
44 AUTOMATIC COMPUTING MACHINERY

Table 1, p. 15-16, American Practical Navigator (originally by N. Bowditch), U. S.

Hydrographic Office, no. 9, revised edition of 1938, is for Radio Bearing Conversion. For

difference of longitude = 1°(0°.5)16°.5 and middle latitude 4o(l°)60° the table gives the

correction to be applied to radio bearing to convert to Mercator bearing. This table is to be

replaced by the much more extensive new table.

With the new table

(1) Great circle directions can easily be converted to rhumb line directions for plotting

radio bearing on a Mercator chart. Since radio waves travel along great circles, such cor-

rections are necessary.

(2) Rhumb lines may be converted to great circle directions. Usually tangents or

chords of the great circle, for about 5° of longitude, are sailed. The Table will be of value

in planning courses, and will quickly show when the difference between rhumb line courses

and great circle courses is significant.

If values are desired within the 5° intervals of the table at higher latitudes they may

readily be found by double interpolation. The table may be of service in both marine and

air navigation.

Frances W. Wright
Harvard College Observatory

AUTOMATIC COMPUTING MACHINERY

Edited by the Staff of the Machine Development Laboratory of the National Bureau

of Standards. Correspondence regarding the Section should be directed to Dr. E. W.

Cannon, 418 South Building, National Bureau of Standards, Washington 25, D. C.

Technical Developments

The leading article of this issue of MTAC, "A Bell Telephone Laboratories' Computing

Machine—I," by Dr. Franz L. Alt, is our current contribution under this heading.

Discussions

Decimal Point Location in Computing Machines

General. For various reasons, the majority of large scale automatic-

sequence digital computers in existence or in the design stage use fixed

decimal (or binary) point numbers. In all the machines of which the writer

has knowledge, the decimal (or binary) point is located at the extreme left

so as to make all numbers fall in the range —1 to +1. It is the writer's

opinion that this choice is not the best, and that location of the decimal (or

binary) point several digits away from the extreme left is better in almost

every respect. Some of the considerations leading to this opinion are pre-

sented in this paper. For the sake of simplicity and definiteness, unless

otherwise stated, the discussion refers to a machine in which data are stored

in some form of memory which restricts numbers to a specified fixed number

of decimal digits. This machine is assumed capable of automatically follow-

ing a prescribed sequence of instructions which include addition, subtraction,

multiplication, division, and transfer operations. The results of the opera-

tions are rounded off on the right to the same number of digits as the original

data, after positioning the digits in accordance with a single fixed decimal

point location. It is further assumed that the machine has no provision for

handling excess digits on the left (exceeding capacity of the machine)

created by any operation, so that such an occurrence implies an error in

programming.

AUTOMATIC COMPUTING MACHINERY 45

Possibility of Exceeding Capacity. One of the chief advantages claimed

for the extreme-left-hand position of the decimal point is that the machine

capacity as regards size of individual numbers cannot be exceeded in multi-

plication, since a product of two numbers, each less than unity, must also be

less than unity. As this is not true for the other operations, such as addition or

division, this feature would not appear to have much value, since magnitudes

bf numbers at each step have to be studied by the programmer in any case

to avoid exceeding capacity in other operations. Even in multiplication,

magnitudes must be considered to correct for the opposite effect caused by

this choice of decimal position (the continual decrease in magnitudes of

numbers as a result of successive multiplications) by judicious shifting (or

division by powers of 10) at suitable stages in the computation.

Although any choice of the decimal point further to the right creates

the possibility of obtaining products larger than either factor, thus exceed-

ing limits if the factors are sufficiently large, this is compensated somewhat

by the possibility of arranging values (for example by keeping them approxi-

mately equal to unity) so that any number of successive multiplications may

be programmed without either exceeding limits or losing many significant

digits. Furthermore, in division, use of wholly fractional numbers requires

that the numerator be smaller than the denominator to keep the quotient

within bounds, while much broader limits are permissible if one or more

digits are available to the left of the decimal point. The extra magnitude

of the checking in division necessitated by choice of the extreme-left decimal

point would appear to offset any possible gain in checking of multiplications.

Inherent Accuracy. Another important advantage claimed for use of the

extreme-left decimal point location is that this permits maintenance of the

greatest number of significant figures in each factor in multiplication and

hence leads to greatest accuracy. That this contention cannot be wholly

true is easily seen from the following 3-digit example, which compares the

result obtained when the decimal point is at the extreme left with that

obtained when the decimal point is one digit to the right.

.123 X .111 = .014 accuracy 2 digits
1.23 X 1.11 = 1.37 accuracy 3 digits.

Let us examine the question of accuracy in a little more detail. We

restrict ourselves to consideration of errors due to the limited number of

digits (round-off errors) only and, for simplicity, evaluate the maximum

such error instead of the most probable value. We further assume that the

programmer has accurate cognizance of the magnitudes of all numbers and

can shift them to the most advantageous digital position, subject to the

number limitations of the machine, but that no auxiliary operations such

as division or multiplication by factors other than powers of 10 are to be

employed, so that there is no change in the digits themselves. If numbers

have n total digits and the decimal point is m digits from the left, the maxi-

mum round-off error in a number of magnitude AT is 10mK/N of the number,

where

K - | X 10-"

is the error for maximum N. If two numbers M and TV are multiplied to-

gether, their product will be P = MN. The percentage error in P is the

46 AUTOMATIC COMPUTING MACHINERY

sum of the percentage errors in M and N plus additional round-off error in

limiting P to the specified number of digits, making the maximum error in

P equal to

E = I0m(l/M + Í/N + 1/P)K,

where all values are assumed positive.

For a machine with decimal point at the left, m = 0 and M, N, and P

must not exceed unity. Minimum E occurs for numbers close to this limit

and has the value

E (minimum for m = 0) = 3K.

Maximum E occurs when M and N (and hence P) are smallest. Since, under

our assumptions, we may always shift numbers so that the first digit is not

a zero, we can insure that M and N are at least .1. For this limit, we have

P = .01 so that

E (maximum for m = 0) = (10 + 10 + 100)7£ = 120K.

For a machine with decimal point one digit to the right, m = 1, and M,

N, and P must not exceed 10. Minimum E occurs for M = N = VÏ0 and

has the value

E (minimum for m = 1) = 10(1/\TÖ + 1/\TÖ + Í/10)K = 7.3K.

Maximum E occurs when M and N (and hence P) are smallest. Whenever

possible, we shift M and N so that the first digit in each is not a zero. When

this causes P to exceed 10, we shift the number (say M) with smaller initial

digits to the extreme left and allow a single zero digit at the left of the other.

With this arrangement, which is always possible, the largest E occurs for

M = VTÖ, N = 1/VTÖ, P = 1 and is

E (maximum for m = 1) = 10(1/\TÔ + VÏÔ + \)K = 45K.

We thus see that the maximum error is actually less in this case by a factor

of almost 3 as compared to the case where the decimal point is at the extreme

left, although the minimum error is not as low. Even for m = 2, we get

E (maximum for m = 2) = 120K,

corresponding to M close to 10 and N = 1, so that the extreme error, with

the decimal point two digits to the right, is no greater than with decimal

point at the extreme left.

The above is based on the assumption that the programmer can predict

magnitudes very closely and that, in iterated operations, the range of magni-

tude variation is small. This is generally not the case, and an appreciable

spread of values must be allowed for. If we assume uncertainty in each of

the factors in a multiplication over a range of 10 to 1, the programmer cannot

assure best placement of digits but only that numbers will be at most one

digit away from best positioning. Maximum errors will then occur for M

and N both one tenth their previous values. For m = 0, this corresponds

to M = N = .01; P = .0001, giving

E(m = 0, 10 to 1 range) = (100 + 100 + lOOOO)/? = 10200.K.

AUTOMATIC COMPUTING MACHINERY 47

For m = 1, the extreme occurs when M = 1/VlO; N = l/lOVlÖ; P = 0.01
and is

E (m = 1, 10 to 1 range) = 10(VÏÔ + lOVTÖ + 100)K = 1350.K,

being almost 10 times as good as the preceding. Similarly, for m = 2,

M = 1 ; TV = 0.1 ; P = 0.1 is the extreme case and

E (m = 2, 10 to 1 range) = 100(1 + 10 + 10) = 2100A:.

Even for m = 4, the extreme is for M = 10; N = 1, P = 10 and has the
value

E (m = 4, 10 to 1 range) = 10000(.l + 1 + .1) = 12000X,

which is not materially greater than for m = 0.

Obviously, the greater the range of values in an iterated operation, or

the greater the uncertainty in regard to possible magnitudes that may occur,

the poorer the choice of decimal point at the extreme left becomes as con-

cerns accuracy, and the greater the number of digits to the left of the

decimal point corresponding to minimum extreme error.

Availability of Common Integers and Constants Exceeding Unity. It is
certainly highly desirable to have integers such as 1, 2, 3, or 10 and constants

such as x = 3.14159, e = 2.71828, V2 = 1.41424, In 10 = 2.30259, etc.,
available for use in programming. With the decimal point at the extreme

left, such values cannot be expressed directly but must be divided by a

power of 10 or must be given in a different form such as the reciprocal value.

This, at best, complicates the programmer's work. As a simple example,

consider the usual square root iteration

yn+i = (y« + x/y„)/2

to obtain y = Vx. The convenient first approximation of yo = 1 cannot be

directly used, nor can the operation be carried out as indicated. It is neces-

sary to change the form to

y„+i = èvn + §*/y»

and to take a string of 9's for y0 to avoid exceeding capacity. This involves

one additional initial step (halving of x) and an awkward value for y0 and

still is insufficient if there is any possibility that x itself is a string of 9's,

since this would cause yi to exceed unity (because of normal round-off's).

Mathematical values do not naturally limit themselves to magnitudes

below unity, and such an arbitrary limitation may be expected to lead to

various programming difficulties, which may be minimized by allowing some

range above unity. The most important value that should be included in the

permissible range is unity itself. If, for example, cosine or sine values are

required in a computation, it is possible to exceed the capacity of a machine

with decimal point at the left if the argument should get too close to zero

or \tr, requiring either some assurance that this will not occur or sacrifice

of a decimal digit for values with the accompanying difficulty of introducing

additional factors in the programming. It is certainly far more convenient

for the programmer to work with natural values than to keep track of

various factors introduced to shift values to lie within range of the machine.

Of course, some factors are required with any choice of decimal point loca-

48 AUTOMATIC COMPUTING MACHINERY

tion, but their number is materially greater for the extreme left location

than for locations several digits further to the right. It is only necessary to

glance through a mathematical text to verify this statement by observing

the relative occurrence of values above, say, 100 as compared to those

between 1 and 100.

Problems Involving Extreme Accuracy. A general-purpose computer may

be required to solve problems whose solution is desired to greater accuracy

than corresponds to the fixed number of digits permitted in a single memory

location of the machine. In certain problems, while the solution is not re-

quired to excessive accuracy, it is necessary at some intermediate stage to

provide much greater precision because of large loss of relative accuracy

during the process of computation. Before discussing this matter in regard

to decimal machines, it may be noted that, in addition to difficulties similar

to those encountered in decimal machines, a binary machine used for prob-

lems of extreme accuracy involves questions of precision of conversion be-

tween the normally used decimal system and the binary system used by the

machine. Since, in general, only integral values convert exactly between

these twd number systems, a binary machine with binary point at the ex-

treme left requires the programmer to insert powers of 2 as factors as well

as powers of 10 in order to avoid conversion errors. For example, 10 would

be inserted as f with the factor 16 to be remembered by the programmer.

While such binary factors can probably be handled expeditiously by high-

grade mathematicians, they are certainly more likely to cause errors and

require special training for programmers of lower skill.

In order to simplify handling of high-precision problems, we will assume

that our machine has available, when called for, a special division process

which, in addition to the normal quotient, stores the remainder (shifted to

the left up to the decimal point) into a specified memory location. Such a

facility as well as a similar one for multiplication will be available in the

EDVAC now under construction by the University of Pennsylvania. For a

machine of 3 decimal digits with decimal point at the left, this special

division will work as follows:

.111/.123 = .902 + .000054/.123.

The machine will store .902 in one location and .054 in another. For a

similar machine with one digit to the left of the decimal point, this operation

will be:

1.11/1.23 = 0.90 + .0030/1.23,

and the machine will store 0.90 in one location and 0.30 in another. In all

cases, the second number will always be less than the divisor.

With the aid of this special operation and a corresponding multiplication,

and more than one memory location for the results of each operation, almost

any degree of accuracy can be achieved. It is to be noted, however, that

each value is expressed as a sum of component terms, with suitable factors,

each stored as a separate number. Successive operations are, therefore,

operations on polynomials and result in similar polynomials. At each stage,

care must be taken not to exceed capacity in any term of the polynomial

and to "carry over" to the next term any indicated excess. With the decimal

point at the extreme left, this is a difficult chore and generally requires

AUTOMATIC COMPUTING MACHINERY 49

extensive modification of procedure with addition of quite a few comparison

instructions (branch orders) to check for and correct this condition without

momentarily exceeding capacity at some point. With one or more digits to

the left of the decimal point, this problem becomes much simpler to take

care of since, as will be noted in later numerical examples, all terms other

than the first are normally less than unity. It is thus possible to perform

the next operation without considering the exceeding of capacity as a result

of it, and then to add the integral portion of each term to the preceding

(after suitable shift to the right) as a "carry." In fact, this "carry" process

may frequently be postponed until after a number of operations are carried

out. For example, the evaluation of e to any number of digits can be com-

pletely carried out on a machine of the type we are discussing, with one

digit to the left of the decimal point, with only a single "carry" routine in

the entire procedure.

It may be worth while to give a simpler numerical example here. Suppose

we had a 3-digit machine and wished to evaluate

101/301 + 201/401

to 7 digits. Consider first the decimal point at the extreme left. Using special

division, we obtain

.101/.301 = .335 quotient + .165 X 10~3 remainder

.165/.301 = .548 quotient + .052 X 10~3 remainder

.052/.301 = .173 normal quotient

so that we store 101/301 in 3 memory locations as

.335 + .548 X 10-3 + .173 X 10"6.
Similarly, we get

201/401 = .501 + .246 X 10"3 + .883 X 10"6.

We cannot now add terms directly since their sums may exceed unity. It is

thus necessary to examine values before summing them. One way of doing

this is to compare the complement of .173, which is .827, with .883. Since

it is smaller than the latter, we subtract it from the latter obtaining .056

and carry 1 to the next term. Comparing the complement of .548, which is

.452, with .246, we find it larger, indicating no carry. We thus add the

original terms, obtaining .794, to which we must add .001 carry from the

previous addition, requiring another comparison to show that we may di-

rectly add to get .795 with no carry. The first terms can, of course, be

directly added without any ado since we know their order of magnitude.

We thus get

101/301 + 201/401 = .836 + .795 X 10"3 + .056 X 10"6.

If additional similar terms were to be added, the work would, of course,

increase enormously.

Now let us consider the same problem with the decimal point one digit

to the right. As before, we get

1.01/3.01 = 0.33 quotient + 1.50 X 10~2 remainder
1.50/3.01 = 0.55 quotient + 1.45 X 10~2 remainder
1.45/3.01 = 0.48 quotient 4- 0.52 X 10~2 remainder
0.52/3.01 = 0.17 normal quotient

50 AUTOMATIC COMPUTING MACHINERY

so that we store 101/301 in 4 memory locations as

0.33 + 0.55 X 10-2 + 0.48 X 10~4 + 0.17 X 10-».

Similarly, we get

201/401 = 0.50 + 0.12 X 10~2 + 0.46 X 10~4 + 0.88 X 10"6.

Here we may add corresponding terms without worry of exceeding capacity.

In fact, since each term is less than unity in value and the machine capacity

is 10, we could add 10 terms at a time without fear of exceeding limits. We

thus get

101/301 + 201/401 = 0.83 + 0.67 X 10~2 + 0.94 X 10~4 + 1.05 X 10"«.

We now take the integral part of each term as a "carry" to the preceding

term. If less than 9 terms had been previously added, such carry cannot

cause excessive magnitudes and can be very simply carried out in succession.

In this case, only one carry occurs and we finally get

101/301 + 201/401 = 0.83 + 0.67 X 10"2 + 0.95 X 10~4 + 0.05 X lO"6.

The only disadvantage of the new decimal point location is that it requires

more terms for equal accuracy ; however, the given example accentuates this

difficulty because of the small number of total digits and the particular

choice of numerical values. For usual machines of 10 or more decimal digits,

the increase in number of terms caused by one digit shift of the decimal

point would be negligible, but the saving in carry-over difficulties just as

large. Choice of numerical values such as 41/301 + 51/401 would further

equalize the number of terms.

Samuel Lubkin
Reeves Instrument Corporation

New York City

Bibliography, Z-II

1. Arthur W. Burks, Herman H. Goldstine & John von Neumann,
Preliminary Discussion of the Logical Design of an Electronic Computing

Instrument. Prepared for the Research and Development Service, Ord-

nance Department, U. S. Army, June, 1946, i, 53 leaves and table, 21.6

X 27.9 cm. Mimeographed.

This report, consisting of 6 sections and a table giving a proposed instruc-

tion code, is the first of two papers dealing with "some aspects of the over-all

logical considerations arising in connection with electronic computing

machines."

Section 1.0, "Principal Components of the Machine," is a statement of

the "main organs" a fully automatic general-purpose computing machine

must possess. The authors point out that such a machine must have a

memory organ, a control organ, an arithmetic organ, and input and output

organs.

The computer must be capable of storing tables of functions, the original

data of problems, and the intermediate results of computations; it must also

be able to store sequences of instructions for performing specified numerical

computations. This storage function is performed by a memory organ. The

	MCOM00321044-1.pdf

