MATHEMATICAL TABLES-ERRATA

References have been made to Errata in RMT 289 (Theodorsen), 304 (Editorial N.), 311 (Hayashi, Milne-Thomson), 312 (Benest \& Timberlake), 313 (Hoehne), 314 (Martelli).
84. BAASMTC, Mathematical Tables, volume 1, London, 1931. This v. has long been out of print. It has been announced that the following errors are corrected in the new edition. Compare MTAC, v. 1, p. 323, and RMT 303.

Table II (p. 5, 7)
\cos 26.1: for . 56756..., read .56755... \sin 47.6: for .46832..., read .45832...
Table.VII (p. 32)

$$
\begin{aligned}
& \mathrm{Ei}(5.3) \text { : for ...031, read . . . } 030 \text { Ei(6.7): for ...344, read ... } 345 \\
& \mathrm{Ei}(5.6) \text { : for ...598, read ... } 597 \quad \mathrm{Ei}(8.0) \text { : for ...954, read ... } 953 \\
& \operatorname{Ei}(5.9) \text { : for ...015, read ... } 014 \text { Ei(9.8): for ... 35, read ... } 34 \\
& -\operatorname{Ei}(-7.3) \text { : for ...4446, read ... } 4445
\end{aligned}
$$

Consequent changes

Corrected end figures of actual differences:

$$
\begin{array}{cccccccccccc}
x & 5.2 & 5.3 & 5.4 & 5.5 & 5.6 & 5.7 & 5.8 & 5.9 & 6.0 \\
8^{2} E i(x) & 692 & 571 & 295 & 327 & 155 & 484 & 468 & 921 & 585
\end{array}
$$

	6.66 .76 .8	7.98 .08 .1	9.79 .8
$\boldsymbol{8}^{\mathbf{2}} \mathrm{Ei}(\boldsymbol{x})$	086208940	815887199	7920

$x \quad 7.87 .98 .08 .18 .2 \quad x \quad 7.07 .77 .87 .98 .08 .18 .28 .3$

x	7.2	7.3	7.4	x	7.2	7.3	7.4	7.5
$\delta^{\prime}\{-\mathrm{Ei}(-x)\}$	8075	4950	9472	$\delta^{4}\{-\mathrm{Ei}(-x)\}$	9630	7647	6709	4290

$$
\begin{array}{ccccccc}
x & 7.2 & 7.3 & 7.4 & 7.5 & 7.6 \\
\delta^{6}\{-\mathrm{Ei}(-x)\} & 3852 & 1045 & 8519 & 6346 & 4426
\end{array}
$$

Corrected values of modified differences:
$\delta^{〔} \mathrm{Ei}(5.6)$ should read $299994 \quad \delta^{4}\{-\mathrm{Ei}(-7.1)\}$ should read:180 986
Corrected end figures of modified differences:

$$
\begin{aligned}
& \begin{array}{lllllllllllll}
x & 5.1 & 5.2 & 5.3 & 5.4 & 5.5 & 5.6 & 5.7 & 5.8 & 5.9 & 6.0 & 6.1
\end{array} \\
& \delta^{4} \mathrm{Ei}(x) \quad 005898459889337994104863547433834 \\
& \begin{array}{ccccccccccccc}
x & 6.5 & 6.6 & 6.7 & 6.8 & 6.9 & 9.6 & 9.7 & 9.8 & 9.9 & 10.0 \\
\delta(E i(x) & 739 & 438 & 227 & 682 & 467 & 75 & 29 & 01 & 81 & 25
\end{array} \\
& \text { Table VIII (p. 35) } \\
& \text { Si(8.8): for . . 21860, read ... } 21861 \quad \mathrm{Ci}(5.5): \text { for ...29475, read ... } 29476
\end{aligned}
$$

Consequent changes

Corrected end figures of actual differences:

$$
\begin{array}{cccccccc}
x & 8.7 & 8.8 & 8.9 & x & 5.4 & 5.5 & 5.6 \\
\delta^{2} \mathrm{Si}(x) & 303 & 361 & 485 & \delta^{2} \mathrm{Ci}(x) & 462 & 196 & 704
\end{array}
$$

Corrected end figures of modified differences:

| x | 8.6 | 8.7 | 8.8 | 8.9 | 9.0 | x | 5.3 | 5.4 | 5.5 | 5.6 | 5.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $84 \mathrm{Si}(x)$ | 542 | 853 | 146 | 410 | 663 | $84 \mathrm{Ci}(x)$ | 505 | 835 | 200 | 685 | 428 |

Table IX (p. 40)
0.271: for . . . 4465, read . . 4466

With this chainge the table, originally described as of slightly less than 12-figurc accuwacy, becomas accurate to 12 figures throughout.

Consequent changes

Corrected end figures of actual differences:

$$
\begin{array}{cccc}
x & 0.26 & 0.27 & 0.28 \\
z^{8}(x!) & 899 & 391 & 728
\end{array}
$$

Corrected end figures of modified differences:

$$
\begin{array}{ccccccc}
x & 0.24 & 0.25 & 0.26 & 0.27 & 0.28 & 0.29 \\
\mathcal{S}^{4}(x \mid) & 622 & 531 & 605 & 819 & 153 & 631
\end{array}
$$

85. A. Fletcher, J. C. P. Miller and L. Rosenhead. An Index of Mathematical Tables, [FMR Index], London, Scientific Computing Service, 1946.
The gratifying review of this book, RMT 233, MTAC v. 2, p. 13f, appeared just before the final printing of the work and the opportunity was taken to make three alterations: those indicated in the review (i) to the heading of Art. 5.745 on p. 105, (ii) to Hutton 1775 on p. 404 and (iii) to Kulik 1860 on p. 409.

Three errors have come to our notice:
p. 300. Art. 20.67. Insert ∞ for the upper limit to the integral for $C_{1}(u)$. This was correct in the proof that was passed for press, and may not be missing from all copies.
p. 381. British Association Mathematical Tables. The statement that the first five volumes are out of print is incorrect. At the time the passage was written, volumes I and II were out of print. Since then, there has been a second edition of volume I, while volume VI has now run out of print. Volumes III, IV and V were very difficult to obtain, mainly owing to war-time conditions, but they were not, in fact, out of print.
p. 387. Under Crelle, for 1864, read 1857.

J. C. P. Miller

Editorial Note: FMR Index was published in England in mid-April and sheets were then sent to McGraw-Hill \& Co., New York, for binding, and distribution in the Western Hemisphere. In our review, MTAC, v. 2, p. 18, line 16-18, it is not brought out that the Index referred to "editions" in 1890, both by Dickstein; one of them, however, was but a small portion of the original of HoEne-Wronski.
86. A. M. Legendre, Tafeln der Elliptischen Normalintegrale erster und zweiter Gattung, hrsg. von Fritz Emde, Stuttgart, 1931. This is a facsimile reproduction of Tables VIII and IX, to 10D in Legendre's Exercices de Calcul Intégral, Paris, v. 3, 1816, p. 338-416.
In Z. angew. Math. Mech., v. 21, Aug. 1941, p. 254, Emde reports the following six errors in $F(\phi, \theta)$, found by Gustav Witt:

Page	\oplus	For	Read	
$350(15)$	20°	9°	0.34293	0.34923
$364(29)$	$* 90^{\circ}$	23°	1.63631	1.63651
$368(33)$	$* 85^{\circ}$	27°	1.56840	1.56480
$380(45)$	$* 80^{\circ}$	44°	1.58906	1.59806
$396(61)$	$* 79^{\circ}$	64°	1.84693	1.84793
$416(81)$	49°	87°	0.98238	0.98328

Those errors, as well as others below, marked with a star (*) were already reported in N. Samollova-Îarhontova, Tablitsy Ellipticheskikh Integralov, Moscow and Leningrad, 1935, p. 6, and in Scripta Math., v. 3, 1935, p. 365. All errors both here and below were listed by Heuman, April, 1941 (see MTAC, v. 1, p. 187 ; an additional errata sheet by Heuman, dated June 1941, was printed at Stockholm). Seventeen other errors in $F(\phi, \theta)$ are as follows:

Page	+	0	For	Read
346(11)	42°	2•	0.73311099	0.73311009
350(15)	5°	$7{ }^{\circ}$	0.087298	0.087268
358(23)	32°	20°	0.5617472	0.5617452
364(29)	* $88{ }^{\circ}$	21°	1.58584	1.58784
366(31)	*35 ${ }^{\circ}$	30°	0.62003	0.62203
	42°	27°	0.74754	0.74574
368(33)	59°	27°	1.0625139	1.0625129
384(49)	51°	46°	0.951587	0.951577
392(57) and 396(61)	* $60{ }^{\circ}$	60°	1.212536	1.212596
392(57)	* 65°	59°	1.341957	1.341967
	90°	57°	2.08035816	2.08035806
404(69)	61°	71°	1.29179	1.29719
410(75)	18°	84°	0.319367	0.319397
412(77)	* 74°	83°	1.92525	1.92515
416(81)	* 86°	86°	1.172041744	1.17024 9982 ${ }^{1}$
	87°	87°	3.456445172	3.456676096^{1}

Samoilova- โakhontova and Heuman used the 1826 edition of Legendre's tables in his Traite des Fonctions Elliptiques, v. 2. There are here at least five errors which do not occur in the 1816 edition, namely in the values for: $\phi=1^{\circ}, \theta=14^{\circ} ; \phi=37^{\circ}, \theta=75^{\circ} ; \phi=4^{\circ}$, $\theta=88^{\circ} ; \phi=31^{\circ}, \theta=90^{\circ}$. Also in $E(\phi, \theta), \phi=5^{\circ}, \theta=10^{\circ}$. Two of these were noted by K. Borlin (1900). FMR Index (RMT 233) states, p. 316, "A few of the errors in Legendre 1816 are corrected in Legendre 1826." In the present check we have found that all the errors of Legendre 1816 are in Legendre 1826 and also five new ones, not in Legendre 1816.

There are the following 7 errata in $E(\phi, \theta)$:

Page	ϕ	0	For	Read
$347(12)$	51°	4°	0.88952	0.88962
$351(16)$	$* 0^{\circ}$	8°	1.56296	1.56316
$363(28)$	78°	22°	1.31072	1.31972
$377(42)$	27°	42°	0.46376	0.46366
$379(44)$ and $383(48)$	73°	45°	1.1378583	1.1378543
$405(70)$	32°	79°	0.5310173	0.5310113.

Since the K. Pearson facsimile was of Legendre 1826 (Pearson has 1825!, Cambridge, 1934), it is. clear from what we have indicated above that there are in it at least 35 serious errors in E and F alone. A facsimile of Legendre 1816 tables is also in L. Potin, Formules et Tables Numóriques, Paris, 1925. Hence the 30 errors indicated above for the LegendreEmde tables occur also in these tables.

> R. C. A.

[^0]87. T. J. Stieltjes, "Table des valeurs des sommes $S_{k}=\sum_{1}^{\infty} n^{-k}, "$ Acta

Mathem., v. 10, 1887, p. 299-302. J. W. L. Glaisher, "Tables of 1 ± 2^{-n} $+3^{-n} \pm 4^{-n}+\cdots$ and $1+3^{-n}+5^{-n}+7^{-n}+\cdots$ to 32 places of decimals," Quart. J. Math., v. 45, 1914, p. 148-150. See also UMT 46.
The Stielties table of $S_{n}=1+2^{-n}+3^{-n}+\cdots$ is for $n=[2(1) 70 ; 32 \mathrm{D}]$. Glaisher gave a table of S_{n} for $n=[2(1) 107 ; 32 \mathrm{D}]$, but he copied from the table of Stieltjes the values for $n=2(1) 33$.

In the Anhang (p. 90) by Peters \& Stein, of J. T. Peters, Zehnstellige Logarithmentafel, v. 1, Berlin, 1922, there is a table of $S^{\prime}=S_{n}-1$ for $n=2(1) 100$. On comparing this table with that of Stieltjes, I found that there were 23 differences in-the end-figures of the first 31 values of S_{n}. Upon checking the values I found that Peters \& Stein were correct in every case except one, $n=25$, so that there were the following 23 errors in the part of the table published by Stieltjes, and later copied by Glaisher. Apart from the 15 cases of unit errors, there were 8 cases of errors of two units in the final digit; $S_{77}, S_{10}, S_{12}, S_{20}, S_{21}$ were each 2 units in excess of the correct values, but S_{12}, S_{17}, and S_{25} were each 2 units in defect. As to the unit errors there were errors of excess in $S_{2}, S_{4}, S_{0}, S_{13}, S_{15}, S_{23}, S_{51}, S_{32}$; and errors of defect in $S_{0}, S_{11}, S_{18}, S_{22}, S_{24}, S_{26}, S_{28}$. The error noted in S_{3} was also checked by D. H. Lehmer, to 100D, Scripta Mathematica, v. 4, 1936, p. 293, and by J. W. Bradshaw, Amer. Math. Mo., v. 51, 1944, p. 390. My last seven calculated figures of S_{n} to 37D (a) in each of the 23 cases where Stieltjes and Peters \& Stein did not agree, (b) in the other 9 values of n, not recalculated by Glaisher, up to and including $n=33$, are as follows:

S_{3}	0251892	S_{10}	3190170	S_{18}	6219397	S_{36}	5066307
S_{5}	4499908	S_{11}	4699365	S_{19}	7951014	S_{5}	0041706
S_{6}	1679028	S_{12}	7396710	S_{20}	6834493	$S_{s p}$	2040184
S_{5}	0341681	S_{13}	3573957	S_{21}	6043730	S_{50}	9099454
St	9205279	S_{14}	1353337	S_{22}	1867530	S_{50}	7647350
S_{7}	7967596	S_{15}	6450626	S_{33}	7188823	S_{31}	9233251
S_{8}	6524653	S_{16}	6367220	S_{24}	2079358	S_{32}	1455976
S	4120605	S_{17}	5630292	S_{25}	7050694	S_{3}	2973

All the data were simultaneously checked by means of the equation

$$
\sum_{n=2}^{23} S_{n}^{\prime}=1-\sum_{n=2}^{\infty}(n-1)^{-1} n^{-33} .
$$

The respective members of this equation differed by 3.5×10^{-87} when my 37D approximations to S_{n} were used in evaluating the left side. This discrepancy is due to the rounding of the data to 37 decimal places.

Glaisher corrected 10 unit errors in final digits of Stieltjes $S_{n}, n=39,42,43,46,47,56$, 57,65 in excess; $n=61,67$ in defect. The Stieltjes table did not profess to be correct in the final decimal place. The Glaisher table was exactly reprinted in H. T. Davis, Tables of the Higher Mathematical Functions, v. 2, Bloomington, Indiana, 1935, p. 244, 218. Hence there are 23 errors, indicated above, in each of the Glaisher and Davis tables. In addition it may be mentioned that I have computed S_{n} more extensively, $n=2(2) 20$, to 52D, and $n=3,5$, to 42 D .
J. .W. Wrench, Jr.

4211 Second Street, N.W.
Washington, 11, D.C.

[^0]: ${ }^{1}$ These numbers are from the errata list of Heuman who states "The last decimals are uncertain."

