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335 54432 x23  = H26 + 600 H2i + 1  51800 H2i + 212 52000 Ha

+ 18170 46000 Hn + 9 88473 02400 H16 + 345 96555 84000 H,,
+ 7710 08958 72000 Hu + 1 06013 73182 40000 H,
+ 8 48109 85459 20000 H7 + 35 62061 38928 64000 Hs
+ 64 76475 25324 80000 H, + 32 38237 62662 40000 H,

671 08864 x26 = H2, + 650 H24 + 1 79400 H22 + 276 27600 H20

+ 26246 22000 Hi8 + 16 06268 66400 H„ + 642 50746 56000 Hu
+ 16705 19410 56000 H12 + 2 75635 70274 24000 Hio
+ 27 56357 02742 40000 H8 + 154 35599 35357 44000 H,
+ 420 97089 14611 20000 H4 + 420 97089 14611 20000 H2
+ 64 76475 25324 80000 Ho

1342 17728 x27 = Hn + 702 H26 + 2 10600 H23 + 355 21200 H2,

+ 37297 26000 Hu + 25 51132 58400 Hn + 1156 51343 80800 H„
+ 34695 40314 24000 HJ3 + 6 76560 36127 68000 Hu
+ 82 69071 08227 20000 H, + 595 37311 79235 84000 H7
+ 2273 24281 38900 48000 Hs + 3788 73802 31500 80000 H3
+ 1748 64831 83769 60000 Hi

2684 35456 x28 = Hu + 756 H2, + 2 45700 H24 + 452 08800 H22

+ 52216 16400 H20 + 39 68428 46400 His + 2023 89851 66400 Hi,
+ 69390 80628 48000 Hu + 15 78640 84297 92000 Hi2
+ 231 53399 03036 16000 Ho + 2083 80591 27325 44000 H,
+ 10608 46646 48202 24000 H, + 26521 16616 20505 60000 H4
+ 24481 07645 72774 40000 H2 + 3497 29663 67539 20000 H0

5368 70912 x29 = H2, + 812 H« + 2 85012 H2S + 570 02400 Hs,

+ 72108 03600 H21 + 60 57075 02400 Hu + 3452 53276 36800 Hi7
+ 1 34155 55881 72800 H„+ 35 21583 41895 36000 H,
+ 610 40779 26186 24000 Hu + 6714 48571 88048 64000 H»
+ 43949 36106 85409 28000 H7 + 1 53822 76373 98932 48000 H5
+ 2 36650 40575 36819 20000 H3 + 1 01421 60246 58636 80000 H,

10737 41824 x3» = H30 + 870 H28 + 3 28860 H„ + 712 53000 Hu

+ 98329 14000 H22 + 90 85612 53600 H20 + 5754 22127 28000 Hu
+ 2 51541 67278 24000 Hi, + 75 46250 18347 20000 H,4
+ 1526 01948 15465 60000 Hi2 + 20143 45715 64145 92000 ff„

+ 1 64810 10400 70284 80000 H8 + 7 69113 81869 94662 40000 H,
+ 17 74878 04315 26144 00000 H, + 15 21324 03698 79552 00000 H2
+ 2 02843 20493 17273 60000 H0.

Herbert E. Salzer
NBSCL
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519[A].—A. J. Sachs, "Babylonian mathematical texts, I. Reciprocals of

regular sexagesimal numbers," Jn. Cuneiform Studies, v. 1, 1947,

p. 219-240. 21.5 X 27.9 cm.

Regular sexagesimal numbers are those whose reciprocals may be expressed in a finite

number of terms. In Old-Babylonian table texts (say, 1700 B.C.) the object of a set of

multiplication tables was not only to yield the results of any multiplication, but also to give

the multiples of reciprocals commonly used in division. "The existence of a multiplication

table for the three-place number 44, 26, 40, for example, makes sense only in the light of the

fact that 44, 26, 40 is the reciprocal of 1, 21."

Dr. Sachs has established the standard technique employed in the Old-Babylonian

period to find the reciprocal of any regular number which is not contained in the standard

reciprocal table (say, 2, 5 or 23, 43, 49, 41, 15).
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Suppose c denotes a regular number whose reciprocal one wishes to find. Then choose

two numbers a and b such that c = a + b and a is a number which is found in the standard

table of reciprocals. Using the ordinary notation ñ = 1/n, it is evident that C = ä(l + ba).

In illustration of this analysis Dr. Sachs gives a transcription (p. 237) of the 21 para-

graphs of tablet CBS 1215 of the Philadelphia collection. This is a table of the reciprocals

of 2"(2, 5) for n = 0(1)20, [that is 125 to 131 072 000], with the intermediate steps of the
work; also for the reciprocals of the final results, showing that the number started with is

found. All this material is rearranged as a table (p. 238-240), 7 columns on each page, headed

c, b, a, ä, 1 + ab, 1 + ab, C. For example, in no. 1, c = 2; 5, C is found to be 0; 28, 48. In no.

19, second part, c = 0; 0,0,0, 23,43,49,41, 15, and eis found to be 2, 31,42, 13; 20. In each
part of the latter example three applications of the formula are necessary, after reaching the

column 1 + ab.
This paper is the first of a series of articles dealing with unpublished Babylonian mathe-

matical texts, chiefly at the University Museum in Philadelphia.

R. C. A.

520[A, J].—John Q. Stewart, "Empirical mathematical rules concerning
the distribution and equilibrium of population." Geographical Review,

v. 37, 1947, p. 461-485. 17 X 25.5 cm.

On p. 465 is a 2D table, 15 of the 29 different values of which were given in more ex-

tended form by J. W. L. Glaisher, "On the constants that occur in certain summations by

Bernoulli's series," London Math. Soc, Proc, v. 4, 1872, p. 55. These 15 values are of

*(— 1/m) for m = 1(1)5, 10, and $(—1 — l/m), for m = 1(1)9, each to 6D. The remaining

14 values may be calculated from 4>(—1 — l/m)(orm = 3/4 and 2; and from *(— l/m), for

l/m = .3, .4, .6, .7, .9, f, i i, f, I, #, +J. *(-1 - l/m) = 1"«M + 2"*^- + S"»"1'" H-
and*(-l/m) = l~llm + 2-*>« + • • • + x'1'" - mxl-l'm/im - 1) - Jx-i'™ + x-^^/Um

-im+ l)(2m + l)x-3-1im/120m3 + ■ ■ -, x = 10.

R. C. A.

521[B, C, D, E, F, H].—J. H. Lambert, Opera Mathematica. Volumen secun-
dum: Commentationes Arithmeticae Algebraicae et Analyticae, pars altera.

Zürich, Füssli, 1948, xxx, ii, 324 p. 15.5 X 22.9 cm.

This second volume of the works of Lambert contains the conclusion of his work in the

fields of Arithmetic, Algebra and Analysis. In reviewing the first volume iMTAC, v. 2,

p. 339-341) we inadvertently quoted the German title page on the dust wrapper instead

of the Latin title page of the volume. In the volume under review there are only three parts

of interest to us because of tabular material.

I. We shall first consider Lambert's memoir on hyperbolic functions, "Observations

trigonométriques," p. 245-269, presented to the Berlin Academy of Sciences in 1768; the

table is on page 268-269. The notation we are going to use is explained elsewhere in this

issue, in N94, on Lambertian Functions. The hyperbolic sector u = In tan (45° + Jui),

x2 — y2 = 1 or x = cosh u, y = sinh u being equations of the hyperbola. For the circle the

corresponding equations are x2 + y2 = 1 or x = cos </>, y = sin <j>; tan (j> = sin w, tan a

= sinh u, sec to = cosh «. In the table are 9 columns; the first is a = 0(1°)90°; the second

column contains the values of the corresponding hyperbolic sector u (according to Lambert).

Lambert really gives the values of log tan (45° + £w), so that his values must be multiplied

by 2.30258509 in order to give the true approximate values of the hyperbolic sectors u

corresponding to successive values of a>. It is curious that Professor Speiser overlooked this

Lambert error which makes the values in the following four succeeding columns of the

table impossible to check: sinh u and log sinh « (cols. 3, 5), cosh u and log cosh u (cols. 4, 6).

Column 9 gives the values of <t> to the nearest tenth of a second corresponding to each value
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of w; columns 7 and 8 give respectively the values of tan <£ and log tan <j>. The values in cols.

2-8 are all to 7D. The erroneous col. 2 appears also in Lambert's interesting volume of

tables,
II. Zusätze zu den logarithmischen und trigonometrischen Tabellen zur Erleichterung und

Abkürzung der bey Anwendung der Mathematik vorfallenden Berechnungen. Berlin, 1770, 4, 98,

210 p. We have noted some facts concerning the origin of this volume in our previous review

(he., p. 340). In the volume before us it occupies p. 1-69, 75-111 + a title-page leaf. It

contains 44 tables which are reproduced in full except for 8, namely: T.I, the smallest di-

visors of numbers not divisible by 2, 3 or 5, from 1 to 102000, filling p. 2-69 of the original,

only p. 2-3 are reprinted; T.VI, prime numbers 1-102000 (p. 73-117), only p. 73; T.XV,

hyperbolic logarithms of 1.01(.01)10 to 7D (p. 125-133), only p. 125; T.XXV, nsinA,
n = 1(1)9, A = [lo(l°)90°;5D](p. 152-157), only p. 152-153; T.XXXII, hyperbolic func-
tions (p. 176-181), only p. 176-177; T.XXXV, N2, N = 1(1)1000 (p. 184-189), only 184-
185; T.XXXVI, A", N = 1(1)1000 (p. 190-195), only p. 190-191; T.XL, N», p = 1(1)11,
N = .01(.01)1 (p. 202-207), only p. 202-203. All other tabular pages are printed in facsimile.

Since the volume is so rare it is too bad that it was not completely reproduced. Some of the

tables not previously mentioned are the following: T.VII-IX, of 2", n = 1(1)70, 3" and 5",

each for n = 1(1)50. T.XIX gives the exact values of sin 3n°, n = 1(1)30. T.XXIII,

lengths of arcs of a unit circle to 27D, subtended by central angles 1 "(Io) 100°, 120°(30°)270°,

330°, 360°. T.XXIX, for solving the equations ± x =f x3 = a (see MTAC, v. 2, p. 28-29).

T.XXXVII, 30 terms of the first 12 figúrate numbers: x, ix(x + 1), £x(x + l)(x + 2), etc.

T.XLII, various rational approximations to N', N = 2(1)12; T.XLIV, decimal representa-

tion of the coefficients of the first 15 terms in (1 + x)+i, and (1 + x)-'.

A posthumous Latin edition of Lambert's Tables was published in 1798 under the direc-

tion of Anton Felkel, by the Royal Academy of Sciences at Lisbon: Supplementa Tabu-

larum Logarithmicarum et Trigonometricarum auspiciis Almae Academiae Regiae Scientiarum

Olisiponensis cum versione introductionis germanicae in latinum sermonem secundum ultima

auctoris consilia amplificata. lxxvi, 203 p. + plate. In T.I, where Lambert gave only the

least factor, Felkel provides all prime factors except the greatest, the least figures being

printed in figures, and the others denoted by letters. The erroneous column in T.XXXII is

perpetuated here.

III. We come now to p. 70-73, taken from the preface of Lambert's Beylrdge zum

Gebrauche der Mathematik und deren Anwendung, Berlin, 1772. There is here a table of 70

corrections, found by Wolfram, for T.I of Lambert's Zusätze. These have all been corrected

in the Supplementa. It is also noted that in T.VI the prime number 91183 is missing; this is

also wanting in the Supplementa. Various other corrigenda for other parts of the Zusätze

are also listed.

Lambert's appeals to others, for calculating large factor tables, resulted in activity on

the part of five persons, Oberreit, von Stamford, Rosenthal, Felkel, and Hindenburg.

The correspondence in this connection is printed in the fifth volume of Joh. Heinrich Lam-

berts . . . deutsche gelehrter Briefwechsel. Herausgegeben von Joh. Bernoulli, Berlin, 1785.

Felkel alone has left any record of his work; see Scripta Mathematica, v. 4, 1936, p. 336-337.

Lambert refers briefly to a number of tables, concerning which we may give further

information in a few notes.

Biichner's table of squares and cubes from 1 to 12000 (Lambert, v.2, p. 4, 7, 8, 58, 70).

J. P. Büchner, Tabula Radicum, Nuremberg, 1701.

Joncourt published a table of Trigonalzahlen (Lambert, v. 2, p. 4). This is É. DE Jon-

COURT, Traité sur la Nature et sur les Principaux Usages de la Plus Simple Espèce de Nom-

bres Trigonaux. The Hague, 1762. Also Latin edition De Natura et Praeclaro Usu simpli-

cissimae speciei Numerorum Trigonalium, The Hague, 1862, viii, 28, 224, 7 p. (This is the

book which Prof. Speiser identifies as "Joncourt: de la nature des nombres trigonaux, 1742.")

Krüger-Jäger list of primes (Lambert, v. 1, p. 117; v. 2, p. 6, 7, 8, 14). J. G. Krüger,

Gedanken von der Algebra nebst den Primzahlen von 1 bis 1000000 . . ., Halle, 1746. Algebra,

124 p.; list of primes, 47 p. The primes are from 1 to 100999, the title being incorrect. Lam-

bert tells us (v. 2, p. 6) that Krüger received the table from Peter Jäger.
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Anjema factor table from 1 to 10000 (Lambert, v. 1, p. 117-118; v. 2, p. 5, 7, 23).

See MTAC, v. 2, p. 340, 374.
Poetius (Lambert, v. 1, p. 117, 118; v. 2, p. 5, 7, 14). J. M. Poetius, Rekenkunst mit den

parallelen Algebra, Arithmetica. Appendix, "anatómica numerorum." Leipzig, 1728. This

appendix of primes and divisors up to 10000 is in [G. F. Richter] Vollständigen mathe-

matischen Lexici, zweiter Theil. Leipzig, 1742, p. 530-543.

"Pell's" factor table (Lambert, v. 1, p. 118; v. 2, p. 5, 6, 7, 11, 14). Lambert erroneously

attributes to Pell a factor table up to 100 000 (multiples of 2 and 5 omitted), in the com-

pilation of which Pell had no part. It is interesting that in v. 2, p. 70, Lambert refers to his

own factor table as a "Pell table." The facts are as follows: A Swiss, J. H. Rahn, wrote a

work, Teutsche Algebra oder Algebraische Rechenkunst, Zürich, 1659, of which there was an

English translation: An Introduction to Algebra. Translated out of the High-Dutch into

English, by Thomas Brancker . . . Much Altered and Augmented by D. P. [Dr. John Pell].

Also A Table of Odd Numbers less than One Hundred Thousand, showing Those that are In-

composit, and Resolving the rest into their Factors . . . Supputated by the same Tho. Brancker.

London, 1668, viii, 198, 50 p. + 1 plate. Thus we see by the title page itself that the original

table of Rahn up to 24000 was extended by Thomas Brancker up to 100 000. Also, the

table is headed: "Tho. Branker's isic) Table of Incomposit numbers, less than 100 000."

Brancker's table is reprinted in F. Maseres, The Doctrine of Permutations and Combina-

tions . . ., London, 1795, p. 366-416. From 20000 to 100000 it is also reprinted in E.
Hinkley, Tables of the Prime Numbers, and Prime Factors of the Composite Numbers, from

1 to 100 000. Baltimore, 1853, p. 165-205.
The reader interested in fuller information on early factor tables should turn to James

Glaisher, Factor Table for the Fourth Million, London, 1879, p. 17-28; and J. W. L.

Glaisher, "On factor tables, with an account of the mode of formation of the factor table

for the fourth million," Camb. Phil. Soc., Proc, v. 3, 1878, p. 99-138.
In our previous review we referred iMTAC, v. 2, p. 341) to results of Wallis (1685)

giving the values of convergents of 17 terms of the continued fraction for 1/ir = \+\+*ft

+i+Trb+T+À + £+T+i+-rV + f+TV+T + i + è + i + ,*+A+T + è + i + s ■••, that is, through the
second 4 before A- I have since noticed that Wolfram in a letter to Lambert on 3 Aug.

1772 gave (87 years after Wallis) this same value iJoh. Heinrich Lambert deutscher gelehrter

Briefwechsel hrsg. Joh. Bernoulli, v. 4, 1784, p. 445-450) and also the next convergent,

for the first \ before A, namely:

18 50401 87797 33719 17511:5 89001 21117 19765 29866
= 3.14159 26535 89793 23846 26433 83279 50288 41971 6897, which is correct to 41D.

R. C. A.

522[D].—J. Peters, Sechsstellige Tafel der trigonometrischen Funktionen

enthaltend die Werte der sechs trigonometrischen Funktionen von zehn zu

zehn Bogensekunden des in 90° geteilten Quadranten und die Werte der

Kotangente und Kosekante für jede Bogensekunde von 0°0' bis 1°20'. Third

ed. Bonn, Dümmler, 1946, vi, 293 p. 19 X 26 cm.

This is a photographic reprint of a corrected first edition, Berlin and Bonn, Dümmler,

but some errors still remain. A corrected second edition appeared in 1939. The first Russian

edition came out at Moscow, in 1937, and the second Russian edition in 1938. For other

details see MTE 13S, elsewhere in this issue.

S23[D, R].—Rudolf Bosshardt, Tafeln zum Abstecken von Kreisbogen

nach Polarkoordinaten, Stuttgart, Konrad Wittwer, 1940, iv, 106 p.

12.5 X 17.7 cm.

Consider a circular arc ABC with center 0. Let the tangents at A and C meet in T,

and let OT meet the arc in B, and the chord of the arc CA in E; also let O A — r, ¿ COA = a.
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Then (1) AT = CT = r tan \a; (2) arc ABC — rira (sexagesimal)/180; (3) = rira (cen-

tesimal)/200; (4) BT = r[seci\a)-l~]; (5) AE = CE = r sin $a; (6) £B=r(l-cosJa). For

r = 100, Table I gives 3D values of (1), (2), (4), (5), (6), each with A, for <*(cent. degrees)

= 1«(1«)120»(0*.5)180«; and (2), (5), (6), each with A, for a = 180«(1«)200«.
Let AC = s, ¿BAT = ¿, and arc ABC = b; then with varying parameter range b, and

r = 12(1)50(2)100(5)200(10)500(20)1000(50)1500(100)5000, Table II gives ¿(cent.) and
¿(sexag.), each to the nearest second; also b — s (2D) with A(3D). For r = 12 — 17,

6=1, 2(2)24(1)45; for r = 105-155, 6 = 1(5)70(2)100(5)140; and for r = 200-5000,
6 = 1, 10(10)160.

Table III is for changing from centesimal to sexagesimal division, and conversely.

The remaining pages are devoted to uses of the tables with surveying instruments and to a

23-item Literature-List.

The author expresses the view that he has made a new contribution to surveying tabular

material.

R. C. A.

524[E].—NBSCL, Tables of the Exponential Function ex. Second edition
(211 copies). Washington, D. C, U. S. Govt. Printing Office, 1947.
[xviii], 549 p. 20.7 X 27 cm. For sale by the Superintendent of Docu-
ments, Washington, D. C. $3.00. On the back of the volume MT2 is
printed ; presumably MT1 was Table of the First Ten Powers of the In-

tegers from 1 to 1,000.

This volume of which the first edition appeared in 1939 (see MTAC, v. 1, p. 438), was

the first of the extensive volumes which this computing group prepared. We have already

noted that it has long been out of print iMTA C, v. 3, p. 65), and that six slips in it had been

found iMTAC, v. 1, p. 161, 198; v. 2, p. 314, 352). All of these have been corrected in the

new edition which is appreciably thinner than the old edition, on account of thinner, but

good, paper having been used in its composition. The binding is very substantial. On the

whole the printed pages of the table are not quite as black in the review copy as in the copy

of the first edition now before me.

The number of pages in the volume is the same as formerly. The new title-page has

been considerably changed. The old material of p. [vii-viii] has been eliminated, and a

brief new "Preface to the second edition" by Dr. Lowan, chief of the Computation Labora-

tory, appears on p. [vii] of the new edition. Our total of 549 pages differs from the 535 on

the last table page of the volume through the fact that title-pages preceding Tables II—VIII

are not numbered. The title-page for Table I was counted in [xviii]. The increase of price

of this excellent volume from $2.00 to $3.00 still leaves it an extraordinarily cheap product

for these days, and will probably do little to retard its further rapid sale.

R. C. A.

525[E].—J0RGEN Rybner, Tabeller til Brug ved Lfisning af Ligningen
tgh(b + ja) = r/jfr. Copenhagen, Jul. Gjellerups Forlag, 1943, 8 p.

17 X 25 cm. Offset print.

These tables are of

fir) m 2r/il + r2),       g(r) = 2r/(l - r2),

forr = [0(.001).999; 6D], A.
If r > 1, take 1/r and/(l/r) = fir), g{l/r) = - g(r).

If tanh (6 + ia) = r(cos <t> + i sin 4>), tanh 26 = fir) cos <j>, tan 2a = g(r) sin <t>. Com-

pare the 16 nomograms for tanh (6 + ta) in J. Rybner, Nomogrammer over komplekse

hyperbolske Funklioner, 1947 (RMT 526).
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526[E, H].—J0rgen Rybner, Nomogrammer over komplekse hyperbolske

Funktioner. Nomograms of Complex Hyperbolic Functions. Copenhagen,

Jul. Gjellerups Forlag, 1947, 36 p. text + 54 leaves printed on one side

with nomogram material + plastic rule (3 X 31.1 cm.) with hair line.

21.3 X 31 cm.

The individual investigator with limited facilities at his disposal has always found the

evaluation of a hyperbolic function of a complex variable to be a tedious and time consuming

chore. Professor Rybner has taken great care to produce an accurate set of steel engraved

nomograms covering the sinh, cosh and tanh (designated tgh) which should be very useful

to such a worker who has a large number of cases to consider.

There are 13 separate sheets to cover the cosh with an accuracy approaching three

figures. The cosh is expressed in Cartesian form by the equation

cosh (6 + ia) = p + iq.

The values of 6, which in electrical work corresponds to attenuation, is expressed in both

nepers and decibels, while a, which corresponds to phase shift, is given in degrees and ra-

dians, each divided on a decimal basis. Each nomogram carries the formulae for computa-

tion and the rules concerning sign and periodicity.

The sinh function also covers 13 sheets and is treated similarly.

The tanh function covers 16 sheets and is given in the polar form

tanh (6 + ia) = r¡6.

Again 6 is expressed in both nepers and decibels but a is given in radians only; 6 is expressed

in degrees and minutes or degrees and decimals. Suitable formulae for computation, for sign

and periodicity are included on each sheet. The reason for expressing tanh in polar form

rather than in the rectangular form of the sinh and cosh is not given. The polar form how-

ever is convenient for the transmission engineer who frequently wants to compute short

circuit or open circuit impedances.

The text, which is given in both Danish and English, includes a number of formulae for

circular and hyperbolic functions and also some formulae for four-terminal networks and

transmission lines. Approximation formulae which appear to be new are given for very small

values of 6.

In addition to the above, certain nomograms useful to the engineer are also included.

These are concerned with

1. Conversion from rectangular to polar form i.e., x + iy = rJ6.

2. Conversion from Ria to (1 + rj6).

3. Reflection loss and reflection phase shift.

4. Resonance circuits and filters.

The ring binding at the top of the nomograms is somewhat less convenient than con-

ventional binding at the side of a sheet.

The general usefulness of the nomograms would be enhanced by typical examples.

A number of errors in notation were observed in a somewhat cursory turning of the

pages, as follows:

p.32,1. -5,/orB2,B2reodBi,B2.

sheet 10 for tanh, at the lower right, for b = 0.75 — 0.5, read b = 0.25 — 0.5.

sheets 1, 3, 6, 9, 10, 11, 12, 13, 14, 15, 16 at the top:

sin 2a sin 2a
for arctg   . ,        read arctg   . •

sinh ¿a sinh 26

The need for the tanh nomograms was realized many years ago by transmission engi-

neers. Aside from Professor Kennelly's extensive and well-known Atlas,1 which uses r and 8

as the basic coordinate system, the only other published set of charts known to the writer is

that of Professor Henry E. Hartig, "Charts for transmission line problems," Physics,

v. 1, 1931, p. 380-387, which interchanges the coordinates and contours of the Atlas. Pro-
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fessor Hartig's charts use a neper-quadrant coordinate system with R¡0_ contours for sinh

and cosh. For the tanh the contours are i?/ö in the 1st, 4th, 5th, etc. octants and ii_1/0

contours in the 2nd, 3rd, 6th, 7th, etc. octants. With these charts the answer, as a function

of length, always lies on a straight line. They also have the virtue of clarifying the periodic

nature of the functions.

K. G. Van Wynen
Bell Telephone Laboratories

New York

1 A. E. Kennelly, Chart Atlas of Complex Hyperbolic and Circular Functions. Third ed.
rev. and enl., Cambridge, Mass., 1924, 66 p. Kennelly published also Tables of Complex
Hyperbolic and Circular Functions. Second ed. rev. and enl., Cambridge, 1921. vi, 240 p.

527[E, S].—Parry Moon, A. "A table of Planck's function from 3500 to
8000°K," Jn. Math. Phys., v. 16, 1937, p. 133-157. 17.5 X 25.4 cm. Also
M. I. T., E. E. Dept., Contribution no. 131, 1938. B. A Table of Planck's
Function 2000 to 3500°K, Cambridge, Mass., Mass. Inst. Techn., Dept.
Electr. Engineering, 1947, 80 p. 15.2 X 22.8 cm. C. "A table of Planckian
radiation," Opt. Soc. Amer., Jn., v. 38, 1948, p. 291-294.

The growing use, in science and engineering, of Planck's equation for the radiation from

a blackbody emphasizes the need for more satisfactory tabulated values of this function.

In photometry and radiometry, stress is being laid to an increasing extent upon calculations

based on blackbody radiation. In colorimetry a similar movement is in progress—a move-

ment that has been particularly marked since 1931, when the Commission Internationale de

l'Éclairage standard distribution coefficients were introduced. A number of tables of

Planck's function are available, but all have disadvantages when values are to be obtained

with the minimum of calculation.

Planck's equation is

(1) J(X) = Ci\-*[ec'*T - 1]-',

where X = wavelength (micron), T = absolute temperature (°K), G = 36970, C2 = 14320;

G and G are in accordance with the international temperature scale;' /(X) = spectral

radiosity of a blackbody (watts cm.-2 micron-1) at wavelength X.

If x = xr/G, yx3 = /(X)X6/G, equation (1) becomes

(2) yx5 = [en* - lj-K

If C't = .4342944819-G = 6219.096981,

(3) J(X) = 36970X-S[10«2»-»9698"XT - i]-i.

Actual computations were made from this equation. T.I. in A is for C'2/T, for T = 2000°K-

(10°)3500o(100o)10000o(1000o)20000°K, T.2 is of G/Xs, for X = .26(.01)1(.1)3(1)8; T.3 is

a double entry table for X and T, of /(X), for

X - [.26(.01).75(.05)1(.1)3; 5S], A, and T = 3500(100°)8000°K.

It is believed that in general the values of this table are correct to the last figure, though

because of rounding process there may be an error in a few instances of as much as 5 in the

sixth figure.

In B the table is of /(X) for X = [.38(.01).76; 8S], A, and T = 2000(10°)3500°K. The
values were computed to 10 digits by means of electrically-driven computing machines.

The values were checked by use of fifth differences, and were then rounded off to the 8

figures given in the table.

This new table should be particularly useful, since it embraces the region of filament

temperatures of incandescent lamps, and the two tables extend from spectral distributions

approximating the radiation from a carbon-filament lamp to those approximating the radia-

tion from an overcast sky.
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The tables in A and B were calculated under Mr. Moon's direction by more than a score

of computers. In using (3) the powers of 10 were read directly from Peters' Zehnstellige

Logarithmen, v. 1.

Tables based on the relation (2) have been given by Jahnke & Emde,1 Frehafer &

Snow,2 Fabry,' Yamauti & Okamatu.4 Since there is only one independent variable, the

table can be condensed into comparatively small space while still covering the entire range

of wavelength and temperature. These tables, however, are anything but satisfactory.

Interpolations are nearly always necessary; and the labor entailed in the interpolations, as

well as in the computation of x from the interpolated values of X and T and the computa-

tion of /(X) from the interpolated value of y, is considerable. In fact, comparative tests

showed that /(X) could be computed directly from (1) more easily than it could be obtained

from Yamauti & Okamatu tables,4 a logarithm table and a modern calculating machine

being used in both cases.

Present needs require a table of double entry, with the two independent variables X and

T. Tables of this kind have been computed by Forsythe,6 Fowle,6 Frehafer & Snow,7

and Skogland.8 These tables are based on the values of either 14330 or 14350 for G, in-

stead of the international standard value9 of 14320. The change to 14320 is easily made with

existing tables, but requires additional computation which tends to reduce the serviceability

of the tables. The Skogland results are being used extensively, both in this country and

abroad, but they cover only a limited range of temperature and are confined to the visible

spectrum. The Fowle table and Frehafer & Snow table are not subject to these restrictions

in temperature and wavelength but the values are in general calculated to only 2 or 3

significant figures.

Extracts from text

Editorial Note: The radiation formula of Max K. E. L. Planck (1858-1947) was
first published in "Ueber eine Verbesserung der Wienschen Spektralgleichung," Deutsche
phys. Gesell., Verhandlungen, v. 2, 1900, p. 202. This note is reprinted in the Ostwald's
Klassiker d. exakten Wissenschaften, v. 206, 1923, p. 53-55. In the bibliography of the func-
tion a reference may be given also to NBSCL, Miscellaneous Physical Tables. Planck's
Radiation Functions . . ., 1941.

1 E. Jahnke & F. Emde, Tables of Functions, second ed., Leipzig, 1933, p. 45-47
[[Also in later editions.—Editor]

2 Mabel K. Frehafer & C. Snow, Tables and Graphs for Facilitating Computations of
Spectral Energy Distribution. Nat. Bureau of Standards, Misc. Pubis., no. 56, 1925, T. I.

3 C. Fabry, Introduction générale à la Photométrie, Paris, 1927.
4 Z. Yamauti & M. Okamatu, "Tables for Planck's radiation formula," Tokyo, Electro-

techn. Lab., Researches, no. 395, 1936, part I, 39 p. (English abstract) ; no. 402, 1937, part II,
51 p. in English.

6 W. E. Forsythe, "1919 report of standards committee on pyrometry," Optical Soc.
Amer., Jn., v. 4, 1920, p. 331.

6 F. E. Fowle, "Radiation from a perfect (blackbody) radiator," in Nat. Res. Council,
Intern. Critical Tables, v. 5, 1929, p. 238-243.

' Mabel K. Frehafer & C. Snow, idem, T.II.
8 J. F. Skogland, Tables of Spectral Energy Distribution. Nat. Bureau of Standards,

Misc. Pubis., no. 86, 1929.
9 G. K. Burgess, "The international temperature scale," Nat. Bureau of Standards,

Jn. Research, v. 1, 1928, p. 637.

528[F],—N. G. W. H. Beeger, "Second extension of the table of least ex-

ponents £ for which 2f = l(mod p)," Nieuw Archief voor Wiskunde,

s. 2, v. 22, p. 310-311, 1948. 15.7 X 23.6 cm.

This is an extension for the range 309672 < p < 320000 of the exactly similar table

reviewed in RMT 279, v. 2, p. 71. The existence of the manuscript of this table is there

announced. The author calls attention to the fact that p = 318781 has the small exponent

828 so that p divides 2414 + 1. Incidentally so does p = 853669.

D. H. L.
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S29[F].—M. Kraïtchik, Théorie des Nombres, v. 3 ; Analyse Diophantine et

Applications aux cuboides rationnels. Paris, Gauthier-Villars, 1947,

xi, 135 p. 15.8 X 24.5 cm.

This work contains the following four tables:

T.I (p. 36-55). This table is to facilitate the solution of the diophantine equation

x4 + ax2y2 + y* = u2

by giving solutions of the associated congruence

y* + ay2 + 1 m u2 (mod p).

The trivial cases of a = ±2 are omitted. The moduli considered are the 24 odd primes < 100.

T.II (p. 83-85). This is a list of rational integral cuboids, that is, a list of triples (x, y, z) of

positive integers such that the sum of the squares of any two of them is a perfect square.

Thus x, y, and z are the edges of a rectangular parallelopiped whose faces have integral

diagonals. The author considers only those cases in which x, y, z are not all even. This im-

plies that exactly one of them is odd and this odd one is taken as z. The list is arranged ac-

cording to z and extends to ! < 104. There are 284 of these cuboids of which only 39 are

primitive, that is, x, y, z have no common factor.

T.III (p. 112-113). This table is wrongly labeled. The title should read x2 + lóy2 s 2»
(mod p). The second column should be headed z2, not x2. The moduli considered are the

primes <43 except 2, 3, 7. The table gives the values of x2 or y2 (mod p) for each possible

given value of z2 ̂  0 (mod p).

T.IV (p. 122-131). This is a list of the 241 primitive cuboids with an odd value of z < 10'.

For each such z the values of x, y, z are given with three pairs of generators. See also M TA C,

v. 2, p. 167.

D. H. L.

530[F].—D. B. Lahiri, "On Ramanujan's function r(n) and the divisor

function <t*(m). Part II." Calcutta Math. Soc, Bull, v. 39,1947, p. 33-52.
18.7 X 24.2 cm. For a review of Part I see MTAC, v. 3, p. 23, RMT 459.

This Part contains a large table of 171 congruence relations between Ramanujan's

function t(m), defined by

CO

A(*) = E r(«)x» = x|(l - x)(l - x2)(l - x3)- ■ ■}»
n-l

and the sums of powers of the divisors of n, the moduli being certain divisors of 2133653- 7 • 11 •

13-691. The following is a typical example.

9504r(») = 13650<7n(») - 691[ll(6n - 5)<r,(«) - 5<r,(»)] (mod 23-3-5-ll-691).

The general form is

e

Arin) m £ Pkin)a2k+iin)imoâ M)
*-o

where A and the polynomial P depend on M. The large number of apparently different rela-

tions is due in great measure to the numerous congruence relations existing between the

it's. In many cases, and in the above example, the constant A is not prime to the modulus

M so that one obtains a congruence for t(») itself only for a certain divisor of M. This

happens for instance whenever M is divisible by 2", 3', 11, or 13. The highest powers of the

various primes for which there is a congruence relation for t(m) itself are 210, 35, 53, 7, and 691.

There is also an interesting table giving the 41 products of the functions *,, ,(x), defined in

RMT 459, which are expressible linearly in terms of other 4>'s and the generator A. It is from

this table that the main table was produced.

D. H. L.
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S31[H].—John T. Pettit, "A speedy solution of the cubic," Mathematics

Mag., v. 21, Nov.-Dec. 1947, p. 94-98. 17.1 X 25.4 cm.

In solving y* + py + q = 0, if p and q have the same signs, change the signs of the roots

and consider y3 ± \p\y ^f \q\ =0. With the substitution y = |g|z/|/>|, transform the

equation to z3/(l — z) = ± \p\ */\q\2 = K. For the general cubic, x3 + bx3 + ex + d — 0,

reduce to the previous case by taking x = y — \b, p = c — |62, q — d — \bc + 2b3/27.

The relation z3/(l — z) = K is represented by a graph on p. 96, and tables are given on

p. 97-98 for z = — 3(.01 ) + 1.5 and K to 3S, — °° < K < °o. Over this range z is a single-

valued function of K, and one real root is thus obtained. On reducing the general equation

to a quadratic the other roots are found to be x = [q/2p][z ± (— 4iC — 3z2)'] — \b.

The procedure and the table printed in this article are essentially those given in more

detail by H. A. Nogrady, A New Method for the Solution of Cubic Equations, 1936; see

MTAC, v. 1, p. 441f. Other references on the numerical solution of the cubic are given in

MTAC,\. 2, p. 28f.

Donald W. Western
Brown University

Note by S. A. J.: The Pettit table is obviously wholly unreliable, since there are from
2 to 78 units of error in the last-figure values of K, for the following 14 values of z: —2.22,
-1.29, -1.22, -1.19, -1.04, -1.02, -0.53, -0.52, -0.51, -0.23, -0.22, +0.34,0.52,
1.18.

532[H, I, L].—H.S. Carslaw & J. C. Jaeger, Conduction of Heat in Solids.
Oxford, Clarendon Press, 1947, vi, 386 p. 15.5 X 24 cm. Miss Martha E.
Clarke is credited with assistance in computation of the tables.

Appendix II: "The error function and related functions," p. 370-373. There are 4D

tables of e* erfc x, 4ir~'x<rI , 2ir~*e~x , erf x, erfc x, 2» erfc x, 4t2 erfc x, 6i3 erfc x, 8i4 erfc x,

10i* erfc x, 12¿« erfc x, for x = 0(.05)1(.1)3.

erfx = 2ir-'J   e~'2dt; Jir» erfc x = /    e~,2dt; i" erfc x = J    i"~l erfc tdt,

n = 1,2, • • •, i° erfc x = erfc x.

Appendix IV: "The roots of certain transcendental equations," p. 377-379. T.l, the

first six roots, <*„, to 4D, of a tan a = C, for C = .001, .002(.002).01, .02(.02).1(.1)1(.5)2(1)-
10(5)20(10)60(20)100, ». The roots of this equation are all real if C> 0. T.2, the first six

roots, an, to 4D, of acota + C = 0, for C = - 1(.005) - .99(.01) - .9(.05) - .8(.l)
+ 1(.5)2(1)10(5)20(10)60(20)100, ». The roots of this equation are all real if C> — 1.
T.3, the first six roots, <*„, to 4D, of aJiia) - CJoia) = 0, for C = 0(.01).02(.02).1(.05)-
.2(.1)1(.5)2(1)10(5)20(10)60(20)100, «. T.4, the first five roots, an, to 4D, of /0(a)F0(Aa)

- Fo(a)/o(*a) = 0, for k = 1.2, 1.5(.5)4.

Appendix V: "Table of Laplace transforms Sip) = £° <r>"i>(e)¿í," P- 380-381. There

are twenty-eight entries under Bip), vit).

Extracts from text

Editorial Note: A table of the first seven roots df a tan a = C was given by A. B.
Newman & L. Green, "The temperature history and rate of heat loss of an electrically
heated slab," Electrochem. Soc., Trans., v. 66, 1934, p. 355, for C = [0, .1, .5, 1(1)10, °° ;
4D]. For various solutions of a cot a + C = 0, or tan a = — a/C, see MTA C,v. 1, p. 203,
336, 459; v. 2, p. 95. In this connection reference may also be given to J. C. Jaeger &
Martha Clarke, "Numerical results for some problems on conduction of heat in slabs
with various surface conditions," Phil. Mag., s. 7, v. 38, 1947, p. 507.
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533[K].—Bell Telephone Laboratories, Table of Individual and Cumula-
tive Terms of the Point Binomial (q + p)n. (Inspection Engineering

Memoranda, no. IEM-4; Quality Assurance Dept. 2530.) June 4, 1947,
398 leaves. Hectographed on one side only. 21.5 X 27.7 cm. This edition

is not available for general distribution but the volume is to be published

by the Van Nostrand Company in 1949.

Consider N independent trials with a constant probability P of success. The probability

of a total of exactly X successes is given by

biX, N;P) = (X)PXQ -P)"-*,       0<P<1.

This is the binomial distribution or, as it is sometimes called, the point binomial. The summa-

tory function

BiX, N; P) = 6(0, N; P) + 6(1, N;P)+ ■■■ + 6(Z, N; P)

gives the probability of at most X successes. Both functions are of fundamental importance

in all applications of probability theory. For a numerical evaluation of BiX, N; P) tables

of the beta function can be used, but this procedure is rather cumbersome. It is therefore

customary to use the two classical approximations to 6(AT, N; P) and BiX, N; P). Putting

z = {X + i - NP) {NPil-P)\-i

the Laplace limit theorem states that as N —- «>

BiX, N; P) -* 2ir'i £ e-i'2dt.

This approximation is accurate only if NP is very large. If N is large but NP = a is of

moderate magnitude, the Poisson approximation

biX, N; P) « e~°ax/X !

is much better. For moderate values of N neither approximation is satisfactory. More ac-

curate asymptotic expansions are available, but are rather cumbersome for routine use.

In modern sampling, in industrial quality control, and many other applications we fre-

quently deal with comparatively small values of N. In such cases one has to resort to tedious

computations or to unsafe approximations. Therefore the present tables will be greeted

with a feeling of relief by many practical statisticians: they solve the problem completely

at least within the range 50 ^ N ^ 100.

It should be noticed that HX, N; P) = HN - X, N; 1 - P) and BiX, N;P) = 1
— BiN — X — 1, N; 1 — P). Accordingly there is no need to tabulate the values for P > J.

The present tables contain 11 independent sections, each covering one value of N in the

range 50(5)100. In every case 6(Z, N; P) and BiX, N; P) are tabulated in adjacent columns

for P = [0(.01).50; 6D]. The number of X-entries is usually considerably smaller than N

since only values of X near NP correspond to 6(X, A^; P) values significantly different from

zero. The last digit is not absolutely reliable. It appears to the reviewer that the accuracy is

sufficient for most practical applications, and that the tabular interval in P is sufficiently

small. It is to be hoped that these useful tables1 will be extended beyond N = 100.

W. Feller
Cornell University

'The following acknowledgment is in the introduction: Thanks are extended to Mr.
E. G. Andrews for his cooperation and assistance in computing the table; to Dr. H. Nyquist,
Dr. John Riordan, and Dr. H. W. Bode for their aid in arranging for the project; to Dr.
F. L. Alt and his able assistant, Miss Bettie Boyd, for setting up the project on the Com-
puting System; to Miss Alice G. Loe for work on the printer, for checking all phases of the
work, and for computing some 5% of the values appearing in the table which could not be
completed by the Computing Systembecause of limited time; and to other members of the
Quality Assurance Department for guidance and cooperation.

Harry J. Romig
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534[K].—C. V. L. Charlier, Elements of Mathematical Statistics, also L. v.
Bortkiewicz, Table of Poisson's Frequency Function edited and translated

by J. Arthur Greenwood. Cambridge, Mass., 1947, ii, 120 p. Orders to
be placed with J. A. Greenwood, 25 Winthrop St., Brooklyn 25, N. Y.
$3.00. Plastic binding. 17.5 X 22.7 cm.

The first edition of this little work of Carl Vilhelm Ludvig Charlier (1862-1934)

appeared in 1910 as Grunddragen af den matematiska Statistiken, Lund. The next edition was

by Charlier in German, Vorlesungen über die Grundzüge der mathematischen Statistik, Lund,

1920. 127 p. 17.5 X 22 cm. This differed from the Swedish edition by the addition of a

fifteenth chapter and an appendix of the following five tables: T.I, Ç(x) = (2ir)~*/    e~ix'dx,

forx = [-2.9(.l)-2(.01) + 2(.l)2.9;4D];T.II,x = Riu), inverse of Q for u = [0(.01).99;
4D]; T.m, 0O = (2ir)-*e-**, for x = [0(.01)3(.1)4.9; 4D]; T.IV, 03(x) = cP^a/dx3
= (—x3 + 3x)0o; T.V, 0<(x) = ¿Vo/dx4 = (x4 — 6x2 + 3)0o, Hermite polynomials 03 and

04 forx = [0(.01)3(.1)4.9;4D].
There are various small tables scattered throughout the work. In the English edition

these are numbered 1-40 and the tables of the Appendix, p. 101-116, are numbered 41-44.

T.41 of —x = — Riu), is T.n, above, rearranged. We are told that eight last-figure errors

were corrected by comparison with the 10D table of T. Kondo & E. M. Elderton,

Biometrika, v. 22, p. 368-370; also K. Pearson, Tables for Statisticians and Biometricians,

v. 2, 1932, p. 2-10.
T.42 is of 0-1 = Qix), 0o, —02, 03, —05, for x = [0(.01)4; 7D]; 04 and — <j>t are also

given, for the same range, to 4D. 0_i and 0o are taken from those by W. F. Sheppard in

Biometrika, v. 2, 1903, p. 182-188 ; also in Pearson, Tables for Statisticians and Biometricians,

v. 1, Cambridge, 1914, p. 2-7. Mr. Greenwood states that 02, 0s and 06 were computed,

partly to 13D, partly to 10D, using the NBSCL, Tables of Probability Functions, v. 2, 1942,

and the tables of N. R. J0rgensen, Undersffgelser over Frequensflader og Korrelation, Copen-

hagen, 1916, and then rounded to 7D. The Greenwood values of 02, 0», and 05 are identical

with those of J0rgensen, whose 7D table of 0« is rounded off to a 4D table. 04 is the same as

Charlier's 4D T.V.
T.43 is the table referred to in the title of the book under review, L. v. Bortkiewicz,

Das Gesetz der kleinen Zahlen, Leipzig, 1898, p. 49-52, giving the 4D values of m'e~m/xl for

m = .1(.1)10, x = 0(1)24. (Compare MTAC, v. 1, p. 19.)
"T.44 was newly computed by the translator," it is stated. It gives "the limits within

which the Skewness and Excess must lie in order that a frequency curve of type A may

yield positive frequencies." There are only 18 entries E = 0(.03).48, .50, and for these the

corresponding 3D values of \S\ < are given.

Such are the principal tables in the latest form of an elementary work first published

nearly 40 years ago.

R. C. A.

535[L].—Enzo Cambi, Eleven- and Fifteen-Place Tables of Bessel Functions
of the First Kind, to All Significant Orders. New York, Dover Publications,

1948, vi, 154 p. 22 X 29 cm. $3.95.

This new addition to the ever expanding list of tables of the Bessel functions consists

essentially of two tables of the functions and two additional tables of the coefficients used

in their computation. The author explains his purpose in this new work by the following

statement in the preface: "A great scientific need was met just ten years ago, when the

British Association for the Advancement of Science published its volume of ten place tables

of Bessel Functions . . . of Orders Zero and Unity, for x varying from 0 to 16 at interval

0.001 and from 16 to 25 at interval 0.01. In many war time problems, however, there was a

constant demand for tables of the values of such functions to higher integral orders, especially

for Bessel functions of the first kind. The present volume offers a contribution in this field."



RECENT  MATHEMATICAL TABLES 181

In Part I of the work, 143 pages, the essential tables are as follows:

Table I gives the values of J*ix) for x = [0(.01)10.5; 11D] and the order n is extended

to values for which Jn+¡ becomes smaller than .5 X 10~" for the entire range of x. Actually

a few values of Jm are included.

Table II  includes the same functions as those in Table  I  except now the range

is x = [.001 (.001).5; 15D] and is extended to include values of Jn which are greater than

10-16. The table thus terminates with a few values of Ju-

in Part II, p. 144-148, we find the values of the coefficients of the Taylor's series in h

for x = 2(1)6 and n = 2(2)16 to 12D. Through n = 6 the expansions include terms to A11

and through n = 16 they terminate with Ä10.

In Part III, p. 149-153, there are recorded the values of Am in the expansion,

/.(* + h) = ¿o/o(A) + AJiih) + A2J2ih) + AtJ*ih) + • • -,

forx = 7(l)10andn = 2(2)30. Through n = 16 these are to 12 D, but "for the higher values

of the order «(n > 16), the coefficients are limited to the figures required for the computa-

tion of /„ to 12-13 places."

In a fourth part, p. 154, the author gives a brief bibliography of Bessel functions.

In computing the tables described above, the author began with the well-known tables

of Meissel for J¡¡ and J%. The values of /„(x), n > 1 were computed up to x = 1.5, by the

power series, from 1.5 to 6.5 by means of Taylors' series, and from 6.5 to 10.5 through the

addition formula, for even n. The recurrence formula for Bessel functions was used to com-

pute the values for odd n, except in the cases n =* 3 and n = 5, where the formula might

have introduced errors beyond the accuracy limit of the table.

In checking the accuracy of the 11th place error in Table I, the following formulae

were used :

1 = /» + 2/2 + 2/4+ •••,

sin x = 2/i - 2/3 + 2JS - 2/7 +

In computing Table II, Jo was interpolated from the 16D table of Hayashi and the

values of the other functions of even order were computed from the power series and the

use of interpolation formulae. The values of the functions of odd order were found by means

of the recurrence formula: /„(x) = (x/2re)[/„+i(x) + 7„_i(x)], which could be used safely

since x was small.

The present table seems to fill a useful place in spite of the fact that the Computation

Laboratory of Harvard University is providing more extensive tables of some of the same

functions. This project is providing the values of /„(x) forx = 0(.001)25(.01)99.99, n = 0(1)3

to 18D and n = 4(1)14 to 10D; then for n = 15(1)100, x = [0(.01)99.99; 10D]. The first
six volumes for n = 0(1)15 appeared in 1947. But this basic work because of its size and

cost will not be available readily to every computer who well may wish to use Bessel functions.

But the compactness and low cost of the 11D and 15D work under review will recommend

it to everyone who may desire to include an extensive set of values of the Bessel functions

in his library.

H. T. D.

Editorial Note: Dr. Cambi requests that the following corrections be made in his
volume of tables reviewed above: p. v, 1. —3, and p. 149,1. l,for Taylor Series, read Addi-
tional Series; p. 47, J6(6.93),/or .35385 88467 2, read .35385 88367 2.

536[L].—George A. Campbell & Ronald M. Foster, Fourier Integrals
for Practical Applications, New York, Van Nostrand, 1948. 178 p.
15.8 X 23.7 cm. $3.50.

The response of a linear oscillating system to a harmonic signal, a cos pt + b sin pt, is in

general harmonic, A cos pt + B sin pt ; and the behavior of such a system can be regarded

as known if its response to a harmonic signal of arbitrary frequency and phase has been

determined. The response to an arbitrary signal can then be obtained in three steps: (i)
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decomposition, or analysis, of the signal into its harmonic components, (ii) finding the

response for each of the harmonic components, and (iii) superposition, or synthesis, of the

component responses. If the incoming signal is periodic, of period T, its decomposition takes

the form of a Fourier series,

¿   ce2"""1',
n—»

and the synthesis of the component responses amounts to the summation of a Fourier series.

For non-periodic signals, for instance for so-called transients, the frequency spectrum is

continuous in general, and the decomposition takes the form of a Fourier integral

(1) G{t) = f^eWFif)df.

Given the signal, Git), its analysis into harmonic components involves finding F(J) which is

given by

(2) Fif) = f^e-™'"Gig)dg.

Again, if the harmonic components, with amplitudes Fif), of the response are known, their

synthesis is based on (1 ). Thus in the case of Fourier integrals harmonic analysis and syn-

thesis use the same type of integral, and the practical importance of an extensive table of

integrals of this type is apparent.

Fourier integrals have many other applications, for instance to the solution of certain

types of differential and integral equations (Cf. E. C. Titchmarsh, Introduction to the Theory

of Fourier Integrals, Oxford, 1937). Again, the so-called Heaviside, or operational, calculus

is based on Laplace integrals which are essentially one-sided Fourier integrals, that is

Fourier integrals corresponding to functions Git) which vanish for negative t.

The book under review contains what is generally acknowledged to be the most ex-

tensive published list of Fourier integrals. It was originally published, under the same title,

in 1931 as Monograph B-584 of the Bell Telephone System Technical Publications, reprinted

in the Collected papers of George A. Campbell, New York, American Telephone and Tele-

graph Company, 1937; the original edition of 1931 was reproduced photographically, with

minor corrections, in 1942. Though the present book does not mention any of the previous

editions, it appears to be a photographic reproduction of the 1942 edition. No attempt seems

to have been made at bringing the material up to date, even though the authors are known

to have continued collecting valuable material after 1931.

There are 33 pages of explanatory text. An introduction explains the importance of

Fourier integrals, the relationship between Fif) and Gig), the terminology, the role of the

unit impulse and its relationship to the harmonic function eis (2ir//) = e2Tili, the use of the

tables for obtaining Fourier integrals. Next the general processes for deriving pairs of func-

tions F and G ("mates"), and elementary transformations as well as various properties of

such pairs are explained. There follow brief sections on mates based on the normal error law,

essentially singular pairs, such as F = (2xi/)n and its mate, pairs for which Fand G are in

a given relation, for instance F(x) = G(x), on Fourier series, on the use of contour integrals,

and on practical applications of the tables. There is also a summary of the descriptive

part, and a list of notations and abbreviations used throughout the book.

Table I contains 763 pairs of mates F, G under the following 13 headings: General

processes for deriving the mate ; Elementary combinations and transformations ; Key pairs ;

Rational algebraic functions of /; Irrational algebraic functions of /; Exponential and

trigonometric functions of/ or/-1; Exponential and trigonometric functions of P; Other

elementary transcendental functions of /; Other transcendental functions of /; Fourier

series given as pairs; Contour integrals. Paths parallel real axis; Contour integrals. Closed

paths; Contour integrals. Paths with arbitrary end-points.

Table II contains admittances of and transients in physical systems, illustrating the

application of Fourier integrals to transient problems. There are 39 physical systems listed

under 3 headings: Time variable; Space variable; Two space variables. In each case a brief
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description of the physical system is given together with its admittance (whose knowledge

is equivalent to the knowledge of the response to an arbitrary harmonic signal), its response

to an instantaneous unit impulse, to a unit step (a signal of constant intensity which starts

at t = 0) and to a harmonic signal which arrives at t = 0.

A few valuable features of this carefully compiled book deserve special praise. They are :

A carefully devised and scrupulously maintained system of notation which enables the

authors to present the results very concisely and yet quite precisely (for instance v, w

always stand for integers, m, n for non-negative, and j, k, I for positive integers). "Key

pairs," formulae containing numerous parameters and thereby parent formulae for many

special and limiting cases listed in the various special sections ; such key pairs are collected

separately. Numerous cross references. Very helpful special explanations, given in specially

devised symbols, referring to alternative expressions, related transform pairs, special cases

in which the restrictions may be relaxed, and similar matter. The only criticism which this

reviewer has to level against this excellent work is—that there is not enough of it, i.e. that

it has not been brought up to date.

A.  ERDÉLYI
California Institute of Technology

537[L].—Gustav Doetsch (1892- ), Tabellen zur Laplace-Transforma-

tion und Anleitung zum Gebrauch. (Die Grundlehren der math. Wissen, in

Einzeldarstellungen, v. 54.) Berlin and Göttingen, Springer, 1947, x,

186 p. Offset print. 16 X 24.2 cm.

The first part of the book (p. 1-71) contains a condensed but clear account, without

proofs, of the important properties of the Laplace transform and a description of how it

can be used to solve differential equations. Specific illustrations of the various possibilities

are given, including a heat conduction problem where a blind application of the complex in-

version formula leads to an incorrect result. The author's notation is

fis)=£e-»Fit)dt^£[Fit)\.

The second part consists of a table of inverse transforms: each entry gives fis), the cor-

responding Fit), and the abscissa of convergence. This is the arrangement adopted in the

shorter tables of M. F. Gardner & J. L. Barnes, Transients in Linear Systems studied by

the Laplace Transformation, New York, Wiley, 1942, v. 1, p. 334-356, and R. V. Churchill,

Modern Operational Mathematics in Engineering, New York, McGraw-Hill, 1944, p. 295-302

(122 entries in the table), and appears to be more convenient for applications than the

opposite arrangement as used, for example, by N. W. McLachlan & P. Humbert, Formu-

laire pour le Calcul Symbolique {Mémorial des Sciences Mathématiques, no. 100), Paris,

Gauthier-Villars, 1941. In addition, pages 164-185 of Doetsch contain an index of functions,

arranged alphabetically by the symbols used to denote the functions, with the definition of

each function and references to all the formulae where it appears. This index enables the

table to be used with some facility as a table of direct transforms.

This is the most extensive published table of Laplace transforms. Its scope can be seen

from the following summary: Operations (56 formulae); Rational functions (65); Irrational

functions (105); Logarithmic, inverse trigonometric functions (90); Exponential functions

(102); Trigonometric and hyperbolic functions (74); Gamma and related functions (37);

Integral functions (sine, cosine, exponential integrals, etc.) (42); Confluent hypergeometric

functions (45); Bessel functions (108); Spherical harmonics (14); Elliptic integrals (28);

Theta functions (15); Other special functions (12). The tables of J. Cossar & A. Erdélyi,

Dictionary of Laplace Transforms, 1944-1946 iMTAC, v. 1, p. 424-425, v. 2, p. 76, 215-216),
not yet made available to the general public, contain more formulae for transcendental

functions, but fewer for elementary functions.

The book is reproduced from typescript, with the formulae very clearly written by hand.

R. P. Boas, Jr.
Brown University
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Editorial Note: In effect, Laplace introduced in 1779 the transformation which has
received his name by showing the correspondence between the two functional domains
which it relates [P. S. Laplace, "Sur les suites," Mém. Acad Sei., 1779; Oeuvres Complètes,
v. 10, p. 1-89]. The Laplace transformation may be viewed as a limiting form of a trans-
formation used by Euler [E. G. C. Poole, Introd. to the Theory of Linear Differential Eqns.,
Oxford, 1936, p. 137]. In this sense the transformation is related to work which preceded
Laplace's. The definite integral form of the direct Laplace transformation was applied by
Laplace to the solution of differential and difference equations in 1782 [Oeuvres, v. 10,
p. 209-338]. Laplace's book on the theory of probability, 1812, illustrates the many uses
to which he puts the transformation. This Note is adapted from Gardner & Barnes, I.e.,

p. 360.
There is also a table (112 entries) in Ernst Hameister, Laplace Transformation. Eine

Einführung für Physiker, Elektro-Machinen und Bauingenieure. Munich and Berlin, 1943;
also Ann Arbor, Mich., Edwards Bros., 1946, 147 p.

538[L].—Harry J. Gray, Richard Merwin, & J. G. Brainerd, Solutions
of the Mathieu Equation, Amer. Inst. Electr. Engineers, Technical Paper

48-70. 1948, 17 p. 20.5 X 27.8 cm. Offset print. To nonmembers by mail,
55 cents.

The equation whose solutions are tabulated is

(1) d?y/dt? + e(l + k cos t)y = 0.

If 2z be written for t, a for It, and — q for 2tk, the resulting equation is

(2) d2y/dz2 + ia - 2q cos 2z)y = 0,

this form being preferable in analytical work. The equation has four types of solution de-

pending upon the values of (a, q):

Ia. The first solution is bounded and periodic in ir or 2x, the second being non-periodic and

tending to ± » as z —>• + °o.

2°. Both solutions are bounded and periodic with period 2sir, s integral ^ 2.

3°. Both solutions are bounded, but non-periodic.

4°. Both solutions are non-periodic, but one tends to ± °° while the other tends to zero

as z -*• + «o.

The values of (a, q) pertaining to Io lie on curves symmetrical about the a axis, and

these divide the (a, g)-plane into regions' where the solutions have the forms in 2°-4°. For

2°, 3°, the region is called stable, and for 4° unstable, by virtue of the type of solution.

The paper under review is concerned with solutions of the type 2°-4°, which occur in the

following physical problems:

i.     Frequency modulation in radio telephony, and the acoustical warble tone;

ii.    Pendulum whose support executes harmonic motion in a vertical plane ;

in.   Oscillations of side-rod electric locomotives ;

iv. Sub-harmonics in mechanical vibrating systems, and in conical loud-speaker dia-

phragms ;

v.    Pseudo-rectilinear motion of loud-speaker coil in non-uniform radial magnetic field ;

vi.   Stability of structural columns subject to a longitudinal harmonic force ;

vii. Unsymmetrical short-circuits on water-wheel  generators under capacitive  loading.

From this incomplete list, it is evident that solutions of Mathieu's equation for certain ranges

of a, q are needed, and the question arises as to the most suitable way in which the data

should be presented.

The two solutions of (1) are taken in the form

g{t) = u¡cosut — M2sin ut,

and
H{t) = Kisin ut + líjcosjuí = Mhit);

ui (even), u2 (odd), being functions with period t or 2t,

COS 2iru = 2g(ir)Ä'(ir) - 1,
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and

M = [-giir)g'i*)/h{ir)h'iir)y.

The initial conditions are

g(0) = h'iO) = 1,       g'iO) = KO) = 0.

The quantities tabulated are: (a) git), hit), for t = 0(.1)3.1, r; t = 1(1)10; and k = 0(.1)1;

the total number of entries for each function is 3300; (b) u, M for e = 1(1)10,ande = 0(.1)1,

the total number of entries for each parameter2 being 100. M is real, imaginary or complex,

but it is preferable to have real solutions. In all cases the data are given to 5D.3 Interpola-

tion will usually not yield data comparable in accuracy with that tabulated. The interval 1

for e precludes data being obtained for intermediate points. In the reviewer's opinion it is

preferable to have the solution in functional rather than in numerical form, especially in

cases where it is non-periodic. A clearer picture of the physical behavior of a system may

then be visualized. Such solutions were discussed by Dr. Gertrude Blanch, in M TA C,

v. 2, p. 263-266, and examples have been given by the writer.1,4 By having either a compre-

hensive table of a, ai, q, ¡i, or a large scale chart (two or three feet square), and using a form

of solution such that u is never complex, the coefficients in the series solution may be found

quickly. The functional form of the solution then follows immediately. For instance if in

(2) we take a = 1, q = .16, then u = C^. .08. Apart from a constant multiplier, using t for

z, the two solutions are

(3) y lit) = «-""[cos / - .021 cos 3/ + • ■ • + .94 sin t - .0175 sin 3i + • • •],

(4) y2{t) - yii-t).

If these refer to a physical system, its behavior with increase in t can be visualized immedi-

ately, whereas from purely numerical solutions this would not be so. (3), (4) are neither odd

nor even. This is advantageous, since odd and even solutions (like those tabulated for (a))

would both tend to ± « as I -*■ + oo, whereas yi(t) —► ± », while y2(î) —► 0.

N. W. McLachlan
c/o Vizard, 51 Lincoln's Inn Fields,

London, W. C. 2, England

1 See N. W. McLachlan, Theory and Applications of Mathieu Functions. Oxford, 1947,
figures 8, 11.

2 The values of u are half those corresponding to equation (2).
3 The authors make the following statement: "The tables are given to five decimal

places, but because they are extracted from larger ones and no rounding has been done,
the digit in the fifth decimal place may be in error, and it seems best to state the accuracy
of the tables as four decimal places. In this connection, it may be pointed out that the tables
were obtained on the ENIAC, using 10-digit numbers and an interval At = .0004 in the
corresponding difference equation. Rounding and truncation errors cut the accuracy so that
5- or 6-figure accuracy might be expected."

4 N. W. McLachlan, "Computation of the solutions of (1 + 2e cos 2z)y" + By = 0;
frequency modulation functions," Jn. Appl. Physics, v. 18, 1947, p. 723-731.

539[L].—Harvard University, Computation Laboratory, Annals, v. 9,

Tables of the Bessel Functions of the First Kind of Orders Sixteen through

Twenty-Seven. By the Staff of the Laboratory, Professor H. H. Aiken,

technical director. Cambridge, Mass., Harvard University Press, 1948,

x, 764 p. This is the first v. of the Bessel function series to be paged.

19.5 X 26.7 cm. $10.00. Offset print. Compare MTAC, v. 2, p. 176f,
261f, 344; v. 3, p. 102, 117-118.

This is the seventh, and largest so far published, of the thirteen planned volumes in the

monumental edition of tables of Bessel functions prepared at Harvard University by means

of the IBM Automatic Sequence Controlled Calculator. It contains tables of Jn{x),

n = 16(1)27, x = [0(.01)99.99; 10D]. For n = 0(1)15, the interval up to 25 had been .001.
Since many of the early values of the 12 functions are zero, the first cases of those with the
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significant value .00000 00001 are respectively as follows: /16(3.12), /i7(3.60), /i8(4.10),

/i9(4.62), /2o(5.16), /«(5.72), -M6.29), J23(6.88), /M(7.48), /25(8.09), /2e(8.71), /I7(9.35).

Among all entries in the table, 112 725, there are only 296 previously published to at

least 10D; there are 288 given by Meissel (1895) for x = [0(1)24; 18D], 1 given by

Meissel (1891), 720(20) to 20D, and 7 given by Hayashi (1930) for x = 1, 2, 10(10)50, to

at least 15D. Since the Harvard volume was published, however, the tables by Cambi have

appeared (reviewed elsewhere in this issue, RMT 537). The ranges of values here partially

duplicating those of the Harvard volume are x = [0(.01)10.5; 11D], n = 16(1)27.

The tapes used in computing the tables of the volume under review were coded by

John A. Harr, who also supervised the operation of the ASCC and the preparation of the

manuscript.

R. C. A.

S40[L].—P. I. Kuznetsev, "Funktsii Lommelià ot Dvukh Mnimykh
Argumentov" [Lommel functions with two imaginary arguments],

Prikladnaià Matern, i Mekhanika, v. 11, Oct. 1947, p. 555-560.

Y„{W, Z)  = Í~"UniÍW, iz),   ®„iw, Z)  = Í~nVn{ÍW, iz),

UniW,z)  =   f)   i-iriw/z)'^Jn+2v,iz),   Vniw.z)  =   £   i~ l)"iz/w)^"Jn+2miz),
m—0 m—0

Yn{w, Z)  =   E   iw/z)»™">In+2miz),  @niw, Z) =   E   (z/w)"+1»'/„+2„(z).
m—0 m—0

There are 6D tables of F„(w, z), ©„(m, z), for n = 1, 2, w m 1(1)6, z = 1(1)6; with graphs.

There are also 4D tables, and graphs, of V{x, t), 103/(x, t), for / = 6.56 and «, x = 0(100)-

400; and for x = 400, t = 6, 10(5)25.

541 [L].—W. Lane & D. Sweeney, Table of Legendre Polynomials Pn (cos 6)

for n = 0(1)20, and 6 = 0(1°) 180° to Six Decimals. United States Atomic
Commission, Oak Ridge, Tennessee, Los Alamos Scientific Laboratory

MDDC-780, LADC-361. Date of Manuscript Feb. 12, 1947 ; document
declassified March 18, 1947. 10 p. 20.4 X 26.8 cm. Printed.

The contents of this publication are indicated by its title. The first sentence of the text

is "The accompanying table of Legendre Polynomials was computed for use because no

tables of the functions of the desired range were available from other sources." A correct

statement would have been the following: "What we have tried to do is to compute again

a small section of a 6D table readily available in many libraries, namely : P„(cos 8),

n = 1(1)32, B = 0(10')90°, by A. H. H. Tallqvist, Finska Vetenskaps-Societeten, Acta,

s. 2, v. 2A, no. 11, 1938. We did not look at this table."
At the end of the first paragraph of the text is the following statement: "The table is

accurate to six decimal places for values of n < 15, and five decimal places for values of

n ^ 15." Here are suggestions as to how much dependence can be placed on this statement:

A comparison of Tallqvist's table, mentioned above, was made with the 220 entries of Lane

& Sweeney's table for « = 1(1)20, 6 = 0(1°)10°. Tallqvist's 10D table for » = 1(1)8,
6 = 0(1°)90°, Finska Vetenskaps-Societeten, Acta, v. 33, no. 4, 1905, and A. Lodge's 7D

table for n = 1(1)20, 8 = 0(5°)90°, R. Soc. London, Trans., v. 203A, 1904, p. 100-101, were
used for further checking. For the 154 entries n < 15 said by Lane & Sweeney to be "ac-

curate to six decimal places" there are 104 errors of from 1 to 11 units in the sixth decimal

place; there are 34 unit errors and 35 cases of errors of more than 3 units. Next, let us con-

sider the statement of the authors regarding the 66 entries for n ^ 15. Here there are 35

errors, 5 of them being errors of 2 units in the fifth decimal place.

Such are illustrations of ignorance and incompetence in a Government Laboratory at an

important center.

R. C. A.
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542[L].—NBSCL, Tables of Bessel Functions of Fractional Order, Volume 1.
New York, Columbia University Press, 1948, xlii, 413 p. 19.7 X 26.5
cm. $7.50.

This is the first of two volumes dealing respectively with the tabulation of the functions

/,(x) and I,ix), prepared under the able direction of Dr. Lowan. The main part of this

volume is occupied (p. 1-271) with the following tables of J,ix); v = — \ and — |,

x = [0(.001).9(.01)25; 10D]; v = - \ and -1, x = [0(.001).8(.01)25; 10D]; ».- J and
\, x = [0(.001).6(.01)25; 10D]; v = § and |, x = [0(.001).5(.01)25; 10D]. i2, or modified
<52, are provided throughout; and also a4, or modified S4, for x = .05(.001).15. Furthermore,

for x < .05, tables for x~'J,{x), with their second central differences, are also provided, where

interpolation close to the origin is not feasible.

The interval in argument has been so chosen that interpolation may yield the maximum

attainable accuracy over most of the range covered. Everett's interpolation coefficients

E2, F2, £4 and Ft are tabulated at interval .001. In the range for fourth central differences

indicated above, it is always possible to obtain an accuracy of at least 7S, by means of 82.

When x is large, use is made of the auxiliary tables (p. 273-383) of ¿4„(x) and B,{x), for

x = [25(.l)5O(l)50O(lO)50OO(lOO)lOOO0(2OO)3OOOO; 10D]; J,{x) = A,{x) cos (x - \n>
— 1») — B,ix) sin (x — \vv — \ir). There are 10D values of sinx and cos x (p. 386-387)

for x = 0(.01)1.6, 2(1)40, and on p. xlii are 15D values of various constants.

The values of the first 30 zeros of /»(x), to 10D, and for ±x = J, §, J, \, are given on

p. 384-385. These appeared earlier (for the first 8 in more extended form) in MTAC, v. 1,

p. 353-354, 1945; and v. 2, p. 118-119, 1946.
In the long Introduction is a note by Mr. H. E. Salzer on "Bessel functions considered

as functions of their order." There are also (p. xxxiii-xli) "Note on modified second differ-

ences for use with Everett's Interpolation formula" and "Bibliography" (30 selected titles).

Bessel functions of fractional orders greater than unity may be obtained from the present

tables by employing recurrence relations.

The preliminary manuscript of J,ix) to 13D or 13S, first prepared and subjected to a

sixth difference test, has been previously referred to in MTAC, v. 1, p. 93, 300. No earlier

published table gave more than 7D values of J,ix). Hence, even in this respect the volume

under review marks a very notable contribution to tabular material in varied fields where

such functions are of use, for example: wave propagation in stratified media with a constant

gradient in the index of refraction,1 asymptotic solutions of ordinary linear differential

equations, quantum mechanics, and engineering problems.

R. C. A.

1 R. E. Langer, "On the connection formulas and the solutions of the wave equation,"
Physical Rev., v. 51, 1937, p. 669-676.

S43[L].—NBSCL, Tables of the Bessel Functions Y0(x), Yi(x), KQ(x), K^x),
0 < x < 1. (Applied Mathematics Series, no. 1.) Washington, D. C,

1948, x, 60 p. 20 X 26 cm. For sale by the Superintendent of Documents,

Washington. 35 cents.

These tables inaugurate the Applied Mathematics Series of the Computation Labora-

tory of the Bureau of Standards; see MTAC, v. 3, p. 65. In a foreword A. M. Weinberg &

E. P. Wigner state that the tables were required in connection with the construction of

huge nuclear chain reacting piles at Hanford, Washington.

The table gives (p. 3-31, 35-60) the values of F0(x), Fi(x), for x = 0(.0001).05(.001)1,
and the values of Ko{x), Kiix), for x = 0(.0001).033(.001)1. A. N. Lowan states in the

Introduction that "With the exception of a few entries close to the origin, the entries of the

present table were obtained by interpolation in the BAAS tables. . . ." In general the

functions are given to 8S or 8D except near the origin where a few values are given to 9S.

First and second differences are provided.
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Further to simplify the problem of interpolation in Fo(x) and Fi(x) for x small, the auxil-

iary functions Co(x), Ci(x), £>o(x), and Di{x) as defined in the British Association volume

are given (p. 2) for x = f_0(.0001).005; 8D], A. Similar auxiliary functions of Ka{x) and

Kiix) are given (p. 34) for x = 0(.001).03. The Introduction states that the eight-figure

values may be in error by as much as two units, and the nine-figure values may be in error

by as much as four units of the last place retained. Known errors occur in A Y¡ (0.0096) and

AX"i(0.700), see MTE 133. The tables have been spot checked by J. A. Harr, and several

pages have been differenced by the reviewer. No other errors were found.

H.   H.   AlKEN

Editorial Note: The tables of iCo(x), A^i(x) here printed were earlier listed as manu-
scripts in MTAC, v. 1, p. 165, 300.

544[L, S, T].—G. W. King, "The asymmetric rotor. VI. Calculation of
higher energy levels by means of the correspondence principle," Jn.

Chem. Phys., v. 15, Nov. 1947, p. 820-830. 19.7 X 26.8 cm.

This is the final printed record of an investigation, of which a duplicated account, em-

bodied in two bimonthly progress reports, has been reviewed at some length in RMT 467

iMTAC, v. 3, p. 27-29). Table I (p. 825) is identical with Table I of the August report;
Table II (p. 827) with Table II (June); and Table III (p. 829) with Table III (August).

Alan Fletcher
Department of Applied Mathematics

University of Liverpool

S45[M].—G. R. MacLane, "Table of integrals," p. 369-370 of H. M. James,
N. B. Nichols & R. S. Phillips, Theory of Servomechanisms. (M.I.T.
Radiation Laboratory Series, v. 25.) New York, McGraw-Hill, 1947.

The table is of integrals of the type

In  =   Oí)-'    r g„ix)dx/[hnix)hn{-X)]

where

hnix) = OoX" + aix"-' + ■ ■■ + a„,

g„(x) = 6ox2""2 + 6,x2»-4 + • • • + bn-l,

and the roots of hn{x) all lie in the upper half plane. The table lists the integrals I„{x), for

n = 1(1)7. Ii — 6o/2ooOi; I2 = ( —a26o + aobl)/2aaaia2; etc.

546[M. S].—W. G. Pollard & R. D. Present, On Gaseous Self-Diffusion
in Long Capillary Tubes. United States Atomic Energy Commission,

Columbia University, MDDC-1521. Document declassified Dec. 11,
1947. 29 p. 20.4 X 26.8 cm. Offset print.

Appendix IV, "The evaluation of the integral Q," p. 28-29,

Q = if T sin2/ cos2/ dl f * cosx e-2" 03° ' <»»(*>x>áx = ,r/16 - \irK,

where

Xi*sin2/ cos2/ [Hi(2oi/X sin /) - iJi(2ai/\ sin t)]dt.

The following five values of K: .0560, .0834, .1066, .1186, and .1250, are given as correspond-

ing respectively to a/\ = .25, .5, 1, 2, and «>.
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S47[Q].—John B. Irwin, "Tables facilitating the least-squares solution of

an eclipsing binary light-curve." Astrophysical Jn., v. 106, 1947, p.

380-426. The numbering of equations in this review continues the num-

bering in RMT 549.

As is well known, the fractional light / of an eclipsing binary system can, during eclipse,

be written as

(6) I = 1 - fin

where Z.i denotes the fractional luminosity of the eclipsed component and / = f'ik, p)

—fiS, Ti, r2, x) is a function defined by equations (l)-(5). Moreover, the apparent separation

8 of the centers of both components can be expressed as 82 — sin26 sin2i + cos2i, where B de-

notes the true anomaly of the eclipsing component in its relative orbit and i, the inclination

of the orbital plane to the celestial sphere. Hence, in general, / = /(9, n, r2, i, x), where 8

is a known function of the time and fi, r2, i, x are constants to be determined by orbital

analysis. Suppose that this has been done by some approximate method and that A/ repre-

sents the residual difference between light observed at any particular moment and that

computed on the basis of the approximate elements. These residuals are due partly to the

observational errors, and partly to possible inaccuracies in the adopted system of the

elements. The corrections ALi, Ari, Ar2, Ai, and Ax required to minimize the sum of squares

of the residuals can, however, be obtained as follows. Differentiating equation (6) above we

find that

(7)
r df df df df       "1

A/ = - /ALi - LA — An + — Ar2 + — Al + — Ax r-
I dn dr2 di dx      J

The residual Al of each observation of light during eclipse supplies us with an equation of

condition of this form for determining the requisite corrections. Provided that these residuals

are small and that their number exceeds sufficiently the number of the unknowns, a least-

squares solution of such a set of equations then yields the most probable values of the re-

quired corrections as well as their errors.

The whole difficulty in application of this process centers around the evaluation of the

four partial derivatives of / with respect to ft, r2, i, and x for every observed point. The

derivative with respect to x presents the least difficulty; for a differentiation of equation

(1) yields readily

(8) df/dx = 6CP - /°)/(3 - x)2.

The remaining three partial derivatives can be obtained by differentiating the right-

hand sides of equations (2)-(5) behind the integral sign. In doing so we find that

V*      , '2 f> &
- = ¿ —; i_i.o —
dr2        ri2 dr■2 ri3 \r2

«•--3ÛJ.-M        «--3^fr'jU

(9)

dS "r? dS " ri3 \r2'

where

xri+T+»+i/»7 =  f    ry¿ _ (j _ x)2]*»[2(i - x)]*?[i - xj"dx

and c = s or 5 + r2 depending on whether the eclipse is partial or annular. Since, moreover,

/ is a homogeneous function of rlt r2, and «(i.e., it depends, not on fi, r2, 8 directly, but only

on their ratios), Euler's theorem on homogeneous functions can be invoked to prove that

do) il,._i!J:_i#
dri r¡ dr2     r¡ di

while ultimately

,,,.                                    df           .           df                sin í cos i cos28 df
(11) —,= — sin 2»-=-

a» a cos2» s a«
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Five-decimal tables of the 7ß|T-integrals recently constructed by the reviewer for another

purpose (see RMT 515), can be used to facilitate the computation of the required deriva-

tives by means of equations (8)—(11) above. This approach using closed formulae is, how-

ever, apt to be fairly laborious—chiefly because the /-integrals have not been tabulated in

terms of the customarily known parameters k and p, but rather in terms of a certain auxiliary

angle a which has nothing to do with the present problem. An alternative way for evaluating

the requisite partial derivatives for any pair of k and p suggests itself : namely a numerical

differentiation of T~sesevich's tables.' The necessary formulae by which this can be done

were outlined by the reviewer some time ago2 and need not be reproduced here. The ac-

curacy which can be reached in this way is naturally limited by the accuracy of "fsesevich's

tables; whereas a five-digit accuracy is easily attainable by means of the literal formulae

(8)-(ll) and Kopal's tables of the /-integrals, a numerical differentiation of "fsesevich's

tables cannot yield more than three correct figures in partial derivatives. This appears, how-

ever, to be all that is needed for the improvement of preliminary elements of eclipsing binary

systems by way of differential corrections at present and probably for some time to come.

Computers of photometric orbits of eclipsing variables have recently been put under a

deep debt of obligation to Professor Irwin for having completed the extensive set of bi-

variate tables of all partial derivatives of equation (7) in terms of k and p (or q for annular

eclipses), which are the subject of the present review. They were evaluated, not by means

of the literal formulae (8)-(ll), but by a numerical differentiation of "fsesevich's tables,

although—Irwin states—the literal formulae and Kopal's tables were used to compute all

derivatives for the k = .975 columns, the p = — .975 rows, and many values of the p = — 1

row as well as numerous spot-checks. The extent of "fsesevich's tables limited the accuracy of

Irwin's tables to three significant figures. The arguments of tabulation are k = 0(.1).8(.05)1,

p = - 1(.05)- .8(.1).8(.05)1 if the eclipse is an occultation (n = r„), and * = .2(.1).8(.05)1,

p= —1(.05) — .8(.1).8(.05)1 during a partial transit while, during annular phase, g = .l(.l)l.

Except for tables 4, 8, 12, 16, 20, and 24, additional columns are inserted for k = .975 and

p = — .975 to facilitate interpolation.

Irwin's paper contains altogether 32 bivariate tables which can be divided broadly in

the following two groups :

I. Occultation 3D Tables (smaller star eclipsed ; n = r«)

x = 0 .4 .6

U— :
an

dp
r«— ■

dr.

-rarb   df'

cos28 a cos2»'

IA

2A

3A

10

11

17

18

19

IB

2B

3B

II. Transit 3D Tables (larger star eclipsed ; ri = r»)

x = 0 .4 .6

ndp _

k drb

r2dJl.
k dra '

-rb      df

k cos28 a COS2»

5A

6A

3A

13

14

15

21

22

23

5B

6B
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In addition, Tables 4 and 8 list 4D values of f (3 — x)2df/âx for the case of an occultation and

a transit, respectively. Tables 12 and 20 contain the occultation values of df/dx for x = .4

and .6, respectively, whereas tables 16 and 24 contain the corresponding transit values.

In the past several months the present reviewer has made extensive use of Irwin's

tables (communicated to him in advance of publication) and had also a frequent opportunity

for their spot-checking on the basis of the exact formulae. The tables were found to be

correct to one unit of the last place in every case under examination. No tabular differences

are given, but in most tables the first differences turn out to be small enough to permit a

linear interpolation in both variables. There is no doubt that the publication of Irwin's

tables will greatly facilitate the computation of accurate photometric orbits of eclipsing

binary systems and, in this way, contribute significantly to further development of this

rapidly growing subject. The only criticism which can be raised concerns some of Irwin's

notations. Although these are adequately explained in the introduction preceding the tables,

some of them are needlessly complicated (too many superscripts), and many depart rather

drastically from common usage without sufficient reason. This fact, the reviewer feels, is

bound to make the reading of Irwin's memoir inadvertently more difficult to a general reader

than it need have been.

Zdenèk Kopal

1 Leningrad, Astr. Inst., Biùll., nos. 45 (1939) and 50 (1940), see RMT 548.
2 Amer. Philos. Soc., Proc, v. 86, 1943, p. 342.

548[Q].—V. P. Tsesevich, "Tablitsy dlià opredeleniiâ elementov orbit

zatmennykh zvezd tipa Algoliâ" [Tables for the determination of the

orbital elements of eclipsing stars of the Algol type], no. 45, 1939, p.

115-152. "Tablitsy fotometricheskikh faz zatmeniï peremennykh zvezd

tipa Algolià" [Tables of the photometric phases of eclipses of variable

stars of the Algol type], no. 50, 1940, p. 283-366. Leningrad, Astron.
Institut, Btùll.

The determination of orbital elements of eclipsing binary systems represents an im-

portant task of theoretical astronomy, calling for an extensive use of functions that can be

practically dealt with only in tabular form. Some tables which have been constructed for

this purpose represent rather remarkable feats of table construction and are, moreover, of a

sufficiently general nature to warrant a comprehensive review.

The basic functions of double star astronomy whose numerical values are needed in

tabular forms can be described as follows. Let r«, rbira ^ rt) denote the radii of two luminous

circular discs and let S be the distance between their centers. If, at any moment, S < ra + rb,

one disc will eclipse the other and a loss of light will result, which depends on the geometrical

circumstances as well as on the distribution of brightness /(r) over the disc undergoing

eclipse. This latter function is usually approximated by a cosine law of the form -7(r)

= Jo(l — x + x cos -y), where Jo denotes the central brightness of the eclipsed disc, x is

the "coefficient of darkening," and y is such that sin y = r, the fractional distance from the

center.

Analytical formulae expressing the resultant loss of light can be set up and evaluated in

a closed form for any kind of eclipse.1 It turns out that, if the disc undergoing eclipse appears

uniformly bright (x = 0), the respective loss of light (proportional to the eclipsed area) can

be expressed in terms of circular and algebraic functions; but if x ^ 0, we encounter elliptic

integrals, not only of the first and second kinds, but also of the third kind which belong,

fortunately, to the "circular" class and are therefore expressible in terms of incomplete

elliptic integrals of the first and second kinds with complementary moduli. Even so, how-

ever, their explicit forms are so complicated as to render them of little practical use unless

their numerical values are available in tabular forms.

The function/ which represents the loss of light arising from an eclipse can, in general,

be made to depend on two parameters formed by any ratio of r„, rb, and i. For the purpose
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of table construction it is customary to adopt, as such parameters, the ratio of the radii

k m ra/rb and the geometrical depth of the eclipse p = (S — rb)/ra chosen so that, by defini-

tion, 0 ^ k ^ 1, while p is constrained to vary from 1 at the moment of first contact to — 1

at the moment of internal tangency—regardless of whether the latter marks the beginning

of totality or of annular phase. Furthermore, the loss of light/ is, for practical reasons, cus-

tomarily normalized to vary between 0 and 1 through dividing it by the respective loss of

light at the moment of internal tangency, and so normalized values of the fractional loss of

light are denoted as a*ik, p). For any given pair of k and p the numerical value of a'ik, p)

depends, naturally, also on the degree of darkening x of the disc undergoing eclipse. In

practice, however, it is sufficient to evaluate the a's for "uniform" (x = 0) and "completely

darkened" (x = 1) discs only, because the a's appropriate for any intermediate value of x

follow from the interpolation formula

(1 ) /*<*, P) = [(3 - 3x)/i3 - *)]/•(*, p) + [2x/H - x)lP(¿, p).

It should be added that, because of the way in which the/'s have been normalized,

their numerical values depend also on whether the disc undergoing eclipse is the smaller or

the larger of the two (i.e. whether the eclipse is an occultation or a transit). If the eclipsed

disc appears uniformly bright, the ratio of the fractional losses of light during an occultation

and transit for any given pair of k and p is equal to k2; in the presence of a limb-darkening

this ratio turns out, however, to be less simple and therefore separate tables of aDik, p)

must be constructed depending on whether the eclipse is an occultation ia') or a transit ia").

An inversion of aik, p) yields the geometrical depth of the eclipse pik, a) as a function

of the ratio of the radii k and the fractional loss of light a. Unlike aik, p), the inverse function

pik, a) defies, however, any explicit analytical formulation so that its values are obtainable

only by numerical inverse interpolation. The values of appropriate to intermediate degrees

of darkening cannot, moreover, be obtained by linear interpolation between the two extreme

cases, but for each x the inversion has to be carried out anew.

Owing to their importance in the computation of orbits of eclipsing binary stars, several

tabulations of the fractional loss of light aik, p) and of the geometrical depth of the eclipse

pik, a) have been attempted in the past decades. The first of such tabulations, to 3D,

of pik, a) by H. N. Russell2 iAstroph. Jn., v. 35, 1912, p. 315; T.I on p. 333) and of
pik, a') and pik, a") by H. N. Russell & H. Shapley (Tables Ix and Iy in Astroph. Jn.,

v. 36, 1912, p. 243 and 390), are mentioned here for historical reasons only; for, these tables

were both too small and insufficiently accurate to be of permanent value.3

In 1931, new tables of the a- and ¿»-functions appropriate for eclipses of uniformly bright

discs were completed by Wend 4 and Hetzer s as dissertations under the guidance of the

late Professor Julius Bauschinger. Wend constructed a 4S table of a as a function of

k = .3(.01)1 and S/rb (not p). Since there is no common upper (or lower) bound on h/rb

during the eclipses, the range of his second parameter varies from table to table, though the

increment is always equal to .01. While Wend completed a table essentially equivalent to

aik, p), Hetzer tabulated a quantity W* = 1 + kpik, a), to 4D, for k = 0(.01)1 and

a = 0(.01)1.
In 1938 and 1939 Ferrari published 6 4D tables of the fractional loss of light, relevant

to completely darkened discs, for both occultation and transit and covering partial as well

as annular eclipses. His paper (i) contains a table of a'ik, p) for k = 0(.05)1 and

p = 1( —.01)—1, while paper (ii) contains a table of a"(fe, p), the range of the arguments

being* = .4(.05)1 and p = 1( — .01) — 1 for the partial (transit) eclipse, and — 1 ( — .01) — 2.5

for the annular eclipse; first tabular differences (fc-wise) are also printed. An additional table

gives a"ik, p), during annular eclipse, for k = .3(.05).4 and p = — 1( — .05) — 3.25.

The most extensive and accurate existing set of published a- and /»-tables so far, how-

ever, are those (45, 50) of "fsesevich under review. No. 45 is devoted to tables appropriate to

the case of complete darkening (x = 1). After a brief introduction, defining the function

to be tabulated and describing the methods of their evaluation, we find T.I containing 5D

values of a'ik, p) tabulated for * = 0(.05)1 and p = 1( —.01)— 1, followed by a 4S table of
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its inverse function pik, a') tabulated at the same intervals in k and for a' = 0(.01)1 (T.II).

T.III then gives 5D values of a"(fe, p) for* = .2(.05)1 and p = 1 (-. 01 )-l, followed again

by its inverse pik, a") tabulated to 4D for k = .2(.05)1 and a" = 0(.01)1 (T.IV).

No. 50 opens (apart from certain auxiliary tables) with a 5S table of aik, p) appropriate

for uniformly bright discs and tabulated for k = 0(.05)1 and p = 1( —.01)— 1 (T.V),

followed by its inverse function pik, a) tabulated for k — 0(.05)1 and a = 0(.01)1 to 4D

(T.VI). The main and most valuable feature of this number is, however, a group of 4D-

tables of pik, a'") (T.VII-X) and pik, a"') (T.XI-XIV) relevant respectively to occultation

and transit eclipses and each evaluated for x = .2(.2).8, for the same range and subdivision

of the arguments as T.VI.

The concluding part of No. 50 is then devoted to the tables pertaining to annular eclipses.

If the eclipse is annular, Tsesevich replaces, for reasons of convenience, the geometrical

depth p of the eclipse by q = [¿(1 + p)~]/ik — 1), defines

a'"ik, q) = l + A'ik)Xik, q),

and tabulates X{k, q), to 5D, as a function of * = .2(.05)1 and q = 0(.01)1 (T.XV) as well

as its invese qik, X), likewise to 5D, as a function of k and X for the same range and sub-

division of the argument (T.XVI ). T.XVIa, an expanded portion of T.XVI, gives the tabular

values of qiX.k) for k = .2(.1)1 and X = .85(.005).95(.001).995(.0005).998(.0002).999-

(.0001)1. No. 50 concludes with five univariate tables of Axik) evaluated to 5D for

k = .2(.01)1 and x = l(-.2).2 (T.XVII-XXI). T.XVII giving Aik) contains also first and
second differences.

"fsesevich's work leaves at present little to be desired and should probably be regarded

as the standard set of fundamental tables that are likely to meet all astronomical require-

ments for a long time to come. The author did not give the reader as much insight into the

processes by which his tables were constructed as one might wish to have, but they appear

to have been essentially sound and their results impressive. Skeleton tables of all a-iunctions

were apparently first computed to 6D; the tables enumerated above were obtained from

them subsequently by interpolation and rounding off. Numerous and careful spot-checks

of "fsesevich's tables by Professor John E. Merrill of Hunter College, and by the present

reviewer, disclosed that in general Tsesevich's tables can be trusted to the number of digits

given in his tables; rarely do departures from true values amount to more than one unit of

the last place. In Bulletin of the Panel on Orbits of Eclipsing Variables, no. 2 (Harvard Col-

lege Observatory, June 1946, p. 8-11), Merrill lists 42 errors exceeding 2 units of the last

place found in Tsesevich's tables, and his list should be consulted by anyone planning to

make extensive use of them. Misprints in "fsesevich's tables are, unfortunately, many; most

of them can, however, be easily detected from the behavior of local tabular differences. A

systematic survey of tabular differences of "fsesevich's tables would undoubtedly disclose a

great many more misprints than have so far been noticed, and is much to be desired. Apart

from misprints, however, the printing of the tables is generally good and clear, though the

paper, especially that of no. 45, is of poor quality. Both issues are provided with brief Eng-

lish summaries of their contents and also all headings are in Russian and English ; but the

wealth of information regarding the mathematical character of the tabulated functions,

contained in the introduction to each of the issues, is accessible only to those who read

Russian. It may be mentioned that no. 50 was published in Leningrad shortly before the

outbreak of Russo-German war and apparently few copies were distributed before Leningrad

became a theatre of war. The reviewer learns, however, through Professor Shapley, that

the stock of this valuable publication survived intact and is now available for distribution.

A comparison of "fsesevich's 5S tables with the 4S tables of a'ik, p) and a"ik, p),

published earlier by Ferrari,6 affords a convincing check of the accuracy of the later numeri-

cal work. It should be pointed out that Ferrari did not evaluate the integrals expressing

the a's in terms of the elliptic functions, but computed them with the aid of Gauss's formula

for approximate quadratures. Ferrari himself found that his series converged rather slowly,

and the correction factor he obtained, by a comparison of the few entries directly computed

for the transit, did not bring the systematic errors within satisfactory limits in many regions.
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Entry-by-entry check of the 4S Ferrari against 5S "fsesevich values rounded off to 4D,

performed by Merrill U.c.), disclosed that about three-fourths of Ferrari's values of a'ik, p)

and one-half of his a"{k, p)'s are a unit or more in error. Ferrari's a"s are systematically too

high (sometimes as much as 3 units) for positive p's and too low (frequently by 3 units) for

negative p's. His a'"s are, in general, about one unit too low for large values of k and large

positive p's one unit too high for k about 0.55 and large positive p's, as much as 4 units too

low around k = 0.55 and p = — 0.85, and too high by as much as 6 units around k = 0.6

and p = — 0.65. Inasmuch as the appearance of more extensive and accurate tables by

'fsesevich has rendered all of Ferrari's work rather out of date, it does not seem worth while

to publish any detailed correction table to his results.

The mathematical definitions of the tables discussed above may now be set forth. The

loss of light/arising from the eclipse of an arbitrarily darkened disc obeys the equation (1)

above, where

(2) Tn2/o _ (p f™-*>\+ f      fl^-l5-x)']\\dxdy
W J \Js   J-(ri>-x>)2^ Js-rtJ-lrf-lS-x)']*) *

= ri2 cos-' j/r, + r22 cos"' (Í - s)/r2 - Sir,2 - s2)*

if the eclipse is partial, and

(3) irr¡2f° —  I .dxdy = 7rr22

if it is annular ; whereas

(4) ri3fD m isp rw-w   p rt;(*-w' » j iu2 - x2 - wxdy.

= irr,3 - 2r,3|(£ - F)F' + E'F) + [r2(5/r2)V3]¡7r22 - 4r,2 + i2|(2JE - F)

- C(«/»"2)V38]1582r22 + 3(r,2 - r22)2 - 3Sri3]F

if the eclipse is partial, and

3   PS+rt   i*lrt3 — ít—x)1],

V «* = 2^-ts f-lU-ll*(^'2 - X2 - ^dxdy'
= 2n3((£ - F)F' + E'F] + \\lr22 - 4ri2 + 82)[2i(r2 - a + i)]»£

+ M(S2 - r22)2 - r,2(2r,2 - r22) + 6Är,3)F/[2i(r2 - S + i)]*

if it is annular. In these latter equations, F = W —, k I and E = E I —, k 1 denote the

Legendre complete integrals of the first and second kinds, with the modulus

k2 = è[l — iS — i)/r2] for a partial eclipse and =2[1 — (6 — s)/r2~\~l for an annular

eclipse. F' m Fi<t>, k') and E' = Ei¡)>, k') stand for the incomplete integrals of the same kind

with a complementary modulus k' = (1 — k2)2 and an amplitude <t> = sin_'[25/(ri + r2 + S)]1

if the eclipse is partial, and <j> = sin_1[(ri + r2 — 5)/(ri + r2 + í)]* if it is annular.

For the purposes of tabulation, we prefer to normalize the /-functions so as to make

them vary between 0 at the moment of the beginning of the eclipse (ä = n + r2 = r„ + rb)

and 1 at the moment of internal tangency of both discs (S = ra — rb). This can be achieved

by putting, by definition,/0 = aik, p), if n = r„; or/0 = ¿2a(fc, p) if ri = rb. fD = a'ik, ■>)

if ri = ra; or fD = p2*(/fe)<*"(£, p), if rx = rb, where

(6) *(*) = 4(sin-' V* + iiik - 3)(2* + 1)\*(1 - ¿)»)/3xJfe2.

*(*) is equal to \k2 times the value of fD at the moment when S = ri — r2. "fsesevich tabu-

lates #(*) to 6D for * = .2(.01)1 (no. 50, p. 307, auxiliary T.5). The function $*«*(*) was

also previously tabulated by Ferrari «to 4D for k = .2(.05)1. (v. 148, p. 221).

Zdenèk Kopal

Center of Analysis

Massachusetts Institute of Technology
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1 For their details see, for instance, Z. Kopal, Introduction to the Study of Eclipsing
Variables iHarvard Observatory Monographs, no. 6), Cambridge, Mass., 1946, chapter 2.

2 This table was later recomputed by B. W. Sitterly, Princeton Univ. Observatory,
Contributions, no. 11, 1930, 41 p. 23 X 32 cm.

•According to Tsesevich, no. 45, p. 124, "T.Iy [p. 390] is especially deficient in ac-
curacy and contains systematic departures from accurate figures by twenty and more units
of the third decimal."

4 A. G. M. Wend, Eine Tafel zur Theorie der Bedeckungsveränderlichen. Diss. Leipzig.
Weida i. Thür, 1931, 44 p. 17.7 X 26.3 cm.

* E. M. R. Hetzer, Beitrag zu H. N. Russell's Methode der Berechnung der Elemente
von Verfinsterungsvariablen unter Voraussetzung von Kreisbahnen und gleichmässig hellen
Sternscheiben. Diss. Leipzig. Weida i. Thür, 1931, 56 p. 23.7 X 29 cm.

8 K. G. Ferrari, "Zur Theorie des Bedeckungslichtwechsels bei vollständig randver-
dunkelten Sternscheiben." Akad. d. Wissen., Vienna, Abt. lia, (i) v. 147, 1938, p. 497-511;
(ii) v. 148, 1939, p. 217-235.

At the time of publication of Ferrari's memoirs, only a few skeletons of Tsesevich's
tables of a'ik, p) and a"ik, p) were available for comparison ; see Pulkovo, Astron. Observa-

torio, Tsirkuliàry [Circulars], no. 24, 1938, p. 41-45.

549[U].—Japan, Hydrographic Office, Publication no. 601. Celestial
Navigation Computation Tables. Tokyo, Hydrographic Office, 1942.

138, xxix p. 18 X 25.3 cm.

These tables were intended for surface navigation; the volume contains practically

everything that will be needed for celestial navigation beyond the material in a Nautical

Almanac.

The reader will find the title page of this volume facing page 138 ! It is followed by a

table of contents and twenty-seven pages of explanation including one page giving English

equivalents of a number of Japanese characters appearing frequently in the text.

The first fourteen pages of the volume are given over to the usual auxiliary tables of

navigation, conversion of time to arc, and corrections to be applied to observed altitudes.

The latter are unusual in that they include corrections to be applied to altitudes less than

6°; special corrections for temperature, barometric pressure, and difference between air

and water temperatures are given.

The basic table provided for the computation of the altitude and azimuth of a celestial

body (no. 6, p. 15-79) is similar to that of Yonemura [Tables for calculating Altitudes and

Azimuths of Celestial Bodies, Tokyo, 1920]. In the usual American notation (used through-

out this review) where /, d are the LHA and declination of the celestial body, L the latitude

of the observer, and h, Z the altitude and azimuth angle of the celestial body, the formulae

are (9 being an auxiliary angle)

log (1/hav 8) = log (1/hav /) + log sec d + log sec L,

hav (90° — h) = hav (L ±d) + hav d, log csc Z = log csc / + log sec d — log sec h. The

table gives the values, to the nearest integer, of 106 log (1/hav x) and 106 log csc x for

x = 0(1')360°; and of 106 hav (90° - x), 106 hav x, and 106 log sec x for x = 0(1')90°.

Table 7 gives the altitude to the nearest 0°.l of a celestial body of declination d = 0(1°)-

10o(2°)62° when it is on the prime-vertical at latitude L = 0(lo)50o(2°)70o.

Table 8 is designed for the computation of azimuth angle by means of the formulae:

tan \iZ + q) = cos UL + d) csc h\L - d|tan it,
tan HZ - q) = sin UL + d) sec UL - d) tan it.

with argument 5 = L + d = 0(5')6°(10')90o, the values of Xi = 3200 + 103 log cos iS and

Fi = 3200 + 103 log sin J5 are given to the nearest integer. With argument D — \ L — d |

= 0(5')6°(10')174o(5')180°, the values of X2 = 103 log csc iD;Y2= 103 log sec iD are given

to the nearest integer. With argument / = 0(5')6°(10')174°(5')188<>(10')354<>(5')360o, the

values of Xt = Ki = 3200 + 103 log tan it are given to the nearest integer. With argument

x (or y) = 0(0°.05)3°(0°.l)87o(0<,.05)90<\ the values of Xt = 6400 + 103 log tan x (or
Yt = 6400 + 103 log tan y) are given to the nearest integer. This table is especially con-
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venient for the calculation of a series of azimuths of a celestial body for a fixed position of

the observer and constant declination of the celestial body.

Table 9 is intended for star identification, that is, one can start with values of h, Z and L,

and quickly obtain values of d and /, usually, enough to identify the celestial object. The

formulae used are:

cot K = sec Z tan h, sin d = sin h sec K sin (Z, + K), tan / = tan Z sin K sec (L + K).

With arguments Z = 0(1°)180°, h = 0(1°)90°, K = 0(1°)90°, L + K - 0(1°)180°,

d = 0(1°)90°, / = 0(1°)90°, the values of Ki = 103 log sec Z,
Hi = 3000 + 103 log tan Z, Ä'2 = 3000 + 103 log tan h, Di = 3000 + 103 log sin h,

K, = 3000 + 103 log cot K, D2 = 103 log sec K, H2 = 3000 + 103 log sin A',

Dt = 3000 + 103 log sin (L + K), H, = 103 log sec (L + K), D¡ = 6000 + 103 log sin d,

Hi = 6000 + 103 log tan/ are given to the nearest integer. This description makes the

tables sound cumbersome ; actually they occupy only 3 pages and the formulae are written

Ki + K2 = K,; Dt + D2 + D3 = D<; Hi + H2 + H, = Ht.

Table 11A is essentially a "distance-travelled" table for use with hourly rate 6(.1)34

knots for time intervals ranging from lm to 10d, with tabulated value in nautical miles.

Table 11B yields distance travelled in meters in 1 to 60 seconds at speed ranging from 1 to

34 knots. Table 12 is a table of Difference of Longitude and Departure for courses 1°(1°)89°

corresponding to distances of 0(1')100'(100')900'. Table 13 gives difference of longitude to

0.1 with arguments departure of 0(1')10'(10')100'(100')900' and middle latitude 0°, 4°(2°)-
10o(l°)65°. Table 14 is one of meridional parts for latitudes 0(10')90° with proportional

parts for interpolation ; it is based on Bessel's figures and hence now out of date. Tables 15-22

are respectively 4-place tables of log N, log sin x for x = 0(1')10°; log tanxforx = 10'(1')10°;

log sin x for x = 0(10')90°; log tan x for x = 10'(10')89°50'; sin x for x = 0(10')90°;

tanx for x = 0(10')89°50'; secx for x = 0(10')89°50'. Tables 23-25 include mathematical

formulae and numerical values likely to be of use to mariners. Table 26 is one of equivalents

—weights, measures, areas, etc.

Charles H. Smiley
Brown University

550[U].—Japan, Hydrographic Office, Publication no. 602. Brief Celestial
Navigation  Table  (Dead Reckoning Position Method). Tokyo,  Hydro-

graphic Office, October 1942. 4, 50, xxiv p. 18.2 X 25.7 cm.
This volume presents a dead-reckoning position method based on a division of the

astronomical triangle into two right triangles by a perpendicular dropped from the celestial

body upon the meridian. K is defined in this book as the polar distance of the foot of the

perpendicular. Using this, and the usual American notation (as indicated in the preceding

review), the equations are:

log tan K = log cot d + log cos /

log cot Z = log cot / + log csc K + log cos iK + L)

log cot h = log cot iK + L) + log sec Z.

These are written K2 = Ki + K2, Z< = Zi + Z2 + Z3, A, — Ai + A2. This notation

makes the computing form simple, but it involves a certain amount of duplication in the

tables provided. There are three tables, each with values given to four decimals. In the first,

log cot x is given for x = 0(1')90°. The second table gives log cot x and log cos x for

x = 0(1')360°. The third table gives log tan x, log csc x, log cot x, log sec x for x = 0(1')90°.

These tables remind one of the four holes the hired man cut in the barn door for the mother

cat and her three kittens.

The title page follows page 50 and is in turn followed by twenty pages of explanation in

Japanese. The usual auxiliary tables giving corrections to observed altitudes are given in

graphical form on the first four pages of the volume ; they are also given in the usual tabular

form (but to a low order of accuracy) on page 50. A multiplication and interpolation table
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for hourly differences 2(1)20 allows the determination of values corresponding to time in-

tervals ranging from one second to eight days. Following this, there is a table giving the

north-south and east-west components of distances 1' to 200' along courses 0 to 90°. An-

other table gives the longitude differences corresponding to distances (measured in an east-

west direction) l'(l')14' at latitudes 0°, 4°, 8°, 10°, 12°, 14°(r)70°.
The design of this volume would indicate it was planned for men with a very limited

background in celestial navigation. For this reason, it might have a strong appeal for many

of the persons who now use Martelli's tables. A simple trimming of the top and bottom

corners of pages helps one to locate the desired tables auickly.

Charles H. Smiley

551[V].—Massachusetts Institute of Technology, Department of
Electrical Engineering, Center of Analysis, Technical Report no. 3,

work performed under the direction of Zdenèk Kopal, under NOrd

Contract No. 9169: Tables of Supersonic Flow Around Yawing Cones.

Cambridge, Mass., 1947, xviii, 324 p. +2 folding plates, 20.2 X 26.8 cm.
For sale by Superintendent of Documents, Washington, D. C, $2.50.

The supersonic flow of air around a non-yawing cone has been numerically solved and

presented in rather complete tables entitled Tables of Supersonic Flow around Cones (RMT

475, MTAC, v. 3, p. 37-40). Such information is very valuable in considering the perform-

ance of sharp-nosed projectiles or rockets when flying directly along the axis. Any device,

however, which moves in free flight through the atmosphere can be maintained only ap-

proximately in a non-yawed position. Since yawing motion is inevitable, additional ques-

tions are raised which cannot be answered from the previously published tables. The first

question of importance is the sensitivity of the drag to yaw ; that is, will the forces on the

nose of the projectile change appreciably with small angles of yaw? The second and some-

what more important question which is raised is that concerned with the normal force.

Just as an airplane wing flying at an angle of attack will experience a lift force normal to its

direction of motion, so a cone flying yawed at supersonic speed will experience a force normal

to its direction of motion. Such normal forces, if large, would make the problem of control

of the flight of a body difficult, since these forces must be properly counterbalanced if the

motion is to be stable.

In the present work, the first-order improvement to the former tables is given. The angle

of yaw « is considered so small that its square and all higher powers can be ignored. With

this approximation, the general equations of motion in polar coordinates are reduced to the

following non-homogeneous, second-order, ordinary differential equation with non-constant

coefficients :

d2jx/di)   ,    Adjx/di)   ,„,,„.„      ft
-—- + A^- + Bix/di) + C = 0.

In this equation x gives the correction to the radial velocity as a function of the polar angle

8. The coefficients A, B, C are rather intricate functions of 8, as well as of various quantities

occurring in the solution for a non-yawed cone. Specifically, the two-velocity components,

the speed of sound, the pressure, density, and ratio of specific heats all enter. As is noted in

the text, these expressions are obtained after "requisite and rather troublesome algebra."

The constant di in this equation is evaluated from the boundary conditions at the shock

wave.

In this work, while approximations are made appropriate to a slight yawing of the cone,

there are no approximations made relative to the shock wave. The flow behind the shock

wave is treated as rotational and of non-constant entropy as is appropriate to this problem.

In this respect the present work, which follows {he theory of Stone,' is an improvement on

the earlier work of Tsien 2 and Sauer.3
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To obtain a solution an initial Mach number and shock wave angle 0„ were chosen,

and the integration was carried out numerically toward decreasing 8 until the appropriate

boundary condition at the surface of the cone was obtained. From the resulting values of x

all other information could then be simply computed. In particular, the yaw of the shock

wave which is in general not the same as that of the cone, was found. In all of this work it

was assumed that the Mach number of the free stream was high enough for the shock wave

to be attached to the vertex of the cone. The results of the computation are given in suffi-

cient detail to compute the variation in the three-velocity components and the pressure and

density around a slightly yawing cone. In addition, normal force coefficients and drag coeffi-

cients are given. It is noted, however, that to the present approximation the drag coefficients

are identical with those for a non-yawed cone as reported previously.

In three tables, included in the introduction, 8, = 10o(5°)20<>, w, = .4(.1).9, a compari-

son is made of calculations of the normal force coefficients by use of Tsien's formula and the

present tables. The error ranges from —12.2% to +44.2% (ignoring the fact that Tsien's

formula for sufficiently high Mach number gives imaginary results). The tables presented

are as follows:

I, p. 1-306: Tables of Supersonic Flow of Air Around Slightly Yawing Cones.

These tables give, successively, the contributions x, y, z to the velocity components

u, v, w taken in the direction of increasing spherical polar coordinates r, 0, </>, due to a small

yaw, as functions of the angular variable 8 ; and the corresponding proportional changes in

pressure iv/p) and density (f/p) due to the same cause.

The velocities are expressed in terms of the velocity which the air in front of the shock

wave would attain if allowed to expand adiabatically into a vacuum.

These 4D tables are for 8. = 5o(2°.5)15°(5°)50o, 8 = 5° to 89°.612 in steps ranging from

.125° to Io. These cover the entire range of interesting cone angles and speeds including some

cases of the "second" solution, i.e., strong shock (see previous review).

II, p. 307-312 : Survey of the Results. The individual columns indicate :

û, = radial velocity-component of the axial flow along the solid surface ;

By, = semi-apex angle of the shock wave ;

M = Mach number (i.e., stream velocity divided by the velocity of sound in the undis-

turbed air in front of the shock wave) ;

¿i = constant specifying the change of entropy across streamlines ;

S/e = ratio of the yaw of the shock wave to the yaw of the solid cone ;

Kd = coefficient of head drag on the cone ;

Kn = coefficient of normal drag on the cone.

III, p. 315-317: Table Giving the Shock-to-Cone Yaw Ratio, S/t, in Terms of the Radial

Velocity Component, u„ along the Solid Surface, and the Semi-Apex Angle of the Cone, 8,.

The values in this table are primarily 4D results interpolated for more convenient use

from the previous computations.

IV, p. 319-321: Table Giving the Coefficient of Normal Drag, Kn, in Terms of the Radial
Velocity Component, ü„ along the Solid Surface, and the Semi-Apex Angle of the Cone 8,.

Here again 4D interpolated values are given for convenience.

V: Two folding charts are given which show the yaw of the shock wave and the normal force

coefficients as functions of the cone angle and velocity along the cone. These give a good

general picture of the nature of the flow and make for ready practical use where high ac-

curacy is not required.

H. W. Emmons
Dept. Engin. Sciences and Applied Physics,

Harvard University

'Arthur H. Stone, The Aerodynamics of a Slightly Yawing Supersonic Cone, NDRC
Report, Div. 1, 1944.

2 Hsue-Shen Tsien, "Supersonic flow over an inclined body of revolution," Jn. Aero.
Sei., v. 5, 1938, p. 480.

• R. Sauer, "Überschallströmung um beliebig geformte Geschoszspitzen unter kleinem
Anstellwinkel," Z.f. Luftfahrtforschung, v. 19, 1942, p. 148-152.
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552[V].—National Advisory Committee for Aeronautics, Technical
Note no. 1428: Notes and Tables for Use in the Analysis of Supersonic

Flow. By the staffs of the Ames Aeronautical Laboratory, Moffett Field,

Calif. Washington, D. C, Dec. 1947, iv, 73 p. +7 plates. 20 X 26.2 cm.

This NACA Technical Note is a compilation of data found important for the analysis of

compressible flow in connection with test work in a supersonic wind-tunnel. The text of the

paper is devoted to a review of several fundamental aspects of the theory of supersonic flow.

These include thermodynamics, equations of motion, nozzle theory, shock waves, expansion

around a corner, airfoil theory, and flow about wedges and cones. The appendices give for-

mulae for the calculation of the viscosity, Reynolds number, humidity relations, and atmos-

pheric corrections for air.

The five tables included in the paper contain the following information : Table I gives

various nozzle data for subsonic flow such as the ratios of the local pressure to rest pressure,

the local density to the rest density, etc. for values of the Mach number. The Mach number

M = 0(.01)1. Table II gives similar nozzle data for supersonic flow and in addition gives

such data as the local Mach angle, the angle through which a supersonic stream is turned to

expand from Mach number 1 to the local Mach number, etc. M — 1(.01)3.5(.1)5(1)-

10(5)20, 100, ». Table III gives ratios of the local pressure to the rest pressure, the local

density to the rest density, etc. on either side of a normal shock wave. Table IV gives the

Mach number functions for use with small perturbation airfoil section theory, and Table V

gives various properties of the standard atmosphere. All of the data given in the tables

pertain to air where the ratio of the specific heats is 1.4. The functions are tabulated to at

least 4S accuracy.

The graphs that are given include plots of maximum theoretical contraction ratio that

permits start of supersonic flow in diffuser entrance against Mach number, and the variation

of Reynolds number with Mach number. The well-known graphs for the characteristics of

wedge and cone flow are also included.

R. C. Roberts
Brown University

MATHEMATICAL TABLES—ERRATA

References have been made to Errata in RMT 521 (Lambert), 522

(Peters), 526 (Rybner), 529 (Krai'tchik), 531 (Pettit), 535 (Cambi), 541 (Lane
& Sweeney), 548 (Ferrari, Russell & Shapley, 'fsesevich).

128. J. R. Airey, "Tables of the Bessel functions /„(*)," BAAS, Report,
1915, p. 29-30.

A list of errors was given in MTE 124 for the 10-decimalpartof this table for» = 0(1)13'

where x > 6. The whole table has now been compared with proofs of the forthcoming BAAS'

Bessel Functions, part 2, and the following 23 further errors have been found for [x = .2(.2)-

6; 6D]. Thus the total number of errors, large and small, in this table is 74.

1.8
2.4
2.6
2.8
3.8

4.6
5.4

5.6

9
10
9

11
11
12
13
5

13
6
7
8

For

+0.000 002
+0.000 024

+0.000 021
+0.000 004
+0.000 005
+0.310 074
+0.000 037
+0.198 559
+0.094 452
+0.037 571

Read

+0.000 001
+0.000 001
+0.000 025
+0.000 001
+0.000 022
+0.000 003
+0.000 006
+0.310 070
+0.000 038
+0.198 560
+0.094 455
+0.037 577

5.6

5.8

9
10
11
13
4
8
9

10
11
12
13

For

+0.012 893
+0.003 870
+0.000 930
+0.000 057
+0.378 765
+0.046 382
+0.016 641
+0.005 261
+0.001 500
+0.000 380
+0.000 088

Read

+ 0.012 907
+0.003 912
+0.001 062
+0.000 059
+0.378 766
+0.046 381
+0.016 639
+0.005 256
+0.001 486
+0.000 381
+0.000 089

6 Feb. 1948
J. C. P. Miller


