552[V].-National Advisory Committee for Aeronautics, Technical Note no. 1428: Notes and Tables for Use in the Analysis of Supersonic Flow. By the staffs of the Ames Aeronautical Laboratory, Moffett Field, Calif. Washington, D. C., Dec. 1947, iv, 73 p. +7 plates. $20 \times 26.2 \mathrm{~cm}$.
This NACA Technical Note is a compilation of data found important for the analysis of compressible flow in connection with test work in a supersonic wind-tunnel. The text of the paper is devoted to a review of several fundamental aspects of the theory of supersonic flow. These include thermodynamics, equations of motion, nozzle theory, shock waves, expansion around a corner, airfoil theory, and flow about wedges and cones. The appendices give formulae for the calculation of the viscosity, Reynolds number, humidity relations, and atmospheric corrections for air.

The five tables included in the paper contain the following information: Table I gives various nozzle data for subsonic flow such as the ratios of the local pressure to rest pressure, the local density to the rest density, etc. for values of the Mach number. The Mach number $M=0(.01) 1$. Table II gives similar nozzle data for supersonic flow and in addition gives such data as the local Mach angle, the angle through which a supersonic stream is turned to expand from Mach number 1 to the local Mach number, etc. $M=1(.01) 3.5(.1) 5(1)$ $10(5) 20,100, \infty$. Table III gives ratios of the local pressure to the rest pressure, the local density to the rest density, etc. on either side of a normal shock wave. Table IV gives the Mach number functions for use with small perturbation airfoil section theory, and Table V gives various properties of the standard atmosphere. All of the data given in the tables pertain to air where the ratio of the specific heats is 1.4. The functions are tabulated to at least 4S accuracy.

The graphs that are given include plots of maximum theoretical contraction ratio that permits start of supersonic flow in diffuser entrance against Mach number, and the variation of Reynolds number with Mach number. The well-known graphs for the characteristics of wedge and cone flow are also included.
R. C. Roberts

Brown University

MATHEMATICAL TABLES—ERRATA

References have been made to Errata in RMT 521 (Lambert), 522 (Peters), 526 (Rybner), 529 (Kraïtchik), 531 (Pettit), 535 (Cambi), 541 (Lane \& Sweeney), 548 (Ferrari, Russell \& Shapley, Tsesevich).
128. J. R. Airey, "Tables of the Bessel functions $J_{n}(x)$," BAAS, Report, 1915, p. 29-30.
A list of errors was given in MTE 124 for the 10-decimal part of this table for $n=0(1) 13^{\prime}$ where $x>6$. The whole table has now been compared with proofs of the forthcoming BAAS, Bessel Functions, part 2, and the following 23 further errors have been found for [$x=.2(.2$)$6 ; 6 \mathrm{D}$]. Thus the total number of errors, large and small, in this table is 74.

6 Feb. 1948
129. G. F. Becker \& C. E. Van Orstrand, Hyperbolic Functions (Smithsonian Mathematical Tables), Fifth reprint, 1942. See MTAC, v. 2, p. 311.

Comparison of this volume with recent publications ${ }^{1}$ and the original sources of the tables ${ }^{2}$ revealed the discrepancies listed in A. Errors and misprints; B. Errors in excess of 5 units in the next succeeding place of decimals or significant figure.

A.	Page	u	Function	For	Read
	xvi		equation 86	+	-
	18	0.0803	$\log \tanh u$. 90380	. 90378
	18	0.0803	\log coth u	. 09620	. 09622
	29	0.485	$\omega F_{0}{ }^{\prime}$	65.5	96.5
	40	1.009	$\log \cosh u$. 18137	. 19137
	46	1.339	$\log \tanh u$. 04023	. 94023
	60	2.018	$\log \sinh u$. 56723	. 56763
	125	0.980	$\omega F_{0}{ }^{\prime}$	144	114
	155	2.474	$\omega F_{0}{ }^{\prime}$	498	598
	182	0.0414	\boldsymbol{u}	. 0411	. 0414
	212	1.027	u	3.3.96	33.96
	214	1.117	u	5.7.79	57.79
	238	1.217	e^{-u}	. 2961772	. 2961172
	245	1.976	u	. 970	. 976
	253	2.709	e^{-u}	. 0666039	. 0666034
	261	0.096	p	2169	4169
	270		\boldsymbol{u}	2959	2939
	270		u	3777	3877
	271		u	5421	5431
	272	7853	$\ln u$	8.96765	8.96865
	288	1.242	gd u	. 0084840	. 0084849
	293	1.730	gd u	37.90	37.00
	306	3.59	$\omega F_{0}{ }^{\prime}$	113.66	113.76
	307	4.32	gd u	802833.73	882833.73
	310	23	$\mathrm{gd}^{-1} u$	505.53	565.53
B.	Page	\boldsymbol{u}	Function	For	Read
	32	0.631	$\log \cosh u$. 08126	. 08127
	34	0.703	$\log \tanh u$. 78266	. 78267
	34	0.703	\log coth u	. 21734	. 21733
	91	0.0157	coth u	63.699	63.700
	91	0.0166	coth u	60.247	60.246
	100	0.0635	$\tanh u$. 06342	. 06341
	107	0.0972	$\tanh u$. 09689	. 09690
	107	0.0982	$\tanh u$. 09788	. 09789
	109	0.164	$\tanh u$. 16254	. 16255
	111	0.254	$\tanh u$. 24867	. 24868
	123	0.876	\sinh , u	. 99241	. 99242
	130	1.242	$\tanh u$. 84602	. 84603
	131	1.263	$\sinh u$. 62661	. 62660
	132	1.319	$\tanh u$. 86653	. 86654
	133	1.399	$\tanh u$. 88513	. 88514
	134	1.449	$\tanh u$. 89550	. 89549
	138	1.624	cosh u	. 63522	. 63523
	141	1.775	$\tanh u$. 94416	. 94415
	141	1.784	$\tanh u$. 94513	. 94512
	143	1.876	$\tanh u$. 95414	.95413
	143	1.891	$\sinh u$. 23753	23754
	144	1.932	$\tanh u$. 95890	95889
	145	1.972	$\tanh u$. 96199	96200
	171	5.60	$\cosh u$	135.2150	135.2151
	186	0.0627	$\cos u$. 99804	. 99803
	212	1.015	$\omega F_{0}{ }^{\prime}$	85.0	84.9
	216	1.229	u	$59^{\prime \prime} .44$	$59^{\prime \prime} .45$
	224	2.6	u	08' ${ }^{\prime \prime} .4962424$	08' ${ }^{\prime \prime} .4962425$
	224a	7.8	u	$25^{\prime \prime} .4887273$	25' ${ }^{\prime \prime} .4887274$
	237	1.187	$\log e^{u}$. 5155075	. 5155076
	251	2.521	e^{u}	12.441032	12.441031
	252	2.626	$\log e^{u}$	1.1404572	1.1404573
	259	42	e^{*}	173927493	173927494

The values of $\tanh 0.174, \cosh 0.911, \tanh 0.932, \tanh 1.381, \tanh 1.986$ cannot be rounded off correctly with existing tables. Following are three exceptional cases:

$$
\begin{gathered}
\sinh 0.876=0.99241 \quad 5002 ; \quad \cos 0.0627=0.998034999 ; \\
\sin 0.394=0.383884999993636 .
\end{gathered}
$$

The error of 5 units in the seventh decimal of $e^{-2.709}$ had its origin in a misprint in Newman's table; see MTAC, v. 1, p. 455.

C. E. Van Orstrand

Manito, Illinois
${ }^{1}$ F. E. Pernot \& B. M. Woods, Logarithms of Hyperbolic Functions to twelve Significant Figures. Berkeley, Cal. 1918. (Univ. California, Publs. in Engineering, v. 1, nc. 13.)
NBSCL, (a) Tables of the Exponential Function e^{x}. 1939;
(b) Tables of Sines and Cosines for Radian Arguments. 1940 ;
(c) Tables of Circular and Hyperbolic Sines and Cosines for Radian Arguments. 1940;
(d) Tables of Natural Logarithms, v. 1, 1941;
(e) Tables of Circular and Hyperbolic Tangents and Cotangents for Radian Arguments. 1943.
${ }^{2}$ C. Gudermann, Theorie der Potenzial- oder cyklisch-hyperbolischen Functionen. Berlin, 1833.
J. Inman, Nautical Tables designed for the Use of British Seamen. Rev. by J. W. Inman, London, 1867, p. 364-372.
F. W. Newman, "Table of the descending exponential function to twelve or fourteen places of decimals,"'Cambridge Phil. Soc., Trans., v. 13, part 3, 1883, p. 145-241.
J. W. L. Glaisher, "Tables of the exponential function," Cambridge Phil. Soc., Trans., v. 13, part 3, 1883, p. 243-272.
J. O. W. Ligowski, Tafeln der Hyperbelfunktionen und der Kreisfunktionen. Berlin, 1889.
A. Forti, Nuove Tavole delle Funzioni Iperboliche. Rome, 1892.
130. H. B. Dwight, Mathematical Tables . . ., 1944. See MTAC, v. 1, p. 180.
P. 45 , sec $29^{\circ} .62$ to $29^{\circ} .67$ inclusive, change the third decimal figure, 1 , in each of the six cases, to 0 .

A. L. Epstein

Watson Laboratories
Red Bank, N. J.
131. H. B. Dwight, Tables of Integrals and Other Mathematical Data, Revised edition. 1947. See MTAC, v. 2, p. 346.
P. 44, formula 195.01, first line, for $b g<0$, read $b>0, g<0$.

E. G. H. Comfort

812 Prairie Ave.
Wilmette, Ill.
132. C. F. Gauss, Werke, v. 3, 1866, zweiter Abdruck, 1876, "De curva lemniscata," p. 413-432. This item is in "Nachlass," first published in this v., 1866.
This second posthumous paper by Gauss on the subject of lemniscate functions is concerned principally with the expansion of these functions in trigonometric series.

Certain of the basic constants appearing in the coefficients of these series were evaluated by Gauss to as many as 57D. Recently I recalculated to a higher degree of approximation all the numerical data in this paper. A number of serious calculational errors, in addition to several minor terminal-digit inaccuracies, were thus discovered in the work of Gauss. Among these is a fundamental error in Gauss's approximation to the quarter-period $\bar{\omega} / 2$ of the lemniscate functions.

For convenient reference, the errors and their corrections are presented in the following tabular array.

Page	Constant	For	Read
413	$\bar{\omega} / 2$	680 320(7)	5232420
	$(\bar{\omega} / 2)^{2}$	11(7)	207
	($\bar{\omega} / 2)^{4}$	63(4)	942
	($\bar{\omega} / 2{ }^{\text {a }}$	70 0712625(4)	6604823170
	$(\bar{\omega} / 2)^{6}$	025(3)	4275
	$(\bar{\omega} / 2)^{8}$	569(0)	7567
	($\bar{\omega} / 2)^{9}$	59	68
	($\bar{\omega} / 2)^{12}$	1749	8915
	$(\bar{\omega} / 2)^{13}$	4025	7405
414	$\log (\tilde{\omega} / 2)$	26 9692(2)	4579920
	$\ln (\bar{\omega} / 2)$	06425	26427
	$\ln \bar{\omega}$	236577	436590
418	$\frac{\pi}{12}-\frac{1}{2} \ln 2$	3727	0248
	$\operatorname{csch} \pi$	157	530
	$\frac{1}{3} \operatorname{csch} 2 \pi$	14452	49244
	$\frac{1}{3} \operatorname{csch} 3 \pi$	86	79
	$\frac{1}{4} \operatorname{csch} 7 \pi$	81	80
	$2 /\left(e^{2 \pi}-1\right)$	98	97
	$1 /\left(e^{4 \pi}-1\right)$	54	55
	$2 e^{-9 \pi / 4}$	906	907
	$2 e^{-25 \pi / 4}$	3118	4582
419	$2 e^{-\pi}$	514	515
	$2 e^{-4 \pi}$	38796535	53253042
	$2 e^{-9 \pi}$	288	290
420	$A=\sqrt{\frac{\pi}{\bar{\omega}}} /\left(2^{7 / 4} \cos \pi / 8\right)$	62266118372314	82266118369169
	$2 B e^{-\pi / 2}=2 e^{-\pi / 2}(A \cot \pi / 8)$	195763585935635	215763585929459
	$2 A e^{-2 \pi}$	9042	5000
	$2 \mathrm{Be}{ }^{-9 \pi / 2}$	6398	5261
	$2 A e^{-8 \pi}$	170	051
	$2 \mathrm{Be}^{-25 \pi / 2}$	94	99
421	340-152 $\sqrt{5}$	01228	01221
	$\sqrt{340-152 \sqrt{5}}$	731050755585731	684709222886965
	$\left(\sin\right.$ lemn ${ }^{\text {s/ }}$) ${ }^{4}$	773150483180010	819492015878776
	$\left(\sin \text { lemn } \frac{3}{3} \bar{\omega}\right)^{4}$	235251994351472	188910461652706
		710	711
	$\left(\sin \text { lemn }{ }^{\frac{\beta}{\delta} \bar{\omega}}\right)^{2}$	029	052
423	$N=2(\bar{\omega} / \pi)^{2}$	203	204
	$a=(2 / \bar{\omega})^{2}$	803	802
	$(\ln 2) / \pi$	635	636
428 429	$e^{-\pi}$	636 366	633 365
430	$e^{-\pi / 4}$	366 820	365 785
431	$e^{-9 \pi / 4}$	48464879941872486024	60008576995032475616
		44648993 817696	1924591
431	$e^{\pi / 2}$	446489931536	356667038331

The third calculation of $e^{-\pi / 4}$, shown on p. 430, lacks one step for completion. The work to that point is correct to 48D.

Because of an error affecting the last four decimal places in the second line of work, the second calculation of $e^{\pi / 2}$, on p . 432, when completed yields a result correct to only 30D.

An incorrect algebraic sign vitiates the last 20 decimal places in the first calculation of $e^{-\pi / 2}$ outlined on p .432 . On the other hand, the second calculation of $e^{-\pi / 2}$ when completed yields an approximation correct to 35D.

A few typographical errors appear in this paper. In the definition of A on p. 420 the exponent of 2 should read $7 / 4$ instead of $7 / 2$. On p. 421 the number $340-152 \sqrt{5}$ should be equated to the square instead of the fourth power of $\frac{1}{2}\left(\sin \text { lemn } \frac{7}{3} \bar{\omega}\right)^{4}-\frac{1}{2}\left(\sin \text { lemn } \frac{5}{5} \bar{\omega}\right)^{4}$

On p. 428 the larger prime factor of 32831087 should read 88019 in place of 8819 .

It is believed that the preceding enumeration of numerical errors is exhaustive, so that all the data not explicitly mentioned as subject to error may be considered as entirely correct.

John W. Wrench, Jr.

4711 Davenport St., N.W.

 Washington 16, D.C.Editorial Note: As the result of this communication there will have to be certain revisions in FMR, Index, article 5.82.
133. NBSCL, Tables of the Bessel Functions $Y_{0}(x), Y_{1}(x), K_{0}(x), K_{1}(x)$, $0 \leqq x \leqq 1$, 1948. See RMT 543.
The following errata list was issued by the editors soon after publication:
P. vii, 1. -6, for $\binom{x}{2}^{p+2 k}$, read $\left(\frac{x}{2}\right)^{p+2 k}$
p. 4, $x=.0096, Y_{1}(x), \Delta$ should read .683520 , instead of .652083
p. 11, $x=.0434, Y_{1}(x)$ should read -14.720493
p. 13, argument $x=.100$, not 100
p. 28, $x=.828, Y_{1}(x), \Delta^{2}$ should be -173
p. $35, x=.0000, K_{0}(x)$, and $K_{1}(x)$ should both read ∞
p. 42, $x=.099, K_{1}(x), \Delta$ should read -10198
$x=.100, K_{1}(x), \Delta$ should read -9997 , and Δ^{2} should read 195
p. $54, x=.700, K_{1}(x), \Delta$, for -2185 , read -2158.

Arnold N. Lowan

134. Tokihary Okaya, "Note sur le mouvement du fluide parallèle à
l'axe d'un cylindre solide et sur le phénomène de Liesegang," Japanese Jn. Physics, v. 12, 1937, p. 9-25. See MTAC, v. 1, p. 227, 301.
In the table, p. 13 , of $\phi_{n}(x)=(2 \pi x)^{3} e^{-x} I_{n}(x)$ there are the following two errors: for $\phi_{0}\left(0.1^{-1}\right)=1.0132970$, read 1.0132907 ; and for $\phi_{1}\left(0.08^{-1}\right)=0.9691305$, read 0.9691905 . The last decimal in each of the values $\phi_{0}\left(0.03^{-1}\right)$ and $\phi_{0}\left(0.08^{-1}\right)$ is one unit too high. In
equation (15) on p. 12 for $\phi_{n}(x)=\sum_{k=0}^{p} \operatorname{read} \phi_{n}(x)=1+\sum_{k=1}^{p}$.
Jarl Salin
Åbo Akademi
Åbo, Finland

135. J. T. Peters, Sechsstellige Tafel der trigonometrischen Funktionen . . .

von zehn zu zehn Bogensekunden . . ., 1929; second ed. 1939; third ed.
1946. See RMT 522, and MTAC, v. 1, p. 121 (MTE 14), 162 (MTE 27); v. 2, p. 279 (MTE 103).

A second edition, reproduced photographically from the first after.correction of 22 errors, is reviewed in Astronomische Nachrichten, v. 269, p. 287-288 (December, 1939) by "No," presumably Frl. H. Nowacki of the Astronomisches Rechen-Institut, who gives a list of 23 errors in the first edition, including those in MTE 14 and 103. She refers (see MTE 27) to the inadequate reading of the leading figures of the first edition, and the subsequent reading of a fresh proof, but does not make it clear whether the list of errors she gives is printed in the second edition or not. She calls attention to the fact that one error out of the 23 (p. 190) has not been corrected in the second edition.

Through Dr. Hanna Peters, daughter of the author, I have recently received a copy of the third edition (ausgegeben November, 1946); at the request of R.C.A. I have examined this to see if the known errors in the first edition had been corrected. The edition is a photo-
graphic reprint of the first; the cover and list of contents appear to have been reset, but the title page, the "Vorwort" and the remainder of the book appear to have been photographed from the first edition with (a) the addition of "Dritte Auflage" and change of publisher's imprint, (b) the omission of the original date of September, 1928 and (c) the correction of at least 22 errors in the tables. Generally, the reproduction is of a high standard. but occasionally there are minor variations of inking and focus which distinguish it from letter-press printing.

Examination of the Nautical Almanac Office copy of the first edition (in which the 23 errors mentioned above were corrected in early 1940) has revealed further errors which still persist in the third edition; those on p. 49, 269 are in the hand of L.J.C., the others appear to have been found by various members of the staff in the course of use. There is given below a complete list of all known errors in the first edition; those marked with an asterisk * are in the third edition, and presumably in the second edition as well. The error on p. 190 is the uncorrected error in the second edition referred to above. In the first edition a decimal point is omitted from the entry for $\cos 21^{\circ} 13^{\prime} 00^{\prime \prime}$ on p. 151 and the argument for $66^{\circ} 59^{\prime} 10^{\prime \prime}$ is out of alignment on p. 162 ; both of these are corrected in the third edition.

Close investigation of a suspected "wrong fount" on p. 55 reveals an amazing mixture of types in this apparently well printed volume. In the main table the figures in front of the decimal point are of ten in a different type from that generally used. The leading 0 in sin and tan on p. 24 is correct, but most (not all) of the other leading figures are incorrect up to page 81, at which point the mistake was apparently discovered and thereafter corrected; even so the incorrect fount is used in several cases on p. 85. The occurrence is by no means uniform; for instance, it actually spreads to the argument column on pages 32 and 33 , while it is correct in the sin and \tan columns on p. 43-59. Although the difference between the figures is quite noticeable when compared closely, it is too slight to be seen in normal use and it does not detract from the general appearance of the volume. This mixture occurs in both the first and third editions.

Page	Location	For	Read
81,2	$\operatorname{cotg} 0^{\circ} 27^{\prime} 03^{\prime \prime}, 04^{\prime \prime}$	127 and 126 to be lowered one line.	
12^{1}	diff. $\operatorname{cotg} 0^{\circ} 40^{\prime} 57^{\prime \prime} / 58^{\prime \prime}$	24	34
48^{1}	heading, last column	sec	cos
491,2	$\sec 4^{\circ} 10^{\prime} 30^{\prime \prime}$	2261	2661
*49	p.p. table for 86×8	68.7	68.8
$55^{1,2}$	argument $5^{\circ} 14^{\prime}$	$50^{\prime \prime}$	$30^{\prime \prime}$
$61^{1,2}$	$\sec 6^{\circ} 17^{\prime} 00^{\prime \prime}$	0.	1.
*65	diff. $\cos 6^{\circ} 55^{\prime} 40^{\prime \prime} / 50^{\prime \prime}$	5	6
84^{1}	argument 79 ${ }^{\circ} 52^{\prime}$	$49^{\prime \prime}$	$40^{\prime \prime}$
90^{1}	sec $11^{\circ} 03^{\prime} 20^{\prime \prime}$	9909	8909
110^{1}	argument $75^{\circ} 30^{\prime}$	$20^{\prime \prime}$	$30^{\prime \prime}$
$118{ }^{1}$	diff. sec $15^{\circ} 45^{\prime} 40^{\prime \prime} / 50^{\prime \prime}$	44	14
$123{ }^{1}$	diff. $\sin 16^{\circ} 38^{\prime} 50^{\prime \prime} / 60^{\prime \prime}$	57	47
$127{ }^{1}$	diff. tang $17^{\circ} 18^{\prime} 40^{\prime \prime} / 50^{\prime \prime}$	33	53
1291,2	$\sec 17^{\circ} 39^{\prime} 40^{\prime \prime}$	8464	9464
$156{ }^{1}$	tang $22^{\circ} 06^{\prime \prime} 00^{\prime \prime}$	4.	0.
1571	diff. $\sin 22^{\circ} 10^{\prime} 00^{\prime \prime} / 10^{\prime \prime}$		45
1691	diff. $\sec 24^{\circ} 17^{\prime} 00^{\prime \prime} / 10^{\prime \prime}$	4	24
*170	p.p. table for 58×9	52.	52.2
*190 ${ }^{1}$	tang $27^{\circ} 44^{\prime} 00^{\prime \prime}$	5.	0.
2331	diff. tang $34^{\circ} 56^{\prime} 00^{\prime \prime} / 10^{\prime \prime}$	22	72
234,2	heading, fourth, fifth cols.	cotg cosec	cosec cotg
$261{ }^{1}$	diff. $\sin 39^{\circ} 37^{\prime} 10^{\prime \prime} / 20^{\prime \prime}$	28	38
266^{1}	diff. cotg $40^{\circ} 24^{\prime} 00^{\prime \prime} / 10^{\prime \prime}$	155	115
*269	heading, sin	the s	down
2781	$\operatorname{cotg} 42^{\circ} 23^{\prime} 00^{\prime \prime}$	0.	1.
$291{ }^{1}$	diff. $\sin 44^{\circ} 30^{\prime} 30^{\prime \prime} / 40^{\prime \prime}$	55	35
D. H. Sadler			

${ }^{1}$ These 23 errata were reported in Astr. Nach. (1939).-Edrtor.
${ }^{2}$ These 6 errata were reported in MTAC (1943 and 1947) by L. J. C.-Edrtor.
136. J. T. Peters, Siebenstellige Logarithmen der trigonometrischen Funktionen von 0° bis 90° für jedes Tausendstel des Grades. Berlin, Preussische Landesaufnahme, 1921.

The following two errors were found during the comparison of this table with proofs of a new Chambers' six-figure table. The comparison covered \log sines and log tangents for $0^{\circ}\left(0 .{ }^{\circ} 001\right) 5^{\circ}$.
P. 74, log $\tan 3^{\circ} .619$, for 8.8000440 , read 8.8010440 ;
P. 80, $\log \sin 3^{\circ} .933$ for 8.836 2102, read 8.8362602.

Neither of these errors occurs in the six-figure or ten-figure tables by Peters of the same functions, published in 1922 and 1919 respectively, and having the same argument.
L. J. C.
137. J. T. Peters, Zehnstellige Logarithmentafel, v. 2, Berlin, 1919.

On p. $762,38^{\circ} .000-38^{\circ} .050$, the third digit from the left in the difference column for \log tang and \log cotg should be 6 instead of 7 . Thus for the first difference read 156237, not 157237. This error persists for the entire page.

Alfred D. Sollins

U. S. Coast and Geodetic Survey

UNPUBLISHED MATHEMATICAL TABLES

Reference has been made to an unpublished mathematical table by John Todd in QR35.
69[A].-H. E. Salzer, Table of Factorials. Manuscript in possession of the author, NBSCL.
The manuscript is a table of N ! for $N=[1(1) 1000 ; 16 \mathrm{~S}]$. Although only 16 S are guaranteed, the entries are almost certainly correct to 17 S , and there is a high probability that they are good to even 18S, with an error no more than several units in the eighteenth significant figure.

H. E. Salzer

70[E].-G. W. Spenceley, Tables of Hyperbolic Functions. Manuscript in possession of the author, Miami University, Oxford, Ohio.

I have computed tables of $\sinh x$ and $\cosh x$ for $x=\left[1^{\circ}\left(1^{\circ}\right) 1080^{\circ} ; 28 \mathrm{~S}\right]$.

G. W. Spenceley

71[I].-H. E. Salzer, Tables of Coefficients for Checking and Interpolation of Functions Tabulated at Certain Irregular Logarithmic Intervals. Tables in possession of the author.

Many small tables exist of functions that behave as polynomials in $\log x$. Such functions are usually tabulated for arguments proportional to

$$
1, \quad 2, \quad 5, \quad 10, \quad 20, \quad 50, \quad 100, \quad 200, \quad 500, \quad 1000 .
$$

