
Machines for Solving Algebraic Equations

1. Introduction. The search for mechanical means of solving algebraic

equations has interested mathematicians for well over a century. Two early

papers date back to the eighteenth century. Perusing a paper of 1758 by

Segner,1 in which the author proposes a universal method of discovering real

roots of equations, based on what we should now call drawing the graph of

the function y = 2^«.*\ Rowning2 in 1770 considered the possibility of

drawing the graph of a polynomial continuously by local motion. Theoreti-

cally at least, a number of rulers could be linked together so that the pencil

point on the last ruler would trace the required curve. But mechanical

limitations of the day caused a reviewer to remark that "as this is a matter of

curiosity rather than any use, ... it is unnecessary to enter any further

into it at this time." Theoretical methods developed since that day have

depended for their usefulness on the degree of precision in the mechanisms

constructed to carry theory into practice, a precision which has greatly in-

creased in modern times.

The early mechanical equation-solvers were restricted to finding the

real roots of equations with real coefficients. But certain electrical methods,

starting with the one described by Lucas in 1888, were able to handle com-

plex roots, and even complex coefficients. The modern isograph is an electro-

mechanical device for finding real or complex roots of algebraic equations.

In addition to the machines for solving algebraic equations in a single un-

known, other similar devices have been invented for the solution of simul-

taneous linear equations in several unknowns.

Two excellent surveys of earlier mechanisms appeared at the beginning

of this century, one by Mehmke3 in 1902, revised by d'Ocagne3 in 1909,
and the other by Moritz4 in 1905. A few years later Ghersi,5 in his book of

mathematical curiosities, included an illustrated account of some of the

previously discovered hydrostatic and electric solvers of algebraic equations.

A comprehensive survey of various dynamical methods of solving algebraic

equations was given by Riebesell6 in 1914. The summaries and bibliog-

raphies published in these papers have been very helpful in the preparation

of this article, and will be made use of below without^further acknowledgment.

The diverse methods which have been proposed for solving algebraic

equations mechanically, other than the strictly numerical methods based

upon the use of calculating machines, fall naturally into about six types,

and we shall discuss these in the succeeding paragraphs, as follows: (2)

Graphic and visual methods. (3) Kinematic linkages. (4) Dynamic balances.

(5) Hydrostatic balances. (6) Electric and electromagnetic methods. (7)

Methods of harmonic analysis. Of these the first four are usually restricted

to real roots, whereas the last two may be used to find the complex roots of

equations. All these types include machines both for algebraic equations in

one unknown, and for simultaneous linear equations in several unknowns.

In our description of various devices, it will be less confusing to the reader

if in most cases we adopt a standard notation for a polynomial whose zeros

are to be found, which may differ in several instances from those used by the

authors we quote. Let it be required to determine the roots z = x + iy,
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(i2 = — 1), of the algebraic equation

(1.1) f(z) =c0 + cxz + c2z2 + • • • + C„Z» = 0,

where the coefficients cm = am + ibm may be real or complex. The letter R

will denote any convenient upper bound for the absolute values of the roots

of /(s). A suitably chosen integral of /(z) will be denoted by F(z), and its

zeros by Z\, ■ ■ ■, Z„+i. To denote real coefficients we shall write am instead of

cm. If only real roots are to be found, the variable z will be called x. Thus

the notation

(1.2) f(x) = a0 + aix + a2x2 + • • • + anxn = 0,

will imply the problem of finding real roots of a polynomial equation with

real coefficients. In such cases y will often be used to denote/(x).

2. Graphic and visual methods. Twenty-five years after Rowning's

paper, Lagrange7 described a graphic method of solving algebraic equations.

To solve the equation /(x) = 0, Lagrange lays off on the y axis (Z0) the

n + 1 directed segments OB0 = a0, B0Bi = a\, BiB2 = a2, • • •, Bn-\Bn = an.

The coordinates of the point Bm are seen to be (0, bm), if bm = a0 + ai +

+ am. A horizontal line through Bn intersects the vertical Li(x = 1) at the

point C„(l, bn). The line Bn-iCn, with slope o„, meets a suitably selected

vertical line Lx in a point PB-i(x, bn-i + a*x); a horizontal through P»_i

meets L\ in C„_i(l, ö„_i + anx); the line 5„_2C„_i with slope a„-i+anx

meets Lx in P„_2(x, £>n-2 + an-\X + anx2). Successive points Pm are con-

structed in this way on Lx until finally the point P0 is found, whose coordi-

nates are (x,/(x)). The locus of P0, for various lines Lx, is the graph of the

polynomial y = f(x), and the roots are found whenever P0 lies on the x-axis.

Fewer construction lines are involved in the graphic method of Lill8

(1867). If we define the algebraic quantities ym by the successive relations

(2.1) yn = 0,      ym-i = - x(am - ym),      M = n, n — 1, • • •, 2, 1,

then

(2.2) yn-i = - xan,      yn-i = - x(an-i + xan), ■ ■ ■, y0 = a0 - /(x).

The problem is reduced to constructing successively the segments ym-i,

m = n, n — 1, - -- .l and finding x by trial so that y0 = a0. A rectangular

framework introduces the coefficients as follows. Starting at O, lay off

OAn — an as a directed segment along the x-axis, lay off A nA n—1 — ßn-1 aS

a directed segment parallel to the y-axis, lay off An-\An-i ~ an-i as a

directed segment with the positive sense opposite to that of the x-axis; and

continue at each stage to rotate the positive sense through 90°. Now for

any assumed value of x draw a line through 0 with slope — x intersecting

AnAn-i (extended if necessary) at a point P„_i (this is such that AnPn-i

will equal y„-i); draw a perpendicular to this line at P„_i intersecting

An-iAn-2 in P„_2; draw a perpendicular to Pn-iPn-i at P„_2, etc., until

finally a point P0 is located on AiAa, such that PoAo = /(x). If x is so chosen

that Po coincides with A „, it will be a root of/(x) = 0.

This method of Lill was somewhat modified by Cremona9 in 1874, and

was reviewed by Moritz.4
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A graphic method published by Cunynghame10 in 1886 gives the real
roots of an equation of the form xn + Ax + B = 0 to two decimals, if the

curve y = — xn be first drawn on a suitably large scale. The author's nota-

tion is cumbersome, but his idea can be expressed simply by the use of

coordinates. Let a line of slope A be drawn through (0, B). Then the inter-

sections of the curve y = — xn with this line y = Ax -f- B define the real

roots of the given equation. In the case of the cubic, the author discusses

the computation of the "impossible" (what we should call imaginary) roots.

Let P(x, y) be a real intersection of the line y = Ax + B with the cubic

y = — x3, and let m be the slope of the line drawn from P, tangent to the

cubic at another point. Then it is easily shown that the three roots of the

equation are x and — (x/2) ± Vtw — A. Hence if m < A, two roots are

imaginary, but these are readily computed from the two slopes. The author

suggests the use of a special protractor on which slopes can be read directly,

and marks the abscissas directly on the curve C instead of along the x-axis

to simplify reading of the roots.

Extending the graphic idea from the trinomial to numerical equations

of four or five terms, Mehmke11 describes an apparatus which was displayed

in a mathematical exhibit in Munich in 1893. The theory is based on the

fact that if four curved scales in space are cut by a plane, then the four

readings will satisfy a functional relation. In Mehmke's model, three of the

scales are uniform vertical scales A, B, C, parallel to each other but not

coplanar. A line is determined by a string fastened between a point marked

u on the A scale and a point marked w on the C scale. A plane is then de-

termined by viewing this line through a sliding eyepiece set at v on the B

scale. For an equation of four terms, a non-uniform curved scale, suitably

graduated, is viewed through the eyepiece and seen to cut this plane in one

or more points which define the required roots. For an equation of five terms

a one-parameter family of such curves is used. The curves are constructed

as follows. Let the given equation be

(2.3) fix) = xm + uxn + vxp + wx* = f.

On a particular curve corresponding to the parameter /, the point marked

x is such that its projection on a horizontal plane cutting the A, B, C scales

in a triangle ABC would be the centroid of masses x", xp, and xs placed at

A, B, C, respectively; and its vertical projection 5 on one of the three parallel

scales A or B or C is made to be 5 = (/ — xm)/(x" + xp + x"). Hence the

intersection of this curve with the visual plane locates the root of the

equation

3. Kinematic linkages. The mathematical theory of kinematic linkages,

discussed long before by Rowning, awaited the day of precision machinery

before it could be considered practical. In the meantime various theoretical

devices were discussed in mathematical papers. The equiangular linkage

described by Kempe12 in 1873 is a device for obtaining real roots of equations

with real coefficients. It is constructed of n + 1 links Lo, L\, • • ■, L„, of

lengths lo, h, • • •, /„, joined consecutively at points P0, Pi, ■ • ■, Pn-i, so that

(2.4)
uxn + vxp + wxq

xn +-xv _j_ xq Xn + Xp + X9
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the first link OPo lies along the positive x-axis with its left end 0 at the

origin, and so that each of the consecutive links is constrained to make the

same exterior angle <p with its predecessor. The horizontal projection of

the directed link Lm(— Pm_iPm) is then equal to lm cos m<f>, and hence the

horizontal projection of the directed line OPn joining the two end-points of

the linkage is

(3.1) lo + h cos d> + h cos 2d> + • • • +    cos n<b.

To find the roots of an algebraic equation /(x) = 0 it is necessary first

to rewrite the equation in the form (3.1) and then to find those angles <£, for

which the free end Pn of the linkage lies on the y-axis. If R is any convenient

upper bound of the roots of/(x), we may set x = R cos <p, and then calculate

the Fourier coefficients of the trigonometric polynomial f(R cos <p). The

lengths lm can be taken as any convenient multiples of these coefficients,

which are linear combinations of the given coefficients am of/(x).

Although Kempe did not attempt a description of a mechanical method

for producing his equiangular linkage, such an attempt was made later by

Blakesley. In 1907 he published a paper entitled "Logarithmic lazytongs

and lattice-works,"13 and then in 1912 he used the lazytongs idea to devise a

mechanical construction for Kempe's equiangular linkage.14 The construction

which he gave was erroneous, however, and did not really produce an ap-

propriate linkage except in special cases. The following is Blakesley's con-

struction. On opposite sides of each of the segments POT_iPm of Kempe's open

polygon OPqPi ■ • • Pn, two isosceles triangles P and Pm-\BmPm

are drawn forming a kite-shaped quadrilateral Pm-\AmP.mBm. The points A0

and B0 are arbitrary points on the perpendicular bisector of OPo, but the

other vertices Ai and Bi are chosen successively as the points where Ai-\Pi-i

and Bi-iPi-x, produced, meet the perpendicular bisector of P,_iPt. Then

In — 2 rods,—one through Ai-iPi-iAi and one through B^Pi-iBi,
(i = 1, 2, • • •, n — 1),—are hinged to each other in pairs at P,_i and are

further hinged at their common extremities Ai and Bi. Two rods connect A0

and Bo to 0, and two rods connect An and 5„ to P„, but the vertices of

Kempe's polygon are not connected rigidly to each other by rods P<_iP,-.

The joints P, in this configuration can be shown to form an equiangular

linkage as the lattice is articulated. Blakesley's error arose in asserting that

the ratios of the segments OPü, PoPi, P1P2, • • •, etc., remain constant. If

this were true we should indeed have a machine for applying Kempe's

theory. But in fact, only the ratios of alternate segments remain constant in

the general case, although all ratios happen to do so in such special cases

as the logarithmic lazytongs in which the successive lengths form a geometric

progression. Blakesley's device fails as an exact solver of algebraic equations.

It may be of interest nevertheless to note Blakesley's alternate method of

transforming the given equation /(x) = 0 into a Fourier series. This he does

by setting x = tan <p, and computing the Fourier series for the trigonometric

polynomial (cos" d>) -/(tan <b). Separate linkages represent the cosine and

sine terms of the series, and their extremities are fastened at right angles to

each other to produce a single kinematic linkage.

An entirely different mechanism for solving equations of the «th degree,

based essentially on the graphic method similar to that of Lagrange (1795),
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was published in the same year (1912) by Muirhead.16 First, by a trans-

formation of the polynomial which replaces a negative root by a positive

root, or a root < 1 by its reciprocal, the problem is reduced to finding a root

>1. Two parallel shafts 5 and s' are separated by the variable distance

x — 1. In the same plane, on a line PP' perpendicular to s and $' (which cuts s

in P and s' in P', and which we shall call the axis), two centers 0 and 0' are

fixed so that OP = P'O' = 1, OP' = PO' = x. To find a root >1 of the
equation (1.2), mark a directed distance PP„ = an on the shaft s and fix

it mechanically, let a rod 0P„ intersect s' in P'n, lay off and fix mechanically

the directed distance P'nP'n~i = an-i on the shaft s', let a rod 0'P'„_i

meet s in P„_i, and lay off Pn_1P„_2 = a„_2 on s, etc. To avoid mechanical

interference, the successive rods can be placed in parallel planes instead of in

the same plane. The machine is articulated by pulling the shafts s and s'

apart. Whenever the point P0 or P'0 lies on the axis, the corresponding root x

can be read off.

In the same paper Muirhead described a similar mechanism for solving a

set of simultaneous linear equations. Each of the variables x, y, z, etc., re-

quires a pair of shafts (X, X', and Y, Y', and Z, Z' etc.), separated by a unit

distance, whose distances from a fixed reference shaft are constrained to be

x and x+1, y and y+1, z and 2+1, etc. Each equation (a,x+&,y+Ci2+<ii = 0,

for example) requires a set of rods of which consecutive pairs are hinged on

the X, Y, Z shafts, and are forcibly separated by directed distances a,-, £>,-, c,-

along the X, Y, Z shafts. The first rod is fixed at 0 on the reference shaft,

and the last is separated by the distance d, from 0 on the reference shaft.

Ways are devised to avoid mechanical interference.

Two years earlier (in 1910) Näbauer16 described a rather different

kinematic machine for solving simultaneous linear equations. The funda-

mental unit in his machine consists of a horizontal rod bearing two equal

gears of radius r in vertical planes, one of which rests and rolls on a horizontal

turntable, and can be slid back and forth on its axis so as to rest at a re-

quired distance ar from the center of the turntable. As the turntable turns

through an angle x, the two equal gears turn through an angle ax. To avoid

slipping, nine gear circles, for a = 1, 2, 3, • • •, 9, are provided on the turn-

table. A separate turntable mechanism is provided for each of the variables

x, y, 2, and the contributions ax, by, cz are added by differential gears to

produce a given sum I. Three such sums a^x + &,y + c,2 = can be formed

with three sets of turntables, mounted so that each of the variables x, y, z

has a vertical axis for itself. If the sums l\, I2, I3 are prescribed, then the

variables x, y, z are determined. Since friction alone is insufficient to produce

the desired constraint, gears are used. Since the gears restrict the coefficients

a», bi, Ci to one-digit integers, a method of successive approximation is out-

lined which overcomes this difficulty. To a person familiar with early models

of the differential analyzer, this machine demonstrates some of the same

ideas and the same difficulties.

Two decades later a large machine for the mechanical solution of simul-

taneous equations was built at the Massachusetts Institute of Technology.

An interesting description of the machine by Wilbur17 is accompanied by

plates showing the machine and some of the details of its operation. Ten

plates Pj, one for each of ten homogeneous variables, are mounted to rotate

about parallel horizontal axes fastened in a rigid frame. Each plate contains
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ten slots perpendicular to its axis, nine of which are provided with mid-

runners on which a positive or negative coefficient a,,- may be set approxi-

mately by hand, and then adjusted with micrometer screws to .0005 in. or

4 significant figures. The front slot on each plate is used for an accurate

reading of sin Bj, the sine of the angle of rotation of the plate from the

horizontal. The nine slots in a given plate are each associated with one of

nine given linear equations—which can be considered as homogeneous in

ten unknowns to be read as sin Oj, or as non-homogeneous in nine ratios of

these unknowns. The ten midrunners corresponding to a single equation lie

in a vertical plane and are connected by a 60 ft. flexible steel tape. Fastened

at a point A, the tape rides on 10 ball-bearing top runners, from each of

which it loops down to a pulley on a midrunner. Then it passes down through

a clamp C to the bottom, where it passes under a set of 10 bottom runners,

from each of which it loops up to a second pulley on the midrunner, and is

finally made fast at its end B. When the clamp C is released, all the plates

are free to rotate arbitrarily, since any decrease in length of an upper loop is

compensated by an increase in the corresponding lower loop, and vice versa.

The total lengthening of CB, measured along the tape, is

if the "coefficients" an are set as displacements on nine of the plates P,-,

and the "constants" 23, are set as displacements on the tenth plate Po. To

solve the equations

the clamp C is made fast and one of the plates is rotated with an oscillating

motion which constrains the others to move with it. Then the unknowns

Xj = (sin 0,)/sin 60 may be read from the machine.

Having found x< (usually to within 1% of the largest unknown, but this

depends upon the stability of the system), the left-hand sides of (3.3) are

computed accurately to as many figures as desired, with a computing

machine. If these values di do not approximate 0 sufficiently, they may be

reset on the "constant" plate P0 as new constants in a set of equations with

the same coefficients o<y, of which the solutions are the errors of the first

approximations. By repeating this procedure, as high a degree of accuracy

may be obtained as is desired.

4. Dynamic balances. A paper by Berard18 in 1810 was the first to
suggest using an ordinary balance for finding real roots of algebraic equa-

tions. His idea was improved by Lalanne19 in 1840. The principle of

the Lalanne balance was to have weights, proportional to the coefficients

I am I, exert forces placed at directed distances from a fixed reference line

of -\-xm if am is positive, or of — xm if am is negative, so as to produce

moments amxm whose sum should be in equilibrium. For convenience in

staying within a finite portion of the plane, a weight 101 a21 at distance

±x2/10 can replace a weight \a2\ at distance ±x2, etc. Balanced on a hori-

zontal knife-edge is a horizontal rectangle in which guide curves, representing

±xm divided by a suitable power of 10, are marked either by rigid curved

wires or by slots in a sheet of metal. From the guide curves hang appro-

(3.2) 2£ai/sm 0y + 22?< sin 0O

(3.3) 2>«jXj + Di = 0
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priate weights representing the coefficients. The constant term c0 is repre-

sented by a weight | Co | hung on one of two fixed hooks on opposite sides of

the knife-edge. By means of a horizontal indicator slide, perpendicular to

the knife-edge, all the hooks are constrained to hang at the same distance

x from an initial reference line. As the slide is moved from left to right, the

real roots are read off at positions of equilibrium.

Collignon,20 in 1873, extended Lalanne's balance in a theoretical way

to a complex variable, hanging weights at points representing the complex

numbers 1, z, z2, etc.; but he was not successful in devising a practical

machine to move the hooks continuously in the prescribed manner. In 1881

Exner21 devised a turning balance in which the weights are placed on

spiral curves.

Systems of levers were hinged together in a machine designed by Boys22

in 1886. In this machine a set of n -f- 1 horizontal axes are placed at levels

0, 1, 2, ■ • • n, above a fixed pivot. The even-numbered axes are equally

spaced in a fixed vertical plane s and the odd-numbered ones are equally

spaced at intermediate levels in a parallel vertical plane s' at distance

x + 1 from s. Intersecting the mth axis at right angles there is a horizontal

lever with weight pans at distances marked +1 and —1, of which the one

whose sign is that of am is to carry a weight \am\ so as to produce a moment

am. Positive moments are clockwise on the left-hand even axes and counter-

clockwise on the right-hand odd axes. The m— 1th lever is supported by a

sliding joint fastened to the positive pan on the mth lever which is at dis-

tance x from the m — 1th axis. Thus the weight \a„\ on the wth lever produces

a moment anx on the n — 1th axis, to which is added the moment an-i from

the scale pan. A total moment of (a„_i + anx)x is communicated to the

n — 2th lever, to which is added the moment a„_2 of the weight |a„_2|, etc.

Finally, on the bottom 0th lever the total moment is/(x). The two vertical

planes 5 and s' are to be moved apart until equilibrium is reached. Real

positive roots can thus be read off within limits determined by the size of

the machine.

Ten years later (1896) Grant23 described a similar machine, with which

roots from 1 to oo could be read off on a reciprocal scale, on which the num-

ber x is marked at a distance 1 /x from the mark <». Instead of alternating

the n + 1 horizontal axes in two banks, as Boys did, Grant makes them all

lie in an inclined plane, displacing them horizontally by worm gears from

an initial vertical reference plane through the 0-axis in such a way that the

w-axis is displaced m times as far from reference plane as the 1-axis is dis-

placed. Scale pans are again hung at distances ±1 from the axes, but the

supports come at distances l/x from the axes. This machine, like that of

Boys, is used only to find the real roots, which are read at equilibrium posi-

tions. It is interesting, in view of later inventions, to note Grant's statement

that "an imaginary root is as impossible mechanically as it is arithmetically."

Although a paper published by Skutsch24 in 1902 refers primarily to

hydrostatic balances, and will be discussed later in that connection, it

should be mentioned here for its description of a kinematic circular balance.

Like spokes of a wheel, a set of n + 1 rods of length r emanate from a center

0 to points A o, A x ■ ■ ■ An; the whole figure being in a vertical plane. At each

endpoint Am is a geared pulley wheel (also in a vertical plane) around which

is hung a chain suspending a weight pan with a weight adjusted to produce
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a moment am on the mih gear. A rod CmDm of length 21 is fastened rigidly to

this mth gear at its midpoint Am. Connecting adjacent points Cm and Dm+i is

a link CmDm+i, making an angle 7 with CmDm and an angle d with Dm+iCm+i.

The ratio x = sin 7/sin 5 is adjusted to be the same for each of the n links.

Then a balance of moments is obtained when x is a root of f(x) = 0.

Still another dynamic root-finder was described by Peddie26 in 1912.

A set of n + 1 pulleys, numbered from 0 to n, are so arranged in a vertical

plane that the nth pulley is fixed, the n — 1th is supported at its center by a

string passing over the wth pulley, and each successive pulley is supported

by a string passing over the previous one, until the string over the last

pulley (numbered 0) carries a weight to pull the strings all taut. The other

ends of the n + 1 strings are unwound from drums and are all kept parallel

at an inclination of 6 with the horizontal, where x = 1 + sin 6 is the root

to be found. If a length of string k is unwound from the pulley numbered m,

then it can be shown that the pulley numbered m — 1 will unwind a length

of string kx, and that this will finally cause a length kxm to unwind from the

bottom pulley (numbered 0). Hence if the machine is set by unwinding

lengths of string equal to the coefficients a„, a„_i, • • •, a0 from the drum ends

of the respective strings, the total displacement of the weight will be/(x).

At angles 6 for which this displacement is 0, the root is read as x = 1 + sin 0.

The method is obviously limited to finding real roots between 0 and 2, but

can be used for finding the real roots of any polynomial if suitable preliminary

transformations are first applied to the polynomial. A modification of this

principle uses springs instead of gravity to pull the pulleys into position,

and the pulleys are all placed on a movable arm which can turn from 0 = 0°

to 0 = 90°.
For further details on various dynamic balances, the reader is referred

to Riebesell's paper.6

5. Hydrostatic balances. Closely related to the dynamic balances just

discussed are the hydrostatic balances in which upward forces can be intro-

duced which are proportional to the volumes displaced by appropriately

chosen solids. A description by Ghersi of some of these methods has already

been referred to above.6

The method proposed by Demanet26 in 1898 is adapted to the solution

of the cubic equations xs + x = c > 0 and x3 — x = c > 0. A cylindrical

vessel and a conical vessel, both open at the top, are connected underneath

by a pipe so that water in the two vessels will reach the same level. If the

tangent of the semi-vertical angle of the cone is V3/x, then the volume of

liquid in the cone will be x3 when the surface is x units above the vertex.

If the cylinder has unit cross-section, it will then contain x cubic units of

water. Hence if c cubic units of water be added above the level of the vertex

of the cone, the depth x will be the required root of x3 + x = c. For the

equation x3 — x = c, a cylinder is used to displace a volume x of liquid

within the cone. The cubic y3 ± py = q can be solved by first writing

y = x*lp.
Meslin's27 contribution in 1900 was a horizontal dynamic balance.

Solids whose volumes, cut off at a level x, are proportional to x, x2, x3, • • •,

are hung on a lever at directed distances öi, a2, a3 from the fulcrum, and the
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constant a0 is represented by a weight \a0\ in one of two pans fastened on

opposite ends of the lever. Before adding the weight | a01, the weights of the

various solids have to be balanced by a suitable weight in a scale pan. Then

the solids are suspended in two interconnected vessels, the weight |a0| is

added to the proper scale pan, and water is made to flow from a third vessel

until the balance is again restored to equilibrium. The depth x to which the

solids are submerged gives the root. In his paper Meslin discusses in some

detail the exact dimensions of the different solids to be used in his balance.

Two hydraulic methods were proposed by Emch28 in 1901 for extracting

the wth root of any number. The first method, which was extended in a second

paper to the solution of an arbitrary equation of the nth degree, was es-

sentially the same as that of Meslin, and involved the depth of immersion

of certain solids in water. The other, less accurate, depended upon the time

required to empty a suitable vessel (whose interior is a surface of revolution),

through a small orifice of area a in the bottom.

The radius r at height x is obtained as follows:

(5.1) t = Vx,      dt = -xrHx/a^lgx = (~^x/nx)dx,

or

(5.2) r2 = (aV2g/w7r) Vx/Vx~.

A new approach to the same problem was made in 1902 by Skutsch24

who considered not only horizontal positions of equilibrium on a hydrostatic

balance, but also positions of equilibrium at an angle sin-1 -n with the hori-

zontal. After defining a balance as "a kinematic chain set up for the applica-

tion of arbitrary forces, and used for finding relationships between the

magnitude and position of these forces in equilibrium," Skutsch describes

balances of Massau29 (18 78), Grant, and Meslin. He then uses a construc-

tion, similar to that of Meslin, but instead of the single depth variable x, he

uses two variables f, 17, and solves the equation J2a,(% + at-n)" = 0. By

means of a float, the inclination sin"1 77 is related to the depth by the rela-

tion 17 = £/c. This makes it possible to get the roots as functions of 77 and

avoids the difficulties created by negative coefficients.

A hydrostatic machine for solving a system of simultaneous linear equa-

tions was developed by Fuchs in three papers.30'3132 The last and longest

of these contains the important elements in the description of his machine.

A system of stationary containers, partly filled with water, are arranged in

rows and columns. Each row corresponds to an equation aix-\-biy-lr ■ ■ ■ =/;.

Each column corresponds to a variable x, y, etc. The containers in any

column are interconnected so that the water will rise in all of them an

amount equal to the corresponding unknown: x, y, etc. In each row, hollow

floating cylinders with cross-sections ait hi, are fastened to a beam which is

loaded with a weight proportional to The cylinders are thus depressed into

their containers so that the total displaced water, nearly diX + bty + • ■ •,

is balanced by the load Provision is made for negative coefficients by

letting water flow into the corresponding float and weight it down, instead

of being displaced by the float.
Other variations of the same idea provide for inner and outer water

levels for each term, one to be filled for positive and the other for negative
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terms. Changes in level indicate the values of the variables. Another varia-

tion interchanges the role of rows and columns so that a loading /, of water

is run into the inner cylinders of one column and the values of the unknowns

are read off as the weights thus applied to the bars in the several rows. Still

another machine uses a system of containers in which water communicates

by rows, and oil, floating on the water, communicates in columns.

More recently (1940) these hydraulic principles were applied by Schu-

mann33 in designing a mechanism for calculating regression equations and

multiple correlation coefficients, which is also adaptable to the solution of

simultaneous linear equations. He estimates that a skilled computer work-

ing with slide rule and adding machine requires 5m2 + w3/4 minutes to

solve a problem in m variables, whereas his machine will solve the problem

in 6m minutes. To each independent variable corresponds a horizontal beam

Bj (somewhat like the plates in Wilbur's machine17) from which the given

values yij of the unknowns ys protrude as directed spikes in a horizontal

plane. On the end of each spike is a pulley J\y. A rotation of ßj in the beam

for a variable y, lifts the ith pulley a distance y^ sin ßj and releases twice

that length from a cord supporting the pulley. Each equation is represented

by a cord. The ith cord, with one end displaced upward by an amount x,-, then

comes down to engage the pulley on the spike yi2, then up over another

pulley and back down for the next variable y,3, etc., and finally ends in a

heavy float F, suspended in mercury. If we set kj = 2 sin ßj, then the float

Ft will be lifted an amount jc< — JLyakj when the beams Bj rotate through

ßj and the hooks for the dependent variables are raised by x*. The tension

in each cord is proportional to that displacement. If there are more equations

than independent variables, the coefficients kj which the machine indicates

are shown to be the regression coefficients. By articulating one beam at a

time with the others clamped, a set of rotations ~fj can be found from which

the multiple correlation coefficients can be computed with relative ease.

6. Electric and electromagnetic devices for finding real and complex
roots of algebraic equations. A fascinating series of papers published in 1888

by Lucas gives the reader an opportunity to watch an important new scien-

tific idea being born. A first paper34 presents a generalization of Rolle's

theorem. In this paper a set of unit masses, placed at the zeros Zi, Z2, ■ • •, Zv

of a polynomial F(z) in the complex plane, are assumed to repel a unit mass

N at z with forces inversely proportional to the distances \Zj — z\ from A7.

The components P and Q of the total force are given by the equation

(6.1) P-iQ = F'(z)/F(z).

Roots of the derived function f(z) = F'{z) are equilibrium positions for N.

The orthogonal trajectories of the isodynamic lines are curves of degree

2p — 1 (called "lignes halysiques") passing alternately through the p roots

of F(z) and the n = p — 1 roots of F'(z), and are used in Lucas' generaliza-

tion of Rolle's theorem.

A second paper35 considers placing electrodes instead of masses at points

Z\, Z2, ■ ■ ■, Zn+\. The equipotential curves are Cassinian ovals whose nodal

points occur at the n roots of the derivative F'(z), which we denote by f{z).

In the experimental method due to Guebhard,41 a large circular conductor
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is used in place of a Cassinian oval at the outer boundary of a salt solution

in which a thin plate of polished metal is immersed. The points of a bundle

of wires are then placed as electrodes representing as nearly as possible the

points Zi, Zi, ■ • •, Zn+i. Colored rings deposited by electrolytic action fur-

nish a diagrarn of equipotential lines whose nodal points are the n roots

2i, 22, ' " ") 2n of the derivative F'(z). Such figures, obtained experimentally

for the second degree binomial and the fourth degree trinomial, are displayed

in the above quoted work by Guebhard.41
A third paper of Lucas36 gives an electric resolution of algebraic equations

with numerically given real or complex coefficients, by reducing the given

equation to an equation of lower degree. An equation f(z) = 0 of degree n,

can be solved electrically, as described above, if we know the n + 1 roots of

the function F(z), which is an integral of f(z). In applying the first reduction

method of Lucas we suppose some integral of f(z) to be separated into even

and odd functions <t>(z2) + 2^(z2), and we then calculate one of the [n/2]

roots of the polynomial \f/ considered as a function of z2. If this root be X2

then a particular integral of /(z), namely F(z) = <j>(z2) — #(X2) + z^(z2), is

divisible by z2 — X2, and the quotient is a polynomial of lower degree, n — 1,

whose roots together with +X and —X are the required electrode points for

solving /(z). For example, in solving the biquadratic equation /(z) = 5z4

+ 10z3 + 3z2 — 2z — 6 = 0, we have tf/(z2) = z4 + z2 — 6, which has the
factor z2 — 2. Then choosing F(z) = (z2 — 2)(z3 + 3z + 2.522 + 4) we next

find three roots of the cubic factor. An integral of the cubic is [(5/6)22 -+- 4]

X (.322 + 2 + .36), of which the first factor was the "\p" function for this
cubic. Using the four roots of this factored biquadratic as electrode points,

we solve the cubic electrically; then we use these three nodal points and the

two points ±V2~ as five electrode points to solve the given equation electri-

cally. An alternative method of reduction is also given, which has the dis-

advantage of introducing extraneous roots, and which we shall not describe

here.
A fourth paper 37 discussing the electric determination of the isodynamic

lines of any polynomial—which are the equimodular lines of its logarithmic

derivative—describes the field of force due to a system of repulsive centers

at the roots of F(z), combined with a system of attractive centers at the

roots of the derivative F'(z).

The climax of these investigations is reached in a fifth paper,38 in which

the use of partial fractions provides Lucas with a simple and direct pro-

cedure for locating the complex roots of a polynomial with real coefficients.

An auxiliary polynomial p(z) = (z — Xi)(jz — x2) • • • (z — X„+i) is chosen

with distinct roots at convenient points L on the x-axis. Instead of working

with f(z) and using the roots of its integral as electrode points, Lucas now

works with the function f(z)/p(z) = Xmj7(z — Xy) and its exponential

integral

(6.2) F(z) = (z - X,)*'(z - X2)« • • • (z - Xn+1)"»«.

The constants (residues) uj = /(Xy)/J"(X3) are easily computed and are

introduced into the machine as charges on the fixed electrodes at the points

z = Xy. The roots of the logarithmic derivative of F(z) are the required roots

of the given polynomial /(z), and appear as nodal points of the isodynamic
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lines. Experimentally these can be deposited electrolytically on a polished

metal plate, or they can be traced out by-the Kirchhoff and Carey Foster

method. In the perfected model of the Lucas electric equation-solver, given

in a sixth paper,39 the need for an outside conductor is eliminated by choos-

ing n + 2 instead of n + 1 sources and sinks on the axis. The algebraic

sum of the charges on the n + 2 electrodes is zero, and the apparatus is

somewhat simpler to construct. Still another paper published two years

later40 suggests a method of introducing the coefficients into the machine

by means of resistances proportional to l/p,.

An electric device proposed by Kann42 in 1902 was the result of his

inventing a balance similar to that of Lalanne,19 without having been at

first aware of Lalanne's result. When Mehmke called this to his attention,

he conceived the idea of carrying out the same principle electrically,

replacing the moments of weight by variable resistances. In his mechanical

balance are slits or wires in the shape of curves ±x, ±x2/10, ±x5/100, etc.,

fastened in a horizontal plane from which are suspended weights proportional

to the coefficients. These weights are constrained to lie under a movable

guide slot perpendicular to the x-axis on which the plane is balanced.

Values of x for which the moments are in equilibrium are the required roots.

In Kann's first electrical model, each of the functions ±x, ±x2/10, etc., is

represented by a curve of heavy wire fastened in a removable template,

which is to be mounted vertically by sliding it into one of several pairs of

slots at the top and bottom of a frame. For positive terms the templates are

slid in right side up, and for negative terms up side down. A sliding vertical

frame in a plane perpendicular to all these templates, and perpendicular to

the horizontal axis in each, serves as a root finder. The coefficients am are

introduced by placing in the root finder, where its plane intersects the wth

template, a fine wire whose resistance per unit length is proportional to

\am\ (multiplied if necessary by the power of 10 used in the reduction of the

template graph). The current then flows through a length of this wire pro-

portional to the ordinate, and thus through a resistance proportional to the

given term. These fine wires of considerable resistance make contact with

the heavy wire curves of the templates on the one hand, and with leads in

the root finder frame on the other hand, and the successive templates are

connected in series in such a way that the connecting resistances are either

negligible or may be assumed constant and be balanced out by the bridge

resistance which controls the constant term in the equation. As the root

finder frame is moved in the direction of the x-axes of the templates, the

roots are found at points where a bridge galvanometer which balances the

equation reads zero. At these points an adjusted resistance (equal to the

fixed resistances in the circuit, plus the constant resistances introduced by

inverting the templates for negative variable terms) just balances a resist-

ance for the given constant term plus all the fixed and variable resistances

connected in series in the main circuit.

To avoid having to use wires of different resistances for each new set of

coefficients, Kann describes in a final paragraph of the same paper a gear

mechanism, one to be associated with each of the templates in the frame,

whereby a resistance proportional to a given term may be unwound from a

drum in a continuous manner as the root finder is moved along all the given

power curves simultaneously. For each template there is in the root finder
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frame a straight vertical shaft with a notch on top which presses against a

rigid metal curve in the template (such as the curve y = x2/10). The lower

part of each of these shafts is provided with gear teeth which mesh into an

exchangeable gear having a number of teeth proportional to the coefficient

of the corresponding term in the equation. The motion of the shaft, thus

multiplied by the coefficient | am |, is made to turn a drum mounted on a

horizontal axis, around which wire is wound whose specific resistance takes

care of the reduction factor of a power of 10 in the template graph. A weight

hanging on the wire which unwinds from the drum maintains the upward

pressure on the shaft, and as the root finder moves, a resistance is unwound

which is jointly proportional to the coefficient (number of teeth) and to the

power of x (ordinate of shaft top). These resistances are connected in series

as in the other model, and the roots are found at the zero readings of the

galvanometer. The method is limited to the determination of real roots,

however.
Russell & Wright,43 in an electric device constructed in 1909, combine

the principle of slide rule multiplication with addition and subtraction.

Multiplication is obtained from a thin insulating template in the shape of

the curve log (y/k) = — x/n, about which a hundred terms of no. 36 in-

sulated manganin wire is wound, so that the wires are nearly parallel. The

area in the interval x\ 2= x x2 is proportional to yi — y2. By adding a

fixed resistance in series, the total variable resistance is made proportional

to y\, and the number yi is placed on a logarithmic scale under xi on the

axis of abscissas. Powers of a variable x can be multiplied into the coefficient

resistances by setting them on a parallel logarithmic scale. Contact fingers

using a tangent scale are used to adjust separately the powers of the un-

known. Then terms are added electrically by combining currents in series

(or in parallel, using reciprocal logarithmic scales). Finally the real root is

obtained when combined currents vanish.

Shortly after the paper of Russell and Wright, Russell & Alty44 (1909)
brought magnetism across the electric root-finding trail blazed by Lucas;

inventing another machine for determining complex roots of equations, and

stating that the error in its readings would not exceed 1%. In their electro-

magnetic method "the horizontal field due to the earth's magnetism is used

in an analogous manner to the conducting sheet in Mr. Lucas' method. A

drawing board with a slit cut in it, a few pieces of bell-wire, any form of

'charm' compass, ordinary ammeters and rheostats or lamp resistance

boards, such as are found in every physical laboratory, can be utilized at

once for the experiment."

Using our previous notation, and assuming real coefficients, let

(6.3) /(z) = a„z" + ön-iz""1 + • • • + ßiz + a0,

and let p(z) = (z — Xi) • • • (z — X„), where the n real numbers Xy are sub-

ject to the condition = ~ an-i/an- Then let the partial fraction ex-

pansion bef(z)/p(z) = a, + Em37(z — Xy).
In the horizontal complex plane let the earth's magnetic flux H be di-

rected parallel to the imaginary y-axis, so that the real x-axis is perpendicular

to the magnetic meridian. Let vertical wires through the points (Xy, 0)

carry currents Cy, producing a magnetic force Cy/5ry at the point z = x + iy,

where ry = |z — Xy|. The components of resultant magnetic force at the
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point z are

(6.4)   -X = ^,    Y = H + ^X-^;    Y + Xi = H + £ Cjß
5r,r,'    '      ' 1 Sr,    n    '    *  '    •     ~ 1 *- * - Xy

By adjusting the currents Cy to equal 5H-uj/an, respectively, the neutral

points of zero force will be precisely those for which /(z) = 0. Only n — 1

ammeters and n — 1 rheostats are required for the apparatus.

An electric calculating machine for solving simultaneous linear equations

was described by Mallock45 in 1933. Improving upon Mallock's experi-

mental model of 1931, this machine for solving ten equations in ten un-

knowns, to within an error less than 0.1% of the largest root, was constructed

by the Cambridge Instrument Co. Ltd. The machine will also give a direct

solution, by least squares, of a set of equations of condition, without forming

the normal equations. One closed circuit represents each equation, which is

first transformed algebraically so that all coefficients are less than unity.

The coefficients are then represented by the relative number of turns of the

variable coils in a given circuit, each wound about the transformer corre-

sponding to one of the unknowns. Negative signs are obtained by reversing

the current in a given coil, and the answers may be read from voltmeters,

attached to unit coils about the several transformers. Compensators are

introduced to balance out the effect of resistances in the circuits. Repeated

approximations may be used to give greater accuracy.

A recent development in the mechanical solution of algebraic equations

is the use of rotating and logarithmically expanding parts to represent argu-

ments and absolute values of complex roots of equations. In an electric

machine described by Hart & Travis,46 a set of n + 1 coaxially mounted

generators Go to Gn have their rotors rigidly connected together, but the

stators of n of them are constrained by gears to rotate through 6,26, • • •, n6

with respect to the one on Go which is fixed. The alternating voltage

E cos (cat + kB) on the kth generator is then multipled by ak in a coefficient

potentiometer, and by Zk in a modulus potentiometer. The latter is ac-

tivated by steel tapes wrapped around a spiral cam whose arc is proportional

to the /eth power of the angle of rotation of the cam shaft. (Only roots of

modulus < 1 are read directly, the others being obtained from the reciprocal

equation.) The voltages EakZk cos (cat + k&) are then added in series and

connected to an indicator, the voltage on which may be written:

(6.5) (E/2)Z[(akZkeM)eiut + (cZ**-'")^"'].
k

This vanishes, independently of t, if and only if

(6.6) 2ZakZkeiki = 0,      or     f(Zea) = 0.

To find the roots Zeie the angle 6 is turned fairly rapidly and the modulus

cam shaft slowly so that Zeie traces a spiral in the unit circle of the complex

plane. Points of zero reading are the roots, and they can be read within 2%

in modulus, and 1% in argument.

The use of a cam to generate a power of a variable appears also in a

later article by Green,47 whose square root extractor is used to change over

graphically recorded pressure differences into a graph of rates of flow. One

indicator contacts the edge of a cam whose contour is r = kB2, while the
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other is driven by a pulley around the same shaft, producing a square root

mechanically.

7. Methods of harmonic analysis. The isograph,48'49'50 designed by T. C.
Fry of the Bell Telephone Laboratories following a suggestion of A. J.

Kempner in 1928, and the S. L. Brown61,62 harmonic synthesizer-analyzer,

are two modern machines for solving algebraic equations. Both solve the

equation f(reis) = 0 by summing separately the sine and cosine terms in the

function f(rei9) — c0, and mapping this function for fixed r as a curve in a

complex plane. The isograph can handle only real coefficients, whereas the

Brown analyzer as modified by Brown and Wheeler62 can also solve equations

with complex coefficients. For further details on these machines the reader

is referred to the reviews which have appeared in MTAC.51-52

8. Calculating machines. It should not be forgotten that algebraic equa-

tions of higher degree in one unknown and simultaneous linear equations in

several unknowns can be solved numerically by standard methods of algebra

(such as Horner's or Newton's method), using a computing machine to save

labor in the processes of addition, subtraction, multiplication and division.

An excellent review of the history of Calculating Machines was written by

Baxandall.63 One such machine, the Hamann-Automat of the Deutsche

Telephonwerke und Kabelsindustrie, Aktiengesellschaft, Berlin, described

by Werkmeister,64 has the advantage, in solving simultaneous linear equa-

tion such as Jl^iXi = 0, YLbiXi = 0, — •, that a quotient bi/a.\ obtained by a
division can be automatically transferred from the result register to the

multiplicand register without being copied, and can then be multiplied

again by each of the successive coefficients a2, a3, ■ ■ ■ in the elimination of

Xi between the first two equations.

A survey article by Lilley,66 previously reviewed in MTAC, p. 61-62,

mentions not only calculating machines, but such machines as the Bush

differential analyzer.66 Interesting as this machine is, its primary purpose

is the solution of differential equations rather than algebraic equations, so

we shall not describe it here.

In conclusion the author wishes to express his thanks to R. C. A. for

his suggestions and help in compiling the literature, and to B. H. Bissinger

for his assistance in looking up several of the references. In the footnotes

which follow, those papers which have not been examined are marked in

the usual manner.
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Zeros of Certain Bessel Functions of
Fractional Order

The following tables contain the zeros of J,(x) for x 25, where

v = ± 1/3, ±2/3, ±1/4, ±3/4. These zeros were obtained by inverse

interpolation in a thirteen-place manuscript of these functions, computed

by the NYMTP. The accuracy of the zeros to 10D is guaranteed, and

the two additional places have a high probability of being correct.

i j*tl»» j-lH.i

1 2.78088 77239 95 2.00629 96717 90
2 5.90614 26988 43 5.12306 27427 46
3 9.04238 36635 83 8.25795 11756 42
4 12.18134 15289 55 11.39646 76969 87
5 15.32136 98260 12 14.53629 98843 38
6 18.46192 72456 89 17.67675 35868 47
7 21.60278 44489 13 20.81754 94222 32
8 24.74382 77961 28 (24.740) 23.95855 34952 86 (23.955)


