MATHEMATICAL TABLES-ERRATA

References have been made to Errata in RMT 609 (Zimmerman), 610 (Buckingham), 612 (Kerawala \& Hanafi), 618 (Goldman), 620 (U. S. Navy), 624 (Hay \& Gamble), 625 (Herget); N 99 (Bertrand, Davis \& Kirkham, Gray \& Mathews, Meissel).
149.-E. P. Adams, Smithsonian Mathematical Formulae . . ., First reprint, Washington, D. C., 1939. See also MTAC, v. 1, p. 191; v. 2, p. 46, 353; v. 3, p. 314.
P. 260 , at $r=45$, for $78689 \ldots$. ., read $0.78689 \ldots$. .
p. 260 , last line, for $90^{\circ} r$, read $90^{\circ}-r$.

Frank Harrison
Univ. of Tennessee
Division of Anatomy
150.-S. P. Glazenap, Matematicheskie i Astronomicheskie Tablitsy. Leningrad 1932, p. 214-215.
Glazenap states that in $\mathrm{K}\left(86^{\circ} 48^{\prime}\right)$ for 4.2744 , read 4.2746 . This is erroneous; 4.2744 is correct. The result is given correctly to 5D by H. B. Dwight in Electrical Engineering, v. 54,1935 , p. 711: 4.27444 . By two methods I deduced the approximation $\mathrm{K}\left(86^{\circ} 48^{\prime}\right)$ $=4.2744435354983311934941$.

This error of Glazenap has been twice reprinted in MTAC, namely: v. 1, p. 198, and v. 3, p. 268, and the reference on the latter page to corresponding errors in the first three editions of Jahnke \& Emde is therefore incorrect; and further there is now an error at this point in the 1945 edition of Jahnke \& Emde, as noted in MTAC, v. 3, p. 267.

4711 Davenport St. N.W.
John W. Wrench, Jr.
Washington 16, D. C.
151.-E. Jahnke \& F. Emde, Tables of Functions. New York 1945. Supplement. See MTAC, v. 3, p. 41.
P. 5, 1. 68^{13}, for 8392, read 8492;

1. 68^{14}, for 14067 , read 14267 ;
p. 56, 1. 7, for $d \mathrm{Ar} \mathrm{Ctg}$, read $d \mathrm{Ar} \operatorname{Ctg} x$.

Frank Harrison

Editorial Note: In the 1933 and 1938 editions, the corresponding corrections of p. 5 have been already noted, MTAC, v. 1, p. 397.
152.-T. L. Kelley, The Kelley Statistical Tables, 1948; see MTAC, v. 3, p. 301.

I call attention to three errors in my Tables, namely:
p. 6,1 . 21 , for $-2 t_{-2}$, read $+2 t_{-2}$;
p. 7, 1. 14, for $+u$, read $-u$;
p. $123,1.3, p=.9251$, the corresponding x, for 023827 , read 1.44023827.

Truman L. Kelley
153.-H. W. Richmond, "Notes on a problem of the 'Waring' type," London Math. Soc., Jn., v. 19, 1944, p. 38-41.
On p. 41, 1919 is erroneously listed among integers that are not the sum of four tetra-
hedral numbers, $n(n+1)(n+2) / 6, n>0$. The error is evident from the relation 1919 $=816+816+286+1$. The only integers between 1000 and 2000 which are not the sum of four tetrahedral numbers are 1007, 1117, 1118, 1153, 1227, 1233, 1243, 1314, 1382, 1402, $1468,1478,1513,1523,1578,1612,1622,1658,1678,1693,1731,1738,1742,1758,1767$, 1803, 1858, 1907, 1923, and 1933. Those less than 1000 have been given in the writer's "On numbers expressible as the sum of four tetrahedral numbers," London Math. Soc., Jn., v. 20, 1945, p. 3.

H. E. Salzer

154.-BAASMTC, Mathematical Tables, v. 1, second ed., 1946; first ed., 1931. See MTAC, v. 2, p. 122-123.

The 12D or 10D tables of polygamma functions appearing here, p. 42-59, were compared with corresponding tables in H. T. Davis, Tables of the Higher Mathematical Functions, v. 1, 1933, p. 291-349, and v. 2, 1935, p. 27-130. This comparison failed to reveal any discrepancies in the tables of the trigamma and tetragamma functions, but it did show four discordant entries in the tables of the digamma (or psi) function and eight discrepancies in the tabulated values of the pentagamma function.

These questionable data were recalculated to at least 22D, and the resulting approximations are as follows:

x	$d \ln (x) / d x$
13.2	2.6176176236894908532344
15.0	2.7410133283274603683867
15.3	2.7601767302883332781512
16.0	2.8035133283274603683867
	$d^{4} \ln (x!) / d x^{4}$
0.40	1.8202590339470944813865
24.4	0.0001294440446964046730
26.4	0.0001026770365268807324
29.4	0.0000747779765000473667
39.4	0.0000314756685899257128
42.4	0.0000253244586631614729
48.4	0.0000171006505141364404
50.4	0.0000151632695205997527

From these more accurate data it may be concluded that the BAASMTC table of the digamma function contains a rounding error at $x=13.2$, whereas at least three last-figure errors exist in Table 9, v. 1 of Davis's work. The three erroneous values correspond to $x=16.00,16.30$, and 17.00 in the notation of Davis, who tabulates $\Psi(x)$, which is equivalent to $d \ln (x-1)!/ d x$ in the notation adopted by BAASMTC and retained in this note. It should be noted that in Table 10, v. 1, p. 348 Davis gives correct 16D values of $\Psi(16.0)$ and $\boldsymbol{\Psi}(17.0)$. The discrepancies in the tables of the pentagamma function are all attributable to last-figure errors, each less than a unit, in the BAASMTC table.

The "error" of 0.500047 unit in the twelfth decimal place of $d^{4} \ln (x!) / d x^{4}$ at $x=29.4$ recalls the remarks of J. W. L. Glaisher as quoted by L. J. Comrie in N 72, MTAC, v. 2, p. 284-285.

4711 Davenport St., N.W.
John W. Wrench, Jr.
Washington 16, D. C.
155.-U. S. Coast and Geodetic Survey, Natural Sines and Cosines to Eight Decimal Places, 1942; see MTAC, v. 1, p. 11, 56, 64-65, 87. Now sold by the Superintendent of Documents, Washington at $\$ 3.00$ (instead of $\$ 1.75$ in 1942).
A. The Coast and Geodetic Survey has issued the following list of errers in this edition, which, with the errata we have previously published, are all corrected in copies (still dated
1942) now offered for sale:

Page	Function	Angle	Correct Value
44	\sin	$3^{\circ} 30^{\prime} 45^{\prime \prime}$	26630
45	\sin	$3^{\circ} 39^{\prime} 24^{\prime \prime}$	77756
108	\cos	diff. at top of column	75
154	\cos	$12^{\circ} 44^{\prime} 44^{\prime \prime}$	35944
190	sin	$15^{\circ} 43^{\prime} 47^{\prime \prime}$	09981
172, bottom of page, right side		$345^{\circ} \cos +$	

B. Mr. E. G. H. Comfort, Illinois Institute of Technology, who drew the above matter to our attention, notes that the 8th decimal of the value for $\sin 72^{\circ} 21^{\prime} 52^{\prime \prime}$ is one unit too small.

UNPUBLISHED MATHEMATICAL TABLES

76[C].-Clovis Faucher, Table de Logarithmes à 10 Décimales. MS. in possession of the author, 33 rue de Bel-Airs, Poitiers, France, xx, 574 p., beautifully written and neatly bound. $20.5 \times 31 \mathrm{~cm}$.
In this manuscript, loaned in 1948 for our inspection, Mr. Faucher tells us that he was "Géomètre en chef honoraire; ancien chef des services topographiques de la Côte d'Ivoire, de la Haute Volta et du Soudan français."

The main part of the table is arranged in three columns: (i) Numbers (N) in black; (ii) first five figures of $\log N$ in red; (iii) Logarithmes complémentaires (L.c.) in blue. The argument column is the red column, where the range of values may be said to be $0(.00001) .99999$, if decimal points are inserted. Corresponding to each of these values the antilogarithm is given in the first column, to 11 digits (rounded off from 13 digit calculation) up to .69999 , and to 10 digits (rounded from 12 digits) corresponding to $.7(.00001) .99999$.

In the blue column are the remaining five decimals to be added to the right of the corresponding red-column entry. There are some indications about differences and throughout are attached signs to refine last digits: +(equivalent to .25), - (equivalent to .50), \times (equivalent to .75).

Suppose that it were required to find the logarithm of $\pi \approx 3.141592653$. Then

$$
\begin{aligned}
N & =3141592653 \times \\
n & =3141521237-\text { (next below } N \text { in table) } \log n=49714 \\
N-n & =0000071416+
\end{aligned}
$$

next below 0000071415
corresp. Δ
1
Then $\log (N-n)=\overline{5} .85379-$ and L.c. $=\log (N-n)-\log n=\overline{5} .35665-$, corresponding to which in the \log column is 98727 whence the required result

$$
\log \pi \approx .4971498727
$$

Thus the table is a combination of antilogarithms and of a species of subtraction logarithms.
R. C. A.

77[D].-Ernest Clare Bower (1890-), Natural Circular Functions for decimals of a circle. MSS. in possession of author, Douglas Aircraft Company, 3000 Ocean Park Boulevard, Santa Monica, Cal. Listed and punched card copies are available at nominal cost from NBSINA, Univ. California, 405 Hilgard Ave., Los Angeles, Cal., and The Rand Corporation, 1500 Fourth Street, Santa Monica, California.
In F. Callet, Tables Portatives de Logarithmes, Paris, 1795, tirage 1819 there is a 15D table of $\sin x$ and $\cos x$ for $x=0\left(0^{q} .001\right) 0^{q} .5=0\left(0^{a} .1\right) 50^{g}=0\left(0^{c} .00025\right) 0^{c} .125$. This was

