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Piecewise Polynomial Approximation for
Large-Scale Digital Calculators

1. Introduction. Most large-scale digital calculating machines are

equipped to perform automatically the arithmetic operations of addition,

subtraction, multiplication, division, and in some cases of extracting the

square root. All arithmetic processes must be carried out by suitably com-

bining these given operations. But many functions whose evaluation is

frequently required, such as the elementary transcendental functions, for

example, cannot be represented exactly by any combination of a finite num-

ber of the given operations. In order to evaluate such functions, it is neces-

sary to resort to some sort of approximation.

A method frequently employed may be called "piecewise polynomial

approximation." This method consists of dividing the interval upon which

the required function is to be approximated into a number of sub-intervals

upon each of which the function is represented by a polynomial. The coeffi-

cients of these polynomials are stored within the machine or external to it

in a manner consistent with the machine's construction. When the value of

the independent variable is given, the proper sub-range is selected by the

machine itself. The operations of addition and multiplication applied to the

value of the independent variable and to the stored coefficients are then

sufficient to evaluate the appropriate polynomial and hence to obtain an

approximation to the required function.

In practice, the range over which the approximation is to hold and the

maximum allowable error are usually known in advance. We shall assume

that the maximum allowable degree of the approximating polynomials is
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given. The problem of piecewise polynomial approximation reduces, then,

to the determination of the sub-intervals and the coefficients of approximat-

ing polynomials so as to be consistent with these specified quantities. This

may be stated more precisely as follows:

Problem—Given the function f(x) defined on the interval [a, /?], a

specified constant positive tolerance T, and a specified positive integer N.

Required to divide [a, ß] into sub-intervals [e,_i, c¿] where, with the number

of sub-intervals, r, as yet unspecified, i — 1,2,• • -r, and either a = Co < Ci

< • • • < cr-\ < cr = ß, or ß = Co > C\ > ■ • ■ > cr-\ > c, = a, and to deter-

mine nth degree polynomials PJix) with n < TV, such that the upper bound

of |/(x) - iV(*)_| < T on [><_,, aj
If the quantities c, and the polynomials Pn{x) are determined in such a

way that the number of sub-intervals, r, shall be a minimum, then they will

be said to constitute the best solution of the problem. We suppose that f(x)

is a continuous function, possessing as many continuous derivatives as shall

be required, and that all of these derivatives shall have a finite number

of zeros.

2. Determination of Sub-Intervals. We shall restrict ourselves to ap-
proximation by nth degree polynomials agreeing with /(x) at n + 1 points

on [Ci-i, Ci]. With the n + 1 points of coincidence specified, say x = Xkl

(k = 0,1,- • ■ ,n), any such polynomial PJix) may be expressed by the La-

grange Interpolation Formula,

(!) B.M - i ,&^Sf>
hr„ (x - SfcOönW) '

where, Qln+i(x) = (x — x0')(x — Xi')- ■ ■ (x — xj), and Qtf+i(x) denotes the

derivative of Q„+i(x). The remainder term, f(x) — P„'(x), is then given by

Ri+i(x) = QL+1(x)fn+i)(ïi)/(n + 1)!

where £¿ lies on [c,-_i, cf\.

Suppose that f-n+1)(x) ■f(n+2)(x) < 0 on [_a, ß]. In this case, designate the

end-points of the sub-intervals by Co, C\, ■ ■ -, cr in order of increasing sub-

scripts from left to right. The upper bound of | /c"+1) (x) | on [c,_i, cf\ occurs

at x = c¿_i. Denote by Qn+i* the upper bound of | Qñ+\(x) \ on [cí_i, c,]. Then

(2) I Ri+x(x) | < | QgFfWUci-ù | /(« + 1) !•

Let us transform the independent variable in such a way that the interval

[c,_i, c¿] becomes [ — 1,1].

(3) x = §(c¿ — Ci-i)u + \(d + c<_i);       u = (2x — Ci — Cí_i)/(cí — c<_i).

Denote the transform of Qln+i(x) by [J(c¿ — Ci_i)]"+1Ln+i(«). Since Qn+i(x)

is of leading coefficient unity, so is Ln+i(u). In fact,

Ln+l(u)   =   (U   —   M0)(m   —  Ml)- • •(«   —  «»),

where u0, «j, ••-,«„ are the points into which Xo*, Xi', • • •, xn\ respectively,

are transformed, and u ranges on the interval [—1,1]. Denote by L„+i the

upper bound of |Z,„+i(m)| on [—1,1]. Now
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and therefore from (2),

|Äfi(*)l <[[*(* - ci_1)]"+1L^Ï/c+1>(ct_1)|/(w + 1)!.

We wish to determine the division points c¿(¿ = 0, 1, •••, r) in such a

way that

\Rln+i{x)\ < T   on    [c<_i, c<].

This condition will surely be satisfied if

(4) | ufo - C-i)]"+1i:nm+aï/("+1,(ci-i) I /(n + 1) ! < T   on    [<;<_!, c,].

Solving (4) for c¿, we obtain

(5) c¿ < Ci-i + 21 (n + 1) IT/lLSftf^ia-t)]^,

a condition which may be used to generate successive end-points from left

to right. If the equality in expression (5) holds, [ci_i, cf\ will be called a

complete sub-interval. If the inequality holds, it will be called an incomplete

sub-interval. Note that it is in general impossible to derive from (4) a condi-

tion for generating the end-points from right to left, since c,_i does not enter

algebraically in this expression.

If /<n+1)(x)-/(n+2)(x) > 0 on [a, j3], we designate the end-points of the

sub-intervals by cT, cr-i, ■ • •, c0 from left to right. An inequality analogous

to (5) may be derived. In either case, the condition which successive end-

points must satisfy suggests a procedure for the determination of the sub-

intervals. This procedure may be stated as follows:

Rule: Generate the quantities c, by the recurrence formula

(6) a = a-i ± K/1 /("+1)fo_i) | *&, where

(7) K = 2{[(n + I)«"]/«?!)5".

If /<n+1)(x) •/(n+2)(x) < 0 on [a, /3], start with c0 = a, use the plus sign in (6),

and continue the recurrence process until some quantity, say c„ greater than

or equal to ß is obtained. cT-\ is then taken to be c8_i and c, taken to be ß.

If /(n+1)(x) ■f(n+2)(x) > 0 on [a, /3], start with c0 = ß, use the minus sign in

(6) and continue the recurrence process until some quantity, say c„ less than

or equal to a is obtained. cr_i is then taken to be cs_i and cT taken to be a.

If neither /<"+1>(x) -/<"+2)(x) < 0 nor /<"+'> (x) •/<"+«(:*;) > 0 over the en-

tire range [a, 0], we may divide [a, /3] into sub-ranges upon which these

conditions will hold alternately. This is always possible. We may then apply

the foregoing rule to each sub-range separately, taking for Co one of the end-

points of the sub-range in question. This procedure will result in several

incomplete sub-intervals of the type [cr_i, cr] being employed upon the

range [a, /S]. All but one of the incomplete sub-intervals could be eliminated

by choosing the Co's in a less naive manner, but the saving achieved seems

hardly worth the additional complication.

3. A First Order Approximation to the Number of Sub-Intervals Re-

quired. Let hi = Ci — Ci_i. We have from (6),

(8) \hi\ = K/lf^ia^)^.
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When /("+l)(x)-/("+2)(x) < 0, | /<"+1>(x) | decreases with increasing x, and

hence, since the sub-intervals are generated from left to right, |/Cn+1)(c,_i) |

decreases with increasing ». When /(n+1,(x) •/(n+2)(x) > 0, |/(n+1)(x)| in-

creases with increasing x. But since the sub-intervals are in this case gener-

ated from right to left, | f-n+1) (cí_i) | again decreases with increasing i. In

either case, the following theorem follows directly from (8).

Theorem I. Over an interval in which the sign of /(n+1)(x) -/(n+2)(x) does

not change, the length of each complete sub-interval generated is greater

than or equal to the length of the immediately preceding sub-interval.

Also from (8)
Theorem II. When f(x) is an (n + l)th degree polynomial, all complete

sub-intervals are of equal length.

Again, for the case in which /(n+l,(x)-/("+2)(x) does not alternate in sign

throughout the interval [a, j3], let

(9) hmia = Ä/!/<-+» (co) | ̂  and

(10) /w = K/\f<"+»(cr-hO\^1.

From Theorem I, it follows that

(11) Ami»  <\ki\<  Amax,

where |A,-| is the length of any complete sub-interval. Now

i
| Cj — Co I = L I hi |,

and hence from (11)

jAmin   <; | Cj Co I ^  jAmax.

Replacing j by r, the number of sub-intervals required to cover the entire

range [a, 0], and recalling that \c, — c0| = ß — a, we have

(12) (ß - a)/Amax < r < 1 + (ß - a)/hmin,

where the quantity, 1, on the right-hand side of (12) enters by virtue of

the fact that r must be an integer.    We formulate our results as follows:

Theorem III. The number of sub-intervals, r, required to represent /(x)

on [a, 0] is bounded by the quantities (ß — a)/Amax and 1 + (ß — a)/hm¡n

where hm-m and Amax are given by (9) and (10), respectively.

4. A Second Order Approximation to the Number of Sub-Intervals

Required. Expressions for determining the lengths of the sub-intervals in

terms of /<n+2)(£) can also be derived, but due to the indefmiteness of the

quantity £, they are not appreciably more accurate than those developed

in the last section, and hence are of little practical value in estimating

the number of sub-intervals required. They are, however, of some theoretical

interest.

Solving (8) for ]/(n+1)(c¿_i) | and subtracting from the resulting expres-

sion a similar expression for |/(n+1) (c¿_2) |, we obtain

(13) |/<"+»(cI-1)|-|/<"+1>(ci-2)|  - K^UH^n+l) - Ihux\-(*+l)].
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We may, by use of the law of the mean, write

(14) |/("+1)(c¿-i) ¡ - |/(»+»(Ci_0 | = - | fcí-i/^ÍÉí-i) |,

where £¿_i lies on [c,_2, c,-_i]. Substituting for the left-hand side of (13) its

value as given by (14), and solving for A,-, we obtain

(15) | A¿| -|*i_j|{l/[l - A'-<»+1)|A?±1/c+2'(?i_1)|]}1'<«+1).

Theorem II is an immediate consequence of this expression. Equation (15)

may be written in the form

(16) X-**»|«íí/W«(&_i)l  = * - |A¿-i/Ai|n+1.

By Theorem I, the quantity | A¡_i/A,| n+1 is less than or equal to unity. Hence

the quantity on the right-hand side of (16) is less than unity and greater

than or equal to zero. If |/l"+2)(£t-i) | increases with increasing i, the quan-

tity in braces in (15) increases with increasing *". We may therefore state

Theorem IV. If /(n+1)(x)-/(n+3)(x) < 0, the ratio of the length of any

complete sub-interval to the length of the previous one increases with each

sub-interval generated.

The converse of this theorem is not, in general, true.

Let

f(»+2, _  Í l/(n+2)(co)| when     . /<»+»(*)■/<"+»(*) Í* 0

and

n+2) (cr - Amin)| when        /<"+» (x) •/(n+3) (*) £ 0

(17) MmiB = (Amin)»+2/S+2)/X"+1.

From (15), it follows that

|A<|>|Ä<_t|{l/(l - MmiJ>)}^
and, by recurrence

|Ai|>|Ao|!l/(l - Mmin)!^ > Amin + ^^4 MminAmin.
n + 1

Summing from i = 1 to j,

\cj — co| > jAmin + \j(j — 1) Mminhmin/(n + 1).

Replacing j by r and | Cj — c01 by ß — a, we have

Theorem V. The number of sub-intervals, r, required to represent f{x)

on [a, /3] must satisfy the inequality

(18) ß - a > rAmin + \r(r - 1) Mminhmin/(n + 1),

where Mm¡n is given by (17). Since r enters quadratically in (18), an upper

bound to the number of sub-intervals required can easily be determined.

For /(x) an (n + l)st degree polynomial, the second term on the right of

(18) vanishes.
5. Approximation by Particular Types of Polynomials. If, in L(u) we let

Ud = U\ =  • • •  = un = 0, we obtain "+1

Ln+1(u) = »»+»,        and        (19)    ¿¡Eft = 1.
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In this case, the polynomials P„*(x) given by (1) assume indeterminate

forms. The indétermination may be resolved by rearranging terms, setting

Xo* = (Ci + c,_i)/2, Xi* = x0* + e, x2¿ = x0¿ + 2e, etc.,

and passing to the limit.1 For a given i, P„'(x) reduces then to the wth degree

polynomial consisting of the first n + 1 terms of the Taylor's Series expan-

sion about the point (cí + Ci_i)/2.

If we take w* = cos \J¡{2k + l)/(» + l)]ir, k = 0, 1, ■ • ■, n, we obtain
Ln+i(u) = rn+i(M), and L„+í = l/2n, where Tn+i(u) is the Chebyshev Poly-

nomial 2 of the first kind of order n + 1, defined by the formula

To(u) = 1;    Tn(u) = 21_n cos(w-cos-1 m);    w = 1,2, 3, •••.

Of all the wth degree polynomials of leading coefficient unity, Tn(u) is known

to be the one whose absolute value on the interval [—1,1] has the smallest

upper bound.3 From this property, we may deduce

Theorem VI. The best of all sets of sub-intervals generated by the

fundamental rule is that set obtained by taking L„+i(u) to be the Chebyshev

Polynomial of the first kind of order n -\- 1.

But if /(n+1) (£) is constant on [a, 0], the best set of sub-intervals generated

by the fundamental rule will be the best of all sets of sub-intervals generated

in any manner whatsoever. We thus have

Theorem VII. For /(x) an (« + l)st degree polynomial, the best solution

to the problem of piecewise polynomial approximation is obtained by apply-

ing the fundamental rule, taking for L„+i(w) the Chebyshev Polynomial of

the first kind of order n + 1.

6. Numerical Example. Consider the following numerical example:

Example. Required to approximate the function sin x piecewise by cubic

polynomials on the interval [0, §7r] in such a way that sin x is everywhere

on the interval represented to an accuracy of 1 X 10-6.

We have here f(x) = sin x (footnote 4), [a, /3] = [0, ir/2], n = 3, T = 1

X 10"6. Since /<n+1)(x) ■/(n+2)(x) > 0 on [a, 0], the sub-intervals are to be

generated from right to left starting with c0 = \ir.

For the Taylor's Series representation, we have from (7) K = 2(4! X 10-6)1

= 0.13998, and from (6)

(20) Ci = Ci-i - 0.13998 (sin d-X)-K

The values of c¿ obtained by repeated use of (20) are listed in the second

column of Table I. Eleven sub-intervals are required. This is consistent with

the bounds given by Theorem III; namely, r < 12.23; r > 6.85.

Column 3 of Table I gives values of c, rounded to two decimals in such a

way that | hi \ is always on the small side. For the tabulation of the coeffi-

cients, it is convenient to refer each polynomial to the interval [— 1, 1]. The

approximating polynomials are then expressed explicitly as functions of u,

where u and x are related by (3). The coefficients of these polynomials are

given in the first part of Table II. Table III gives values of each approxi-

mating polynomial at the end-points of the sub-interval upon which it is

to be used. The remainder should be greatest at these points. As was to be

expected, the absolute value of the remainder is in all cases less than 1 X 10~6.



406    PIECEWISE POLYNOMIAL APPROXIMATION FOR CALCULATORS

For the Chebyshev approximation,

K = 2(23 X 4! X 10-6)i = 0.23541,    and    a = c^ - 0.23541 (sin c<_i)-*.

The unrounded values of c¡ are given in Column 4 and the rounded values

in Column 5 of Table I. Seven sub-intervals are required. This again is in

agreement with values predicted by Theorem III, r < 7.68; r > 4.63. Again

the approximating polynomials are tabulated as functions of u. Their coeffi-

cients are given in the second part of Table II. Table IV gives the value of

each approximating polynomial at the end-points and at the mid-point of

the sub-interval upon which it is to be used. For the fourth sub-interval,

values of Pzl{x) are also tabulated at the points u = cos \kir{k = 1, 2, 3) at

which the remainder should be zero, and at the points u = cos §(2& + 1)t,

k = 0, 1, 2, 3, at which the absolute value of the remainder should be a

maximum. As before, the remainders are all less in absolute value than the

prescribed tolerance of 1 X 10-6.

TABLE I—Endpoints of Sub-intervals

Taylor's Series Chebyshev Polynomials
Sub-Interval Unrounded Rounded Unrounded Rounded

* ci a a a

0 1.5708 1.58 1.5708 1.58
1 1.4308 1.45 1.3354 1.35
2 1.2905 1.31 1.0983 1.12
3 1.1491 1.17 0.8559 0.88
4 1.0059 1.03 0.6034 0.63
5 0.8599 0.89 0.3321 0.36
6 0.7098 0.74 0.0206 0.05
7 0.5541 0.59 0.0000 0.00
8 0.3897 0.43
9 0.2114 0.26

10 0.0047 0.06
11 0.0000 0.00

TABLE II—Coefficients of Approximating Polynomials

iV(*) = a<? '+ a^u + a2*'tt2 + aju3, where u = (2x — c,- — c,_i)/(c; — c,_i)

Approximation by Taylor's Series

» [ci-u a]                       oo*                                ai'                                   az*                              a%{

1 1.58 1.45 0.9984 4379 -0.0036 2488 -0.00210921 0.0000 0256
2 1.45 1.31 0.9818 5353 -0.0132 7486 -0.0024 0554 0.0000 1084
3 1.31 1.17 0.9457 8400 -0.0227 3574 -0.0023 1717 0.0000 1857
4 1.17 1.03 0.8912 0736 -0.0317 5173 -0.00218346 0.0000 2593
5 1.03 0.89 0.81919157 -0.04014640 -0.0020 0702 0.0000 3279
6 0.89 0.74 0.7277 2560 -0.0514 4013 -0.0020 4673 0.0000 4823
7 0.74 0.59 0.6170 5913 -0.0590 1876 -0.0017 3548 0.0000 5533
8 0.59 0.43 0.4881 7725 -0.0698 1956 -0.0015 6217 0.0000 7447
9 0.43 0.26 0.33819668 -0.0799 9141 -0.0012 2174 0.0000 9632

10 0.26 0.06   0.1593 1821   -0.0987 2273   -0.0007 9659   0.0001 6454
11 0.06 0.00   0.0299 9550   -0.0299 8650   -0.0000 1350   0.0000 0450

Approximation by Chebyshev's Polynomials

i [ci-i, Ci] ao* ai' <J2* as'

1 1.58 1.35 0.9944 0787 -0.01214388 -0.0065 6828 0.0000 2674
2 1.35 1.12 0.94414734 -0.0378 9492 -0.0062 3630 0.0000 8348
3 1.12 0.88 0.8414 7008 -0.0648 3626 -0.0060 5133 0.0001 5551
4 0.88 0.63 0.6852 8780 -0.0910 3392 -0.0053 4686 0.0002 3688
5 0.63 0.36 0.4750 3083 -0.1187 9574 -0.0043 2215 0.0003 6050
6 0.36 0.05 0.2035 6655 -0.1517 5436 -0.0024 4046 0.0006 0692
7 0.05 0.00 0.0249 9740 -0.0249 9221 -0.0000 0781 0.0000 0262
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TABLE III—Comparison of Taylor's Series Approximation with
TRUE   VALUE  OF  SIN *

1.58
1.45
1.45
1.31
1.31
1.17
1.17
1.03
1.03
0.89
0.89
0.74
0.74
0.59
0.59
0.43
0.43
0.26
0.26
0.06
0.06
0.00

9
9

10
10
11
11

¿V(z)

0.9999 5690
0.9927 1226
0.9927 1201
0.9661 8397
0.9661 8400
0.9207 4966
0.9207 4970
0.8572 9810
0.8572 9816
0.7770 7094
0.7770 7077
0.6742 8697
0.6742 8708
0.5563 6022
0.5563 6017
0.4168 6999
0.4168 7003
0.2570 7985
0.2570 7981
0.0599 6345
0.0599 6400
0.0000 0000

true value of sin x

0.9999 5765
0.9927 1299
0.9927 1299
0.9661 8495
0.9661 8495
0.9207 5060
0.9207 5060
0.8572 9899
0.8572 9899
0.7770 7175
0.7770 7175
0.6742 8791
0.6742 8791
0.5563 6102
0.5563 6102
0.4168 7080
0.4168 7080
0.2570 8055
0.2570 8055
0.0599 6401
0.0599 6401
0.0000 0000

iV(x) — sin x
-0.0000 0075
-0.0000 0073
-0.0000 0098
-0.0000 0098
-0.0000 0095
-0.0000 0094
-0.0000 0090
-0.0000 0089
-0.0000 0083
-0.0000 0081
-0.0000 0098
-0.0000 0094
-0.0000 0083
-0.0000 0080
-0.0000 0085
-0.0000 0081
-0.0000 0077
-0.0000 0070
-0.0000 0074
-0.0000 0056
-0.0000 0001

0.0000 0000

TABLE IV- -Comparison of Approximation by Chebyshev's Polynomials
with true value of sin x

1.58
1.465
1.35
1.35
1.235
1.12
1.12
1.000
0.88
0.88
0.8704 8494
0.8433 8835
0.8028 3543
0.755
0.7071 6457
0.6666 1165
0.6395 1506
0.63
0.63
0.495
0.36
0.36
0.205
0.05
0.05
0.025
0.00

1
1
1
2
2
2
3
3
3
4
4
4
4
4
4
4
4
4
5
5
5
6
6
6
7
7
7

-1.0
0.0
1.0

-1.0
0.0
1.0

-1.0
0.0
1.0

-1.0
-0.9238 7953
-0.7071 0678
-0.3826 8343

0.0
0.3826 8343
0.7071 0678
0.9238 7953
1.0

-1.0
0.0
1.0

-1.0
0.0
1.0

-1.0
0.0
1.0

Ps'(x)

0.9999 5673
0.9944 0787
0.9757 2245
0.9757 2248
0.9441 4734
0.9000 9960
0.9000 9950
0.8414 7008
0.7707 3800
0.7707 3798
0.7646 4155
0.7469 0132
0.7193 2866
0.6852 8780
0.6496 8088
0.6183 2742
0.5968 0639
0.5891 4390
0.5891 4392
0.4750 3083
0.3522 7344
0.3522 7353
0.2035 6655
0.0499 7865
0.0499 7918
0.0249 9740
0.0000 0000

true value of sin x

0.9999 5767
0.9944 0879
0.9757 2336
0.9757 2336
0.9441 4820
0.9001 0044
0.9001 0044
0.8414 7098
0.7707 3888
0.7707 3888
0.7646 4155
0.7469 0044
0.7193 2867
0.6852 8867
0.6496 8087
0.6183 2656
0.5968 0640
0.5891 4476
0.5891 4476
0.4750 3165
0.3522 7423
0.3522 7423
0.2035 6716
0.0499 7917
0.0499 7917
0.0249 9740
0.0000 0000

Pi'(x) — sin x
-0.0000 0094
-0.0000 0092
-0.0000 0091
-0.0000 0088
-0.0000 0086
-0.0000 0084
-0.0000 0094
-0.0000 0090
-0.0000 0088
-0.0000 0090

0.0000 0000
0.0000 0088

-0.0000 0001
-0.0000 0087

0.0000 0001
0.0000 0086

-0.0000 0001
-0.0000 0086
-0.0000 0084
-0.0000 0082
-0.0000 0079
-0.0000 0070
-0.0000 0061
-0.0000 0052

0.0000 0001
0.0000 0000
0.0000 0000

I am indebted to Mrs. Helen Malone, of the BRL, for the computation

of the numerical example at the end of this paper.

BRL, Aberdeen Proving Ground JOSEPH O.   HARRISON,  Jr.

1 J. F. Steffensen, Interpolation, Baltimore, 1927, p. 22.
2 For a working list of coefficients and formulae relating to the Chebyshev Polynomials

see C. W. Jones, J. C. P. Miller, J. F. C. Conn, R. C. Pankhurst, "Tables of Chebyshev
polynomials," R. Soc. Edinb., Proc, v. 62A, 1946, p. 187-203. See MTAC, v. 2, p. 262.

3 For proof see Stefan Kacmarz and Hugo Steinhaus, Theorie der Orthogonalreihen
Warsaw, 1935, p. 111-112.

* True values of sin x were obtained from NBSCL, Tables of Circular and Hyperbolic
Sines and Cosines, New York, 1940.


