65. NYMTP, Tables of Lagrangian Interpolation Coefficients, New York, 1944. See MTAC, p. 314f.
P. 391, the entry corresponding to $n=8, m=1$, and $k=-2$, should be negative. A. N. Lowan
66. R. M. Page, 14000 Gear Ratios . . ., New York, The Industrial Press, 1942. See RMT 87, p. 21f.
In MTE 53, p. 326f, I gave a long list of the errors in this table found by Mr. S. Jонnston. We had hoped that the list would prove to be complete, but now Mr. F. Lancaster, of Huddersfield, writes that he has checked Table 4, and found the following additional errors:

Page	N	For	Read
371	621	23×37	23×27
388	3904	59×66	Delete
391	4901	67×73	Delete
393	5432	46×118	Delete
400	9682	94×113	94×103

There are also three errors of position-less serious because they are unlikely to be misleading.

Page	N	
384	2860	52×55 should follow 44×65
398	8100	Transpose 81×100 and 75×108
401	10192	Transpose 98×104 and 91×112

UNPUBLISHED MATHEMATICAL TABLES

Reference has been made to an unpublished table in RMT 202 (BisSHOPP); also to results by Ince and Bickley, MTAC, p. 412, 417.
$34[\mathbf{A}, \mathbf{B}]$.-Table of $x^{n} / n!$, Manuscript prepared by, and in possession of, the NYMTP.
This table is for $x=0(.05) 5, n=1(1) 20$, to 10 S .
A. N. Lowan

MECHANICAL AIDS TO COMPUTATION

15[Z].-H. P. Kuehni and H. A. Peterson, "A new differential analyzer," Electrical Engineering, v. 63, May, 1944, p. 221-227. (Also in A.I.E.E., Trans., v. 63, 1945, and discussion p. 429-431) $20.5 \times 28.6 \mathrm{~cm}$.
The article describes a differential analyzer of the Kelvin wheel-and-disc type which was built by the General Electric Company and put into service in Schenectady in 1943. The design follows closely that of the machine started in 1926 at Massachusetts Institute of Technology by Vannevar Bush, but incorporates a number of improvements which have been suggested by experience with later models, especially the one at the University of Pennsylvania. It has fourteen integrators, four manual input tables, and two double output tables; it can therefore be used for problems of considerable complexity. It is also arranged for operation as two independent units on simpler problems when not all of the elements are required.

The most important of the design innovations is the electronic arrangement used to relieve the integrator disc of mechanical load, and thus to minimize slipping of the integrator disc with respect to the wheel upon which it rolls. The arrangement uses two beams of light which pass through a polaroid disc mounted upon the integrator disc and through crossed

