25; intended for use as an

auxiliary table to Table V of Airey (1928).

F. E. Fowle, ed., Smithsonian Physical Tables, eighth rev. ed., first reprint, (Smithsonian Misc.

Coll., v. 88) Washington, Smithsonian Institution, 1934, p. 41-47. 14.9X22.8 cm. Sinh » and

cosh x for »=[0.00(0.01)3.0; 5D], [3.0(0.1)5.0; 4D].

K. Hayashi, Tafeln für die Dißerenzenrechnung sowie für die Hyperbel-, Besseischen, elliptischen

und anderen Funktionen, Berlin, Springer, 1933, p. 38-47. 21.2X27.7 cm. Sinh wx and cosh x» for

»=[0.01(0.01)0.99; 6D], [1.00(0.01)10.00; 5-8S].

Samata Sakamoto, Tables of Gudermannian Angles and Hyperbolic Functions, Tokyo, 1934.

12.6X18.7 cm. Table III, p. 112-137 gives sinh » and cosh » for »=[0.000(0.005)0.100(0.010)
0.20(0.01)3.00(0.05)4.0(0.1)10.0 ; 5D]. Table IV, p. 138-199, has sinh*-», coshir» for
»=[0.00(0.01)0.10(0.10)5.00(0.50)9.00, 10.00; 10D to 2.4, then 13S to 20S]. A comparison of this
latter table for the range 0 to 4 in Airey's table of 1928 showed the following errors made by

Sakomoto: for »=0.02 (cosh irx), and 0.40 (sinhir») unit errors in the last place; » = 0.80 (cosh7r»)

for 6.21314 32607 read 6.21314 32657; »=3.30 (sinh *■» and cosh *») for 13900.543 • • • read
15900.543

J. R. Airey, assisted by L. J. Comrie, "The circular and hyperbolic functions, argument x/\/2."

Phil. Mag., s. 7, v. 20, 1935, p. 721-726 and 726-731. sin (x/y/2), cos (x/\/2) and sinh (»/V2),
cosh (x/s/2), each for »=[0.0(0.1)20.0; 12D]. The calculations of these functions for »=2 to 20

were based on their values when »=1, which are given to 20D.

Further, C. A. Bretschneider, gave sinh 1 and cosh 1 each to 105D, Archiv d. Math. U. Physik,

v. 3, 1843, p. 28-29.
We note also two other tables which may be regarded as sort of supplementary to the present

list, as well as to the bibliography in RMT 81. The first table is in

Vladimir Vassal, Nouvelles Tables donnant avec Cinq Dicimales les Logarithmes Vulgaires et

Natureis des Nombres . . . et des Fonctions Circulaires et Hyperboliques pour tous les Degrls du
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Quart de Cercle de Minute en Minute, Paris, 1872, p. 67-111. For every sexagesimal minute there

is a column giving the corresponding number of radians x to 5D, and another column for the

values of u, to 5D, such that sinh n=tan x, cosh «=sec x, sech « = cos x, tanh « = sin x, etc. The

corresponding values of the circular and hyperbolic functions to 5D, may then be read off. There

are similar tables, for every sexagesimal, and centesimal, minute, in

L. Potin, Formules et Tables Numiriques relatives aux Fonctions Circulaires, Hyperboliques,

Elliptiques, Paris, 1925, p. 450-494, and 496-595.
Hence, not only in the Circular but also in the Hyperbolic Sines and Cosines of the volume

under review there are important additions to previous ranges of values. The U. S. Bureau of

Standards has performed very notable service, not only in making this, and a dozen other ad-

mirable volumes emanating from the New York group, available to scientists, but also at nominal

charges. R. C. A.

90[D].—Project for Computation of Mathematical Tables (A. N.
Lowan, technical director), Table of arctan x. Prepared by the Federal

Works Agency, Work Projects Administration for the State of New York,

conducted under the sponsorship of the National Bureau of Standards.

New York, 1942, xxv, 169 p. 20.9X27.1 cm. Reproduced by a photo offset
process. Sold by the National Bureau of Standards, Washington, D. C.

$2.00; foreign $2.50.

This volume gives values to 12 decimals of the definite integral

with second differences for the following ranges of x: 0(0.001)7, p. 2-71; 7(0.01)50, p. 72-114;

50(0.1)300, p. 115-139; 300(1)2000, p. 140-156; 2000(10)10000, p. 157-164.
As with all major tables published by this Project, this table is more extensive and accurate

than any previously published table of its sort. The foreword to this volume, by W. G. Bickley,

(at whose suggestion the table was produced) gives many instances of the utility of this table.

The intimate connection of the function with the natural logarithm is stressed. For instance,

armed with tables of these two functions, the computer may evaluate the integral of any rational

function. Among the many applications of arctan x might have been mentioned the gudermannian

As pointed out in the foreword, this table is not intended to be used for ordinary trigonometry.

The introduction contains the usual formulas for arctan x including the well known infinite

series of Gregory and Euler, and a discussion of the problem of interpolation. Besides the usual

Everett's formula, using second differences, the following formula is available for this function:

where x=Xo+lt, *o being a tabulated argument, and $=h/(l+xxo). Inverse interpolation, by two

methods, is not difficult, so that the table can be used to find tan y for y in radians.

At the end of the volume are auxiliary tables of p(l — p) and p(\— p')/6 for use in inter-

polation together with two tables for converting degrees, minutes, and seconds to radians and vice

versa.

A peculiar feature of the main table is the fact that the last 50 percent of it, in spite of the

coarseness of the argument x near the end, is devoted to less than four percent of the range of the

function arctan x. An alternative arrangement in which the range of x is 0(.0001)1 would have

been sufficient in view of the relation

According to the introduction, the application of this formula for x> 1 "would generally be quite

laborious, as it would involve finding the reciprocal of x, and then interpolating for that argu-

gdx = arctan (sinh x).

arctan x = arctan x0 + 6 — 03/3 + • • •

arctan x
TT

= —— arctan (1/x).
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merit." The reviewer believes that with the argument in interval as fine as .001, the consequent

saving in the labor of interpolation would more than offset the trouble of finding 1 /x. The present

arrangement requires a second difference of as much as 649519 units in the twelfth decimal place

near »=1/a/3, so that linear interpolation is correct to only 6 decimal places. The alternative

arrangement would have given 8 decimal places and, of course, simpler second difference inter-

polation, not to mention 100 instead of 164 pages. Problems for which the present table would

seem to have been arranged, namely those involving the arctangent of large integers are not

mentioned in the introduction or foreword nor are they known to the reviewer.

There is given (p. xxiii-xxv) a bibliography of 15 tables (mostly small) of arctan x and related

functions together with a few errata.

There is every reason to believe that this excellent table, produced by subtabulation and

checked to sixth differences, is as free from errors as are the other dozen major tables of this

Project.

D. H. L.

91[K].—(i) William Fleetwood Sheppard (1863-1936), The Probability
Integral . . . Completed and edited by the Br. Ass. Adv. Sei., Committee

for the Calculation of Mathematical Tables. Cambridge Univ. Press,

publ. for the B.A.A.S., 1939. xi, 34 p. 21X28 cm. Portrait frontispiece of
Sheppard. 8/6.
(ii) Project for the Computation of Mathematical Tables (A. N.

Lowan, technical director), Tables of Probability Functions. Prepared by

the Federal Works Agency, Work Projects Administration for the State

of New York, conducted under the sponsorship of the National Bureau of

Standards, New York. v. 1, 1941, xxviii, 302 p.; v. 2, 1942, xxi, 344 p.
20.9X27 cm. Reproduced by a photo offset process. Sold by the U. S.
Bureau of Standards, Washington, D. C. $2.00 4- $2.00; foreign $5.00.

These works which are intimately related to one another, provide new and authoritative

tables of what have been called the probability or error functions, that is to say the function

Ae-** , where k may be either 1 or i, and its integrai. The multiplier is usually chosen so that

the integral over the infinite range is unity.

Although these functions have been the subject of interest for more than a century, there is

as yet no standard notation for either of them. Perhaps one reason for this difficulty is found in

the fact that while the statistician, a rather recent addition to the scientific fraternity, is inter-

ested in the function -== e-'*2 and its integral, the physicist finds more use for the function
\/2ir

e~*! and its integral. Hence it would seem that each person who has encountered the functions

anew, has given new symbols for each of their several forms. This same lack of uniformity is

encountered in the volumes under review.

Sheppard in his work adopts the following notations, which have become fairly common in

English works because of their use in Biometrika:

1 1 r°°
z* = -S= e~il2, 4(1 - otx) = —== I   e-*''dt, that is to say,

VZx v2x Jx

«x = -j= ['e-i*dt = -= ('e'^di,      F(x) - J(l - ax)/zx,

L(x) = - log. {HI - «*)},     Kx) = log,„ {1(1 - *)}•

Before describing the contents of Sheppard's tables it will be necessary to explain the inter-

polation scheme which he employs. In most tables a difference method is used based upon the

Gregory-Newton formula, or one of its variants, that is to say, the formuia:

f(x + 6h) = /(*) + 0Af(x) + e(9~ 1} A*f(x) + •■■ .
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where h is the interval of the argument. One of the great advantages of this formula, or its variants

such as the common Everett's formula which employs only central differences, is found in the

fact that the value of h does not appear explicitly in it. Hence a computer can provide an inter-

polation scheme merely by giving a set of differences. The disadvantage is found in the binomial-

coefficient multipliers of the successive differences, which must either be computed or read from

tables.

Sheppard for his interpolation scheme decided to make use of the Taylor's expansion of a

function, that is to say,

(» + 6h) = f(x) + 6f.(x) + «»/,(*) + ■•■ + 0*Mx) + ■■•

An
where we employ the abbreviation /»(») — —f(nKx).

n\

There is obviously some advantage gained in the ease of interpolation by replacing the

binomial coefficients by powers, but it is also clear that the labor of computing the original table

is very greatly increased since h appears explicitly in the multipliers and derivatives must be

computed instead of differences. But when, as in the present tables, as many as 16 differences

would be required were a full interpolation computed, it is readily seen that there is great ad-

vantage gained in the use of these so-called reduced derivatives.

Table I in Sheppard's work gives the values of F(») over the range x= [0.00(0.01)10.00; 12D]

together with the reduced derivatives Ä"F(n)/»!, n ranging from 5 in the early part of the table

to 3 in the latter part.

Table II provides the values of F(x) for »=[0.0(0.1)10.0; 24D] together with the functions

AnF(n)/n!, where n ranges from 16 in the early part of the table to 13 in the latter part.

Table III gives eleven values of Z(») for x= [0(1)10; 24D].

Table IV, gives the values of L(») over the range »=[0.0(0.1)10.0; 16D], with corresponding

values of hnLM/n\, n ranging from 10 to 8.

Table V provides values of /(*), for »=[0.0(0.1)10.0; 12D] together with the corresponding

values of h"lM/n\ with n ranging from 7 to 6.

Table VI gives l(x) for »=[0.00(0.01)10.00; 8D], together with the central differences i*.

The following quotation from the "Introduction" indicates the method of computation and

the accuracy of the tables.

"Table II was evidently constructed from Laplace's continued fraction and the derivatives

calculated from its convergents. Table I was obtained by subtabulating Table II to interval

(0.01). Sheppard used the fact that any tabular entry is the sum of the next tabular entry and its

reduced derivatives, all taken positively; while the reduced derivatives of any entry are simple

linear functions, with known coefficients, of these quantities, already calculated in Table II at

interval (0.1). He never completed his subtabulation. This has been done on the Association's

National machine by Mr. F. H. Cleaver using a method devised by Mr. D. H. Sadler. Mr. W. L.

Stevens gave great help in supervising the calculations. All the tables have now been checked,

Table III by recalculation, Tables II, IV and V by summing the function and its reduced deriva-

tives for each value of the function; the latter process does not of course ensure the accuracy of

the last figure. It is an example of the remarkable accuracy of Sheppard's work that not a single

error was discovered in any of the entries in Table II."

The name of Sheppard is familiar to every student of statistics. He was an authority on

methods of graduating data and most textbooks give an account of what is called the method of

Sheppard's corrections for the adjustment of the values of moments computed from discrete data.

In the American volumes the following notations were adopted:

H'(x) = -7 e~*\    H(») = -7= f *e-'dt;     0(») = -j= <rW      P{x) - -4= /" «"*'*•

The first volume is devoted to the evaluation of H'(x) and H(x), the second to Q(x) and F(»).

Both volumes contain introductory explanations about the method of computation of the func-

tions and the use of the tables.
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Table I, v. 1, gives the values of H'(x) and H(x) for »=[0.000(0.0001)1.0000(0.001)5.600;
15D]. Since H'(x) at »=5.600 is 27X10-16 and H(x) is 1-2X10-16, one page of values is given

at the end of the table showing the change in the argument for each unit change in the fifteenth

place of these tabulated values. Neither argument reaches 6.000.

Table II, v. 1, gives the values of 27'(») and 1 -22(») for »= [4.00(0.01)10.00; 8S]. It is inter-

esting to note that 22'(10) = 4.1976562X10-« and 1-22(10) = 2.088487_6X 10-«.
The last page of v. 1 gives the constants x, 1/x, \Ar, l/\/x> \/2x, l/\/2x> 2/Vx, log x,

log \/2x, e, l°g e> and log 2, to 16D.

Table I, v. 2, gives the values of Q(») andP(»)for » = [0.0000(0.0001)1.0000(0.001)7.800; 15D].
Since Q(x) at »=7.800 is 25X10"15 and 1—P(») is 6X10-16, one page of values is given showing

the argument which corresponds to one unit change in the fifteenth place in these tabulated values.

Q(x) is zero to 15D for »=8.285 and P(») is unity to 15D for »=8.112.

Table II, v. 2, provides values of Q(») and l-2>(») for »=[6.00(0.01)10.00; 7S]. One may

observe that the first significant figure for both Q(x) and Pix), when »= 10.00, is in the 23rd place.

These values are far beyond conceivable use in statistics since the realistic range for data seldom

exceeds three standard deviations, and these tables extend the range to 10 standard deviations.

However, one can never tell to what other uses such fundamental values may be adapted.

The method of computing the tables in both volumes was essentially the same and made

use of the well known properties of the Hermite polynomials. As with the probability functions

themselves, notations differ for the Hermite polynomials. It will be observed that the »th deriva-

tive of e~kz is the product of e~kx by a polynomial of «th degree. These polynomial multipliers

are called Hermite polynomials after the French mathematician, Charles Hermite (1822-1901)

who first studied them. Two forms are to be observed, those corresponding to k = \ and those

corresponding to k = 1. The writer prefers the notation:

hn(x) = (- 1)V2 4~ «"*" • = (- i)"^ T-
ax" ax

One may observe that the two forms are connected by tht relationship

A„(») = 2-'»ff„ (x/sfl).

It may also be proved that they satisfy the following recurrence relationships:

Än+2(») - xhn+i (») + in + l)th,(x) = 0,     Bn+2 (») - 2»Zf„+i(») + 2(» + 1)22„ (») = 0.

Returning to the computational problem, let us first write Taylor's series in the form

fih (fih)2
fix ± ph) = f{x) ± P~f (») + ^-/"(») + ■ • •,

where h is the tabular interval. Then if p is set equal to 1 and/(») = 22(»), we obtain the expansion

h* hn
27 (x±h) = h(x) ± hE'ix) + — 22" (») 4-± — #'*»(») + • • • .

2! n\

To begin with H'(x) was computed for the 60 "key arguments" »=[0.0(0.1)6.0; 25D]. By

means of the properties of the Hermite polynomials, derivatives of higher order were next com-

puted for the same arguments so that 25-decimal accuracy would be obtained in l(y~''H'-k)(x)/k\

Beginning then with the expansion for Hix + h) and noting that H(0) = 0, it was easy to evalu-

ate 27(0.1). From this new value £7(0.2) and £7(0.0) were computed, and then in succession

£7(0.3) and £2(0.1), £7(0.4) and £7(0.3), etc. The second computation of each previously computed

value was used as a check on the computations of the derivatives employed. This process was

continued until 22(6.0) was obtained, which was then checked with its direct evaluation from the

asymptotic expansion of 27(»). With these key values of £2(») and 22'(») subtabulation was then

employed to complete the table, Taylor's series being used in the computation.

Because of effective tests applied to check the entries, including differencing and double proof-

reading, the authors believe that "this table is entirely free from error."

It seems unfortunate that neither of the major tables contain differences, particularly since

fourth differences are negligible and S2 would have been sufficient. However, when derivatives of
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the second and higher orders are neglected, the following easily applied formulas are available for

interpolation:

i?Oo + ph) = H(xo) + phH'(x0),     B'(xa + ph) = fl'(*0)[l - 2x0ph].

Six-place accuracy or better is obtained by these formulas. Nevertheless, the publication of

differences would have added greatly to the value of the tables and the omission is very much to

be regretted in a work of such importance.

H. T. D.

92[K, L].—A. N. Lowan, N. Davids, A. Levinson, "Table of the zeros of the
Legendre Polynomials of order 1-16 and the weight coefficients for Gauss'

mechanical quadrature formula," Amer. Math. So., Bull., v. 48, 1942,

p. 739-743. 15.4X24.2 cm. The tables were computed by the Project for
Computation of Mathematical Tables, conducted by the W.P.A., New

York.

Legendre's polynomial of the wth order, or zonal surface harmonic of the first kind, may be

defined by

1 - 1)"
Z  "  Pn{x)   '-1

2"»! dx"

which is a particular solution of Legendre's equation

(1 - x") — - 2x ^ + n(n + l)z = 0.
dx* dx

Zonal harmonics Pn were first introduced in 1784 by Adrian Marie Legendre (1752-1833), in a

paper published in Memoires des Savants tirangers, v. 10, 1785, and applied to the determination

of the attractions of solids of revolution. P„(») = 0 has n distinct roots between —1 and +1,

arranged symmetrically about s = 0. While for small values of n the expression for P„ is com-

paratively simple, when n is as large as 16 we get

P«(x) = (1/2U)(300 540 195*1» - 1 163 381 400»" + 1 825 305 300s12 - 1 487 285 800*1«

+ 669 278 610*8 _ 162 954 792^ + 19 399 380** - 875 160*2 + 6435).

Finding the zeros of even just this P:e, to 15D, is no small piece of computation. The Project

calculated such. zeros by successive approximations, combining synthetic division with the

Newton-Raphson method. They were checked by using the relations between roots and coeffi-

cients.

Gauss's method of mechanical quadrature was set forth in his paper published in Commenta-

tiones Societatis Regiae Scienliarum Gottingensis Recentiores, v. 3, 1816; also, with certain mis-

prints not in the original article, in Werke, v. 3, 1866, p. 165-196. If X\, %%,•••,#» are the zero

values of Pn(x), Gauss stated, in effect, the theorem

> 1

f(x)dx - ai/(*i) 4- Oif(x2) + ■ ■ ■ + a„f(x„)

C+1 Pn(x)dx
where a,-= I ————--> and/(*) is a polynomial of degree not greater than 2n— 1

J-l   Pn(Xi)(x — Xi)

(C. G. J. Jacobi, 1826). If /(*) is not a polynomial, but is with its derivatives continuous within

the range, we have an approximation to the quadrature which becomes closer as n increases.

The table before us contains the non-negative zeros and corresponding a's, n = 2, • • • , 16,

to 15D. Let us see to what extent the results here are new. In that fine work of B. P. Moors,

Valeur Approximative d'une InttgraU Definie, Paris, 1905, viii, 195 p. +11 folding plates, the

non-negative zeros and a's are given for „=2(1)10; 16D. These values are to one more decimal

place than the one under review; otherwise the tables are in agreement, except that for «=9 the

fifteenth digits of a0 and ai differ by 3-4 units each. Moors is here in error. B. deF. Bayly in
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Biometrika, v. 30, 1938, p. 193, gave the zeros and a's for Pu(x) to 13D. With his correct results

we found two errors in the zeros of the table under review, as well as last figure errors of Bayly

in six of the a's; Mr. Lowan pointed out another error in Pu(x). See MTE 6. Thus there were no

dependable results beyond the range of Moors, and Bayly, when the new table added the range

»-11, 13(1)16; 15D.
Gauss's results for the interval (0, 1) are reproduced in somewhat modified form for the

interval (-1, +1), n = [2(l)7; 16D], in Heine, Kugelfunktionen, v. 2, Berlin, 1881, p. 15-16 (the

last three figures here in each of the zeros for n — 4 are erroneous); these were copied from Heine,

with the errors, in E. W. Hobson, Spherical and Ellipsoidal Harmonics, Cambridge, Univ. Press,

1931, p. 80-81. In H. J. Tallquist, Grunderna af Teorinför Sferiska Funktioner, jamte Användningar

inom Fysiken, Helsingfors, 1905, p. 400 are given the zeros for „ = 2(1)8; 7D (in n=8for 0.9602898,

read 0.9602899). For the interval -1/2 to +1/2 E. J. Nyström calculated the zeros and a's

« = 2(1)10; 7D, Acta Math., v. 54, 1930, p. 191. Nyström notes (p. 190) an error in Gauss, for

n=2, where in place of a"= 1,887 • • • , should be a" = 0,887

For a discussion and comparison of different methods of mechanical quadrature see especially

the work of Moors, with an excellent historical survey, referred to above; but Tract for Computers,

no. X, contains a very brief treatment by J. O. Irwin, On Quadrature and Cubature or On Methods

of Determining Approximately Single and Double Integrals, Cambridge, 1923.

R. C. A.

I have already had occasion to use this table to good effect. Readers who are unacquainted

with the literature of the subject and who may wish to use the table will, however, be confused by

the fact that the description of the table does not agree in its notation with that of the table

itself, and may be misled by the fact that the formula given for the remainder is seriously incor-

rect. This note is an attempt to make this valuable table just a little more useful.

The subscript i used above runs, in the table, from 1 to n when n is even, and from 0 to n— 1

when n is odd. Since the roots Xi are symmetrically situated with respect to the origin, the table

gives only the non-negative roots

Xi, Xi, Xs, • • • , Xnit       if » is even,

xo, xi, xi, ■ ■ • , *(„_»/! if n is odd,

arranged in order of increasing magnitude. Opposite each such x is found the corresponding a.

The other x's and a's are given by

xn-i = — Xi,       an-i = tu, i = 1, 2, • • ■ , n — 1,—if n is odd;

Xn-i+i = — Xi,     a„_,-+i — a;, i = 1 2, 3, • ■ • , n,—if n is even.

With these notations Gauss' formula becomes

q n+«—1

f(x)dx = i(q - p) £ aiF(xi) + Rn{f)
i—t

where «=0 or 1 according as n is odd or even and where

F(«)-/^— + —)».

As for the remainder term Rn(f), the authors give

/■<2n)(£)

(In + 1)!

whereas the correct formula, due to Markov and Mansion,1 is

[(2»)!]2(2n + 1)1

It is clear that when the range of integration is large (1) will be much too small. Since
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2(re!)<42»     _ /oT"sin'"+1 0dB < ^

jr(2») !(2n + 1)! sin2" Odd

a somewhat simpler form of (2) may be given as follows

(3) ' <      (2*)!      {—)-tn—\ •

Since we are concerned, after all, with very moderate values of n, it is perhaps more to the point

to write (2) in the form

Rn(J)
(2») !J7„

and to tabulate2 the integers Un as follows

n U„ H Un n Un

2 180 7 176679360 12 182811491808400
3 2800 8 2815827300 13 2920656969720000
4 44100 9 44914183600 14 46670906271240000
5 698544 10 716830370256 15 745904795339462400
6 11099088 11 11445589052352 16 11922821963004219300

A reference should have been made to an important note by Uspensky2 on the subject of

Rn(f). He shows that Rn{f) possesses an asymptotic development in every way comparable with

the celebrated Euler-Maclaurin formula which latter may be thought of as giving the asymptotic

development of the remainder of the trapezoidal rule.

1 A. A. Markov, 0 Nekotorykh Prilozheniiakh Algebraicheskikh Nepreryvnykh Drohet. [On
some Applications of Algebraic Continued Fractions], Doctoral diss., St. Petersburg, 1884, p. 68;
A. A. Markov, "Sur la methode de Gauss pour le calcul approche des integrales," Math. Annalen,
v. 25, 1885, p. 429; and P. Mansion, "Determination du reste dans la formule de quadrature de
Gauss," Acad. Royale d. Sei. d. Lettres. et d. Beaux-Arts de Belgique, Bulletins, s. 3, v. 11, 1886,
p. 303. Also in A. A. Markov, Dißerenzenrechnung, Leipzig, 1896, p. 68; Gauss's numerical results
are given on p. 70.

2 These values up to Ui were given by Gauss, Werke, v. 3, p. 193-195.
' "On an expansion of the remainder in the Gaussian quadrature formula," Amer. Math.

So. Bull., v. 40, 1934, p. 871-876.
D. H. L.

93[I].—(i) A. N. Lowan, H. E. Salzer, A. Hillman, "A table of coefficients
for numerical differentiation," Amer. Math. So., Bull., v. 48, Dec, 1942,

p. 920-924.
(ii) W. G. Bickxey, J. C. P. Miller, "Numerical differentiation near

the limits of a difference table," Phil. Mag., s. 7, v. 33, Jan., 1942, p. 1-14
+4 folding plates.

Numerical differentiation presents two problems depending on whether (a) the given values

of the function are known to a high degree of precision, as would be the case, for example, if one

wishes to find the second derivative of the gamma function from a six place table of that function,

or (b) the values are determined by experiment and are subject to considerable uncertainty.

Well known solutions of problem (a) which date back to Newton depend on interpolation to

the given values by means of a polynomial of arbitrary degree n. The final result is an expression

for/(m)(*) as a linear combination of successive differences of the function values:

n

t-m

where u is the tabular interval, a5/ is the g-th difference found from tabular values at the equally

spaced points x?, xf'', • ■ ■ , x™+v and the coefficients Am,t depend only on the position of x rela-

tive to *j*, *,*, • • • , x^'+l. Various particular methods are obtained by varying this relative

position. In case these points are symmetrical about x, one gets a formula in terms of "central
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differences." Central difference formulas are usually preferred whenever they can be used, but

they are inapplicable to points at or near the ends of the table. In such a case one ordinarily uses

the formula in terms of ''forward differences," where x["^ = jr. Taper (i) is concerned with the calcu-

lation of the coefficients .4«,,, for this case, and gives a table of these coefficients for the first 20

derivatives up to those of the 20th difference; the coefficients of the first 12 of these had been

already given in one of the tables of paper (ii).

Paper (ii) raises an objection to the use of advancing differences when x is not at the end of

the table but is too near for central differences, on the grounds that forward differences do not

use all the available tabular values nearest x. To meet this objection the authors have developed

new general formulas in terms of "mixed differences," in which x can have any tabular position

from jr, to ar*. These formulas include central and backward and forward differences as special

cases. In applications one uses central differences for derivatives of orders up to the first for which

X, (or .f'a') reaches the limit of the table; for hierher derivatives the mixed differences for which

ar, (or x *!,) is at the end of the table. Analogous formulas are also obtained for .v midway be-

tween two tabular points; these enable one to subdivide the given tabular interval. The authors

have computed the coefficients A,„,Q of these mixed difference formulas for differences up to those

of the 12th order for the first 4 derivatives when x itself is a tabular point; also for the first three

derivatives when x is midway between two tabular points. In all these cases the coefficients are

rational numbers and their values are given exactly. The tables displaying these coefficients have

an unusually convenient arrangement. The central differences from a horizontal line along the

middle of the page with the mixed differences arranged on either side to form a triangular array.

In a particular problem the values to be taken from the table will occur first along this horizontal

line and then along the diagonal. Arrow s are placed in the table to help guide the eye along the

proper diagonal. Illustrative examples in the use of the tables are also included.

In problem (b), the methods given in these papers are unsuitable, in general. In fact no method

based on the theory of interpolation, in which an approximating curve is passed through the

given values, is suitable; for, to force the approximating curve to pass exactly through the given

values is not desirable and will usually introduce w ide oscillations in the derivatives. Some other

method of approximation having the effect of smoothing out of the given data must be used in

this case.

Among references to topics in paper (i) are the following: L. M. Milne-Thomson, The Calculus
of Finite Differences, London. Macmillan, 1933. Chap. 7. p. 157-150; H. T. Davis, Table of the
Higher Mathematical Functions. Bloomington, Ind., v. 1,1933. p. 73-77; E. T. Whit taker and G. Rob-
inson, The Calculus of Observations. A Treatise on Xtimerifial Mathematics, 3d ed. London. Blackie,
1940, p. 62-65. The references in paper (iil are to K. X. Bradtield and R. V. Southw ell, "Relaxa-
tion methods applied to engineering problems. I—the deflexion of beams under transverse load-
ing." R. So. London. Proc, v. 161A. 1937. p. 155-181; L. J. Comrie. Interpolation and Allied
Tables. London, H. M. Stationery Ottice. 1936. (Reprinted from the Xautical Almanac for 1937.),
D. C. Fräser, "On the graphic delineation of interpolation formulae." Inst. Actuaries. Jh., v. 43,
1909, p. 235-241; J. F.^Steffensen. Interpolation, Baltimore, Williams & Wilkins. 1927.

P. W. Ketchxji

94[A, D, E].—H. S. Uhler. "A new table of reciprocals of factorials and some

derived numbers," Connecticut Acad. Arts and Sei., Trans., v. 32, 1937,

p. 381-434 16.2X24.4 cm. Compare RMT 86.

The main table may be regarded as the superposition of two tables one of which is limited

(for n>14) to 475D, so that it terminates with 1 214!, and the other is defined by 70S, and in-

cludes all values of 1 from /; = 1 to « = 369. The upper limit was arbitrarily chosen so that the

table would be adequate for the evaluation of i'100 to about 100S. D. H. Lehmer gave the value

of e to 707D (Amer. Jr.. Math., v. 48, 1926, p. 139-143), in order to match the 707-place value of ir

found by Shanks before 1S74. H. S. Uhler reprints Lehmer's value and shows that it is in agree-

ment with his own to 47SD.

Other results given are r_1 (to 477D). e- (to 257D), r1 (to 256D), ee (255D). rs (255D),

f" (253D). tr*> (25SD), e™ (U'D), f~lM (40S), sin 1 (,477D).cos 1 (477D). sin 10 (212D), cos 10

(212D), cos 20 (212D), sin 100 (72D), cos 100 (72D), sin 200 ,72D), cos 200 (72D).
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The elaborate tests applied for checking the accuracy of the calculations are fully described,

and tend to inspire unlimited confidence in the results.

The work of H. S. Uhler has checked the accuracy of the following earlier substantial results:

C. A. Bretschneider, Archiv d. Math. u. Phys., v. 3, 1843, p. 27-34, e, e_1, sin 1, cos 1, sinh 1,

cosh 1, each to 105D.

J. W. L. Glaisher, Cambridge Phil. So., Trans., v. 13, 1883, p. 247. 1/»!, n = 13(1)50, to 28D.
For » = 20, 27, 41 and 50 "Glaisher's numbers end with 9, 7, 5, and 6 instead of 8.436, 6.974,
4.449, and 5.468 respectively."

C. E. Van Orstrand, Nat. Acad. Sei., Memoirs, v. 14, no. 5, 1921. 1/n!, «=1(1)74, to 108D,

p. 12-13; e, e2, e4, e°, e», e1", each to 42D, p. 16-17; e"10 to 52D, p. 27; «-100 to 19D, p. 28; sin 10,

cos 10, cos 20, cos 100, sin 100 each to 23D, p. 47-48.

J. T. Peters and Johann Stein (1871- ), Anhang mathematischer Tafeln in Zehnstellige Lo-

garithmentafel, v. 1, Berlin, 1922. e"1 to 72D, p. 12; e2, e*, e", e8, and e10 each to 32S, p. 12; sin 1,

cos 1, each to 52D, p. 60.

R. C. A.

95[A, C].—H. S. Uhler, "Log t and other basic constants," Nat. Acad. Sei.,
Proc, v. 24, 1938, p. 23-30. 17.5X25.8 cm.

The Table here includes the following results all most carefully checked: (1/2) log 2?r and logx,

each to 214D; In x to 213D; log 2, log 3, log 5, log 7, log 17, each to 230D; In 17 to 224D; In 71
to 213D; log 71 to HOD; In 113 to 213D; log 113 to HOD; x"1 to 253D; x2 to 261D. Errors in

Parkhurst's tables are noted. The value of x_1 was calculated by J. W. Wrench, Jr.; the most

extensive earlier correct value was by G. Paucker, to 137D, Archiv Math. Phys., v. 1, 1841, p. 1.

x2 was given correctly to 217D by S. Z. Serebrennikov, Akademiia Nauk, Classe physico-mathS-

matique, Mimoires, s. 8, v. 19, 1906, p. 4.

James Stirling and Abraham De Moivre by different methods arrived at the following re-

markable and very useful approximation1 when x is large: xl~ (2ir)i(x)i(e)~xxx. De Moivre gave,

in effect, the expansion

In*!- (imU2r-r(* + m}tax-* + ~—-p- ^ + ~^--+ R
1-2   x     3-4 x'     5-6 x6

where B\, Bi, Bi, ■ ■ ■ denote the Bernoulli numbers. Log x\ for x= 1(1)3000, to 33D may be

read off from F. J. Duarte, Nouvelles Tables de log x\, Geneva and Paris, 1927; logarithms to 61D

for all numbers to 100 and of primes from 100 to 1100 may be found in Sharp's table (1717), and

logarithms to the base e and to 48D, in Wolfram's table (1778); the Bernoulli numbers Bi up to

i = 110 are known; also log x to 61D (Sharp, 1717); and In x to 48D in J. T. Peters and J. Stein,

Anhang mathematischer Tafeln in Zehnstellige Logarithmentafel, v. 1, Berlin, 1922, p. 1. Hence

computations in this connection to more than about 60D, for x > 1100, call for further basic values.

For this purpose H. S. Uhler has now provided (1 /2) log 2x, log x, In x, and log 2, while J. C. Adams

gave In 2, all to over 200D (1878 and 1887).

The formula underlying the calculation of In x was based on an approximation for x due to

Ramanujan {Quart. Jl. Math., v. 45, 1914, p. 366; and Collected Papers of Srinivasa Ramanujan,

Cambridge, 1927, p. 35), which, with a correction factor/making the formula exact, is as follows:

x=(355/113)(l-.O0O3/3533)/, a rough value for l-/being 347X10"18. Hence the actual com-
putation of In x reduced to that of In of 71,113, 1 —.0003/3533 and/. It was shown that the

computation of In 71 and In 113 could be made to depend wholly on In 2, In 3, In 5, In 7, already

calculated, and on certain rapidly converging series.

R. C. A.

1 J. Stirling, Methodus Dißerentialis, London, 1730, p. 137; second ed., 1764, p. 137; English
edition by F. Holliday, 1749, p. 121. A. de Moivre, Approximatio ad Summam Terminorum
Binomii {a-\-b)nin Seriem expansi, London, 1733; rev. transl. in A. de Moivre, Doctrine of Chances,
London, second ed., 1738, p. 235-242; third ed., 1756, p. 243-250; for a facsimile of the 1733
publication see R. C. Archibald, "A rare pamphlet of Moivre and some of his discoveries," Isis,
v. 8, 1926, p. 677-683. See also C. Tweedie, James Stirling       Oxford, 1922, p. 119, 203-205.
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96[A, C, D, E].—H. S. Uhler, "Recalculation of the modulus and of the
logarithms of 2, 3, 5, 7 and 17," Nat. Acad. Sei., Proc, v. 26, 1940, p. 205-
212. 17.5X25.8 cm.

In the calculation of the table in RMT 95 the series

- ' = 2If? + 7 7 Utt)^ • • • S - 2s^ - *'« + aq       lp + q     3 \p+q/     5 \p + ql )

with p-q=l, played an important role. With ^ = 5041 = 71', 5040=24 -32 -5 • 7

In 71 = 2 In 2 + In 3 + (In 5 + In 7)/2 5(1/10081).

Similarly for /> = 226, In 113 involves 5(1/451). Thus in the present paper, we have 5(1/5),

5(1/239), 5(1/2449), 5(1/4999), and 5(1/8749), in connection with In 2, In 3, In 5, In 7 and In 17.
J. C. P. Adams calculated the first four of these to 262D (1878 and 1887); see MTE 8. These are

here extended, with certainty on the author's part, to 328D. The values are also given of the

following: arctan (1/451) to 215D; arctan (1/577) to 335D; arctan (1/2449), arctan (1/4999),

and arctan (1/8749) each to 330D; and arctan (1/10081) to 216D.

Adams found M correct to 271D (1887). From his own In 2 and In 5 Uhler determined M,

correct to 328D.

Five other values found in RMT 94 are here extended, viz: elt to 289D; e_1° to 293D; and

sin 10, cos 10, cos 20, each to 284D. These latter ranges are also supplementary to results in

RMT 81.
R. C. A.

97[A, Kj.—H. S. Uhler, "The coefficients of Stirling's series for log r(*),"
Nat. Acad. Sei., Proc, v. 28, 1942, p. 59-62. 17.5X25.8 cm.

When » is a positive integer, the asymptotic series of RMT 95 becomes

00

In r(z) = (1/2) In 2,r + (z + 1/2) In x - x + £ {cjx^) + R,
m-l

where cro=( — Vjm~lBm/[{2m — l)(2m)]. The table of the paper contains the first 71 values of cm,

many of which have recurring periods within the range of the table; clt is given to 103S. Values

of 100! to 158S, and of In (100!) to 156S, are also given.

MATHEMATICAL TABLES—ERRATA

In this issue we have referred to Errata in RMT 89 (Blakesley, Forti,

Hayashi, Sakamoto), RMT 92 (Lowan et al., Moors, Bayly, Gauss, Heine,

Hobson, Tallquist), RMT 94 (Glaisher), RMT 95 (Parkhurst, Serebrennikov),

UMT 2 (Airey), N 4 (Gifford, C. G. Survey), N 5 (C. G. Survey), N 6 (Gil-
ford), and in the first article of this issue (Callet, Brandicourt and Roussilhe,

Jordan, Service Geog. 1914).

5. U. S. Coast and Geodetic Survey, Special Publication, no. 231, Natural

Sines and Cosines to Eight Decimal Places, 1942; see RMT 77.

End-figures are missing cos 1°44'41" and 42", namely: 0 and 5 respectively.

L. J. C.
Sin 36° for 0.587 78255, read 0.587 78525.

F. W. Hoffman, 689 East Ave., Pawtucket, R. I.

6. A. N. Lowan, N. Davids, A. Levenson, "Table of the zeros of the Le-

gendre polynomials," 1942; see RMT 92.

«=11,/or *2 = 0.519096129110681 read z2=0.519096129206812

» = 12, for *i=0.125333408511469 read s^O.125233408511469
» = 12, for «2=0.367831498918180 read »2=0.367831498998180

A. N. Lowan, and R. C. A.


