
D. F. E. MEISSEL 1890



Hilbert's Double Series Theorem and Principal
Latent Roots of the Resulting Matrix

The inequality  £  £
i „=1 j» + n

— S ir £ ap2, was proved by Hilbert

and published by Weyl.1 Various proofs were given by Hardy, Littlewood

& Pólya.2 In this inequality tv is the best possible constant; that is, the

maximum value of Y, JL-^—^-/ ¿Z. av ror arbitrary {ap\ is 7r. It is no
m   „ m + n — 1/    p

longer the best possible sum when the summation is finite; from 1 to N, say.

In this case Frazer 3 has shown that (N + 1) sin [_ir/(N + 1)] is better.

But this result is not the best possible, and Copsey, Frazer, & Sawyer

have published investigations4 based on empirical values of the constant X

for N = 1(1)5,10,20, computed by the Royal Aircraft Establishment.
Further computations for N = 2(1)20 are being made by the National

Physical Laboratory.
The ordinary method for maximizing this quadratic form shows 6 that

the best possible value of the constant is the greatest latent root of the

matrix ||l/(w + n — 1)||; n S N, and it was in this way that the values

were computed.

The roots and vectors of the segments of the Hilbert matrices of N rows

were derived from the iterated multiplication of the matrix into an arbitrary

column vector, the procedure and accelerating processes being essentially

those of Aitken.6 Operations were carried out on British Hollerith machines

following the cycle, tabulator-reproducer-sorter-multiplier-tabulator. Ma-

chines were checked in the usual way by check sums. Final checking was

done on a Brunsviga 20 machine, and roots and vectors for n — 6 and 8 were

added at this stage.

An approximate relation between N and X of the form l/(x — X)

= a In (N + b) + c has been found,4 but it is evidently incomplete as the

error increases rapidly with N. Dr. Olga Todd, in a recent unpublished com-

munication, has shown that though X tends to ir asymptotically as N tends

to oo, x is not a latent root of the infinite matrix. Further, she shows that

X = ¡1 + 0(l/log TV)} and £ ¿Jf      /£ ap
i    i m + n — 1/    i

when \ap] = {1, 1/V2, 1/V3, 1/VÏ, • • • 1/VÏVJ.

x{l+Oil/log AT))

Principal Latent Root and Vector of Segments of the Hilbert Matrix

Latent Root
Latent Vector

1.26759 188
1
0.53518 376

1.40831 893
1
0.55603 256
0.39090 795

1.50021 428
1
0.57017 208
0.40677 899
0.31814 097

10

1.75191 967
1
0.60899 191
0.45313 830
0.36528 601
0.30775 305
0.26672 518
0.23580 131
0.21156 396
0.19200 513
0.17586 003

399

20

1.90713 472
1
0.63153 893
0.48170 552
0.39577 939
0.33864 052
0.29732 839
0.26579 806
0.24080 108
0.22041 627
0.20342 569
0.18901 536
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N

Latent Root

5 6 8

1.56705 069      1.61889 986      1.69593 900

Latent Vector      1
0.58056 692
0.41880 095
0.33006 105
0.27325 824

Royal Aircraft Establishment
South Farnborough, England

1
0.58862 854
0.42832 928
0.33966 189
0.28252 359
0.24233 781

1
0.60050 425
0.44267 155
0.35437 045
0.29691 858
0.25618 093
0.22562 937
0.20179 019

20 cond.

0.17661 823
0.16582 577
0.15633 540
0.14791 772
0.14039 536
0.13362 876
0.12750 652
0.12193 851
0.11685 095

R. A. Fairthorne

J. C. P. Miller

1 H. Weyl, Singulare Integralgleichungen mit besonderer Berücksichtigung des Fourier-
schen Integraltheorems. Diss. Göttingen, 1908.

2G. H. Hardy, J. E. Littlewood, & G. Pólya, Inequalities, Cambridge, 1934, p.
226-259.

3 H. Frazer, "Note on Hubert's inequality," London Math. Soc, Jn., v. 21, 1946,

p. 7-9.
4 E. H. Copsey, H. Frazer, & W. W. Sawyer, "Empirical data on Hubert's inequality,"

Nature, v. 161, 6 Mar. 1948, p. 361.
6 R. Courant & D. Hilbert, Methoden der mathem. Physik, second ed., v. 1, Berlin,

1931; U.S.A. photo-lithoprint, 1943. _
• A. C. Aitken, "Studies in practical mathematics. II. The evaluation of the latent roots

and latent vectors of a matrix," R. Soc. Edinb., Proc, v. 57, p. 269-304, 1937.

Piecewise Polynomial Approximation for
Large-Scale Digital Calculators

1. Introduction. Most large-scale digital calculating machines are

equipped to perform automatically the arithmetic operations of addition,

subtraction, multiplication, division, and in some cases of extracting the

square root. All arithmetic processes must be carried out by suitably com-

bining these given operations. But many functions whose evaluation is

frequently required, such as the elementary transcendental functions, for

example, cannot be represented exactly by any combination of a finite num-

ber of the given operations. In order to evaluate such functions, it is neces-

sary to resort to some sort of approximation.

A method frequently employed may be called "piecewise polynomial

approximation." This method consists of dividing the interval upon which

the required function is to be approximated into a number of sub-intervals

upon each of which the function is represented by a polynomial. The coeffi-

cients of these polynomials are stored within the machine or external to it

in a manner consistent with the machine's construction. When the value of

the independent variable is given, the proper sub-range is selected by the

machine itself. The operations of addition and multiplication applied to the

value of the independent variable and to the stored coefficients are then

sufficient to evaluate the appropriate polynomial and hence to obtain an

approximation to the required function.

In practice, the range over which the approximation is to hold and the

maximum allowable error are usually known in advance. We shall assume

that the maximum allowable degree of the approximating polynomials is


