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The inequality (8) may be reduced to

a- a'        V - V

a" - a' < V" - V
or,

a(V" - V) + a'(V - V") + a"(V - V) < 0,
or

(13)   i(¿-¿)+í(i-¿)+í(^-i)<0-

Multiplying both members of (13) by A'AA" gives

s(A' - A") + s'(A" - A) + s"(A - A') < 0

which is an expanded form of inequality (6) which was proved to be true.

By Theorem X the maximum error given by (12) also applies to the a„¡

table.
Since the yield on a bond may be found approximately by interpolating in

the a^\ table, the maximum error is given by (12).

Hugh E. Stelson
Michigan State College

1 It can be shown that the value of N obtained by interpolation is the exact value of re
if simple interest is used for the fractional interest period involved.

2 In W. L. Hart, Mathematics of Investment, second ed. Boston, 1929, p. 244, a proof is
given that the error is at most J of the interest rate per period.

3 The value of re = n\ + f (/ < 1 ) obtained in the a^\ table has the following useful
interpretation : / is the final payment due at the end of re + 1 interest periods.

4 See Theodore E. Raiford, Mathematics of Finance. Boston, 1945, p. 25, note,
and W. L. Hart, Mathematics of Investment, third ed., Boston, 1946, p. 75 and p. 138. In
these texts the following statement is made. Experience shows that it is safe to assume that
a value of I found by interpolation is in error by not more than -Ja of the difference of the
table rates used in the interpolation.

RECENT MATHEMATICAL TABLES

608[A, D, S].—G H. Goldschmidt & G. J. Pitt, "The correction of X-ray
intensities for Lorentz-polarization and rotation factors," Jn. Sei.

Instrs., v. 25, Nov. 1948, p. 397-398. 20.2 X 27.2 cm.

There are two tables. T. 1, Inverse Lorentz-polarization factor as a function of p = 2 sin 0;

(LP)-» = sin 20/(1 + cos2 20) = §p(4 - p2)V(2 - p2 + 1p4), for p = [0(.01)2; 4D]. T. 2,

Rotation factor D as a function of £ and f for equi-inclination conditions, £ = f£*/(l — £>2)*;

D/(\ - D2)i is given, 2-3 decimal places, for D = - 1, .2(.1).9, .95, .975.

Extracts from text

609[B].—Ludwig Zimmermann, Vollständige Tafeln der Quadrate aller

Zahlen bis 100 009 berechnet und herausgegeben. Fourth edition, Berlin

Grunewald, 1941, xix, 187 p. (Sammlung Wichmann Fachbücherei für

Vermessungswesen und Bodenwirtschaft, v. 8.) 19.4 X 24.9 cm.

In the publisher's preface we are told that Zimmermann died 15 Aug. 1938. Compare

MTAC, v. 2, p. 206-207; the errors of the third edition (1938), in T. Ill, there noted, here

persist. The second edition was published at Liebenwerda in 1925; and the first in 1898.

Zimmermann was also the author of: (a) Rechentafeln, grosse Ausgabe. Liebenwerda,

1896, xvi, 205 p.; second ed., 1901; third ed., 1906; fourth ed., 1923, xxxix, 225 p. (b) Re-
chentafeln, kleine Ausgabe. Liebenwerda, 1895; fourth ed., 1926, xxv, 38 p. (c) Tafeln für die
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Teilung der Dreiecke, Vierecke, und Polygone. Second enl. and impr. ed., Liebenwerda, 1896,

118 + 64 p. (d) Die gemeinen oder briggschen Logarithmen der natürlichen Zahlen 1-10009 auf

4 Decimalstellen nebst einer Productentafel, einer Quadrattafel und einer Tafel zur Berechnung

der Kathete und Hypotenuse und zur Bestimmung der Wurzeln aus quadratischen Gleichungen.

Zum Gebrauch für Schule und Praxis. Liebenwerda, 1896, 40 p. (e) Mathematische Formel-

sammlung . . . zur Vorbereitung für das Einjährig-Freiwilligen-Examen. Essen, Baedeker,

1910, iv, 55 p.

610[D, S].—J. D. H. Donnay & G. E. Hamburger, Tables for Harmonie
Synthesis, giving Terms of Fourier Series to one decimal at every millicycle

tabulated for coefficients 1 to 100, and fiducial cosine values to eight Deci-

mals. Baltimore, The Johns Hopkins University, Crystallographic

Laboratory, copyright 1948, [103] leaves. 21.6 X 28 cm. The leaves are

enclosed in a strong ring binder. Purchasable from Professor Donnay

at the Laboratory, $10.00.

The tables on 100 leaves give lOFcos X, for F = 1(1)100, X - 1(1)1000. The unit of

angle, 2ir/1000, is called a millicycle (raC). Since sin X = cos (X -f 750), the table also

gives lOFsin X. In all 200 000 values are thus available. They are represented by 25 000

entries arranged as follows: one page for every value of Fand 250 entries on each page.

On leaf [103] is a table of cos X, X = [1(1)250; 8D]; 1 mC = .36°. This is simply a
table of extracts from Earle Buckingham, Manual of Gear Design, Section 1, 1935. [See

MTAC, v. 1, p. 88-92]. The table on leaf [3] is equivalent to ID from Buckingham's table

and leaf [102] is equivalent to 3D from the same table.

A comparison of the 15D table of sines and cosines in F. Callet, Tables Portatives de

Logarithmes, Paris, 1795, revealed two last-decimal unit errors in Buckingham, namely:

cos 27 mC = .98564460 (not .98564459), and cos 232 mC - .11285638 (not .11285639).

The tables are intended to facilitate computations in problems of harmonic synthesis.

In structural crystallography, for example, it may be used for the summation of Fourier

Series representing either the electron intensity p(xyz) at a point xyz, or the structure factor

F(hkl) of a reflection hkl.

Example: p(xyz) = 22 2 A{hkl) cos 1000(«s + ky + lz)mC
h   t   I

+ 2 2 S BQikl) sin 1000(A* + ky + lz)mC.
A    t    I

The required multiples of the trimetric coordinates x, y, z are tabulated once and for all.

The angle (hx + ky + h) is calculated for every triplet hkl; in each case, the first three

decimal places give the X of the table.

Alternately the three-dimensional triple sums may be replaced by one-dimensional

single sums,

2 A {H) cos 1000i/ZmC + S B{H) sin 1000ffi¡TmC,
H H

by letting H = n% + nk -f- /, where re = 100 (or 1000) according as xyz are given to two

(or three) places, and

X = (re3z + n'y + nx)/n3.

The basis for the second method is that evaluating the electron density along a (one-

dimensional) row [re2«/] amounts, if re is sufficiently large, to evaluating it throughout the

whole three-dimensional cell.

Extracts from text

Editorial Note: The millicycle angular unit here used is § of a grade = .001 of a
gone = .1 of a Cir. See MTAC, v. 1, p. 40-41.
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611[E, H].—C. I. ROBBINS& R. C. T. Smith, "A table of roots of sin z = - 2,"
Phil. Mag., s. 7, v. 39, Dec. 1948, p. 1004-1005. 17.2 X 25.6 cm.

On writing z = x + iy and separating into real and imaginary parts this equation is

replaced by the pair of equations

f(x, y) = cosh y + ¡c/sin x = 0,        g(x, y) = cos x + y/sinh y = 0.

A 6D table of the first 10 non-zero roots in the first quadrant is given. These values were

calculated by Newton's rule in the form

/(* + Sx, y + Sy) « /(*, y) + Sx ~ + Sy — = 0,
dx dy

g(x + Sx, y + Sy) « g(x, y) + Sx— + Sy~ = 0
dx dy

Starting from values x, y these two equations determine Sx, Sy and thus improved approxima-

tions x + Sx, y + Sy to the roots. This process was repeated until the corrections did not

affect the eighth decimal. Consequently the roots are believed reliable to 6D. This table is

similar to that of A. P. Hillman & H. E. Salzer, giving 6D values of the first 10 zeros of

sin z - z, Phil. Mag., s. 7, v. 34, 1943, p. 575.

Extracts from text

Editorial Note: In MTAC, v. 2, p. 60-61, Jan. 1946, Mittelman & Hillman pub-
lished 7D values of the first four non-zero values of the zeros of sin z + s. In 1940 J. Fadle
published 5D values in Ingenieur-Archiv, v. 11, p. 129.    See also MTAC, v. 1, p. 141, 50.

612[G, K].—S. M. Kerawala & A. R. Hanafi, "Table of monomial sym-
metric functions of weight 12 in terms of power-sums," Sankhyä, v. 8,

June, 1948, p. 345-359. 23 X 29.5 cm.

This table is an extension of previous tables of symmetric functions of weights less

than 12 described in RMT 463 (MTAC, v. 3, p. 24). Each line of the table gives the coeffi-

cients of the polynomial in Si, S2, ■ ■ -, Sn which represents a given monomial symmetric

function S a, 'a, ' • • • where pi + pi + • • • = 12. Here Sk is the sum of the &th powers of

the as. For some reason the last line of the table has been omitted; that is to say, there is

no expression given for the 12-th elementary symmetric function 2 otiai ■ ■ ■ «12 as a poly-

nomial in the S's.

D. H. L.

613[I].—Herbert E. Salzer, Table of Coefficients for Obtaining the First
Derivative without Differences. (NBS, Applied Mathematics Series, no. 2.)

Washington, D. C, 1948, [ii], 20 p. 19.8 X 26 cm. For sale by the
Superintendent of Documents, Washington, D. C, 15 cents. See MTAC,

v. 3, p. 187-188.

The present set of tables is designed to expedite the numerical estimation of the values

of the derivative of a function, f{x), which has been approximated by means of the interpola-

tion formula of Lagrange. In 1944 the NBSCL under the direction of Dr. A. N. Lowan

provided a large volume of the coefficients in the Lagrange approximation formula

[M
f(xo + ph)~ 2 Ai^(p)f(x0 + in)

i--U(n-l)]

where [m] means the largest integer in m. (For a review see MTAC, v. 1, p. 314-315.)

If the derivative of both sides of this approximation is taken with respect to p there

results:
! lin]

/•'(*„ + ph) ~ ——- 2 6Y"W(*o + ih).
*C(*)*--Ii(»-i)]
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The present work provides tables for the coefficients in this sum. To quote the author:

"C;(n)(/>), or simply d, is a polynomial in p of the (re — 2)th degree, and C(n), or simply

C, is the least integer chosen, so that 6Yn>(/>) will have integral coefficients • • -. The accom-

panying table gives the exact values of these polynomials &^(p), for p ranging from

— [(re — l)/2] to [re/2]. For n = 4, 5, and 6, the polynomials CiM(p) are tabulated at

intervals of 0.01 ; for re = 7, they are tabulated at intervals of 0.1.

For « = 3, no table is needed, because we have the quite simple formula

fix, + ph)~\ l(p - i)f-i - 2pf° +(P + WiJ"
h

H. T. D.

614[I].—P. M. Woodward, "Tables of interpolation coefficients for use in

the complex plane," Phil. Mag., s. 7, v. 39, Aug. 1948, p. 594-604.
16.9 X 25.1 cm.

T. I: Ci(p, q) = ipq(p* - q2), for p and q = [0(.05)1; 7D], with coupled second differ-

ences—exact to 8D; T. II: Ct(p, q) = - [£g/(360)][4 + (p2 - 3g2)(3¿>2 - ç2)], for p and

q = [0(.05)1 ; 7D], also with coupled second differences. Fourth differences, which never

exceed 60, are not tabulated.

Extracts from text

615[L].—P. K. Bose, "On recursion formulae, tables and Bessel function

populations associated with the distribution of classical D2-statistic,"

Sankhyä, v. 8, Oct. 1947, p. 235-248. 22.7 X 29.3 cm.

On p. 247-248 are 6D tables of e~"h(x), e-*Ii(x) for x = 16.08, 16.2, 16.68, 16.92, 17.,
17.04, 17.16, 17.4, 18, 18.48, 16.16(.16)18.88 [except 17.6, 18.4], 19, [200 other values],
49.2, 49.28, 49.44, 49.6, 49.68, 49.92, 50.

In MTAC, v. 1, p. 226, we have given references to tables of these functions in (a)

BAASMTC, Math. Tables, v. 6, 1937, for x = [16(.1)20; 8D], S2; and (b) Badellino, 1939,
for x = [20(1)50; 9D].

As to the earlier pages, J. W. Tukey noted in Math. Revs., v. 9, p. 620: "The distribu-

tion in question was found by R. C. Bose, Sankhyâ, v. 2, 1936, p. 143-154. It can be put in

the form

P(L) =  fF xi+i\-<e-H*'+V>Iq(x\)dx, q = ip-l,

where 2L2 = ñpDi2 = ñpD2 + 2p, 2X2 = ñpA2 and A2 and D2 are the population and esti-

mated squared distances of two ^-varíate samples whose harmonic mean size is ñ." Values

of L are tabulated for P = .99, .95, .05 and .01, p = 1(1)10, that is, q = - è(è)4, and
X = 0(.5)3(1)6, 8, 12(6)24, 36, 54, 72, 108, 216, 432 to 2D.

R. C. A.

616[L].—C. H. Collie, J. B. Hasted, & D. M. Ritson, "The cavity
resonator method of measuring the dielectric constants of polar liquids

in the centimetre band," Phy. Soc, London, Proc, v. 60, 1948, p. 71-82.
17.8 X 25.9 cm.

On p. 78-79 is a 4D or 4S table of the real and imaginary parts of z~1Ji(z)/J0(z),

z = x — iy, for x = .5(.1)2, y = 0(.1)1, y ^ x. On p. 77 is a graph of the imaginary part of

the function.

617[L].—A. Ghizzetti, "Tavola della funzione euleriana T(z) per valori

complessi dell' argomento," Accad. Naz. Lincei, Atti, Rend., s. 8, v. 3(2),

1947, p. 254-257. 18 X 26.5 cm.
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Table of T(x + iy), x = 4(.1)5, y — 0(.1)1, to 5S. For interpolation the marginal values

3.9 + .2ni, 5.1 + .2ni, 4 - Ai + .2», 4 + 1.1» + .In, n = 0(1)5. See further Math. Revs.,
v. 8, p. 619 (S. C. van Veen).

618[L].—S. Goldman, Frequency Analysis, Modulation and Noise. New York,

McGraw-Hill, 1948. "Appendix F. Table of Bessel Functions of the first
kind of constant integral argument and variable integral order," p.

421-427.

This is a Table of /„(*) for x = [1(1)33; 4-5S], re = 0(1)2V - 1, 15 < TV < 37. It is
said to be of particular use in determining the sideband magnitudes in frequency and phase

modulation. That part of the Table n = 1(1)29, 15 < N < 35 is evidently abridged from

Jahnke & Emde's expanded abridgment (1938) of Meissel's table of 1895, because J. & E.'s

error in /«(21) is faithfully copied. The remaining part of the table, p. 427, was abridged

from the Harvard Computation Laboratory's Bessel Function calculations. See N99,

no. 7.

R.  C.   A.

619[L].—R. E. Greenwood & J. J. Miller, "Zeros of the Hermite poly-
nomials and weights for Gauss' mechanical quadrature formula," Amer.

Math. Soc, Bull., v. 54, Aug. 1948, p. 765-769. 15.2 X 24.1 cm.

The Hermite polynomials are defined by the relation

Hn(x) = (- i^d^e-z^/dx"

= (2xY - n{n - l)(2x)»-yi! + re(re - l)(re - 2)(» - 3)(2*)»-4/2!

Some writers, including many statisticians, prefer to use

hn(x) = e^d^e-l'^/dx»

as the defining relation for Hermite polynomials. The relation between these two sets of

polynomials is given by

Hn(x) = (- 2*)»re„(2**).

The approximate numerical integration formula for functions f(x) on the infinite range

(-co, -f- oo ) with the weight function exp (— x2) is

(1) i" e-^f(x)dx «a 2 W(*<.»)*/-°° i-i

where the set [x»,n| is the set of roots defined by Hn(x) = 0, and where the set [Xi,„| is

given by1 X,-,„ = 7r*2"+1re!/[.ff„'(*»,n)]2. If f(x) is a polynomial of degree (2re — 1) or less,

integration formula (1) is exact.2

The zeros {Xi,n\ for the polynomials hn{x), for re — [1(1)27; 6D] have been tabulated

by Smith.3 The corresponding zeros are given by Xi,n = 2-iX<,n.

Tables, 9-12D or S, are given of {xi,n} and of Christoffel numbers (X¿,nj for re = 1(1)10,

i = 1(1)5.

Extracts from text

1 G. Szegö, Orthogonal Polynomials, Amer. Math. Soc, Colloquium Pubis., v. 23, 1939,

p. 344.
2 Szegö, loe. cit., chap. XV; and C. Winston, "On mechanical quadratures formulae

involving the classical orthogonal polynomials," Annals Math., s. 2, v. 35, 1934, p. 658-677.
3E. R. Smith, "Zeros of the Hermitian polynomials," Amer. Math. Mo., v. 43, 1936,

p. 354-358. [Editorial Note: see MTA C, v. 1, p. 152-153; for varying definitions of H„(x),
see here, and v. 1, p. 50; v. 2, p. 25, 30; v. 3, p. 26, 167. Greenwood & Miller give no refer-
ence to the table of Reiz, reviewed in MTAC, v. 3, p. 26.]
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620[L].—U. S. Navy, Naval Research Laboratory, Extended Tables of
Fresnel Integrals. Boston, Mass., 470 Atlantic Ave., 1948, 7 + [6] hekto-
graphed leaves, 26.6 X 20.3 cm.

The Tables involve C(u), S(u), c¡(u) = Jl* cos (\irt2)dt = C(u) - \, Si(u) =

Jœ" sin (\irt2)dt = S(u) - i.

Table I is of C(u), S(u), LC(u)J, £S(u)J, \\_C(u)J + ÍS(u)J}i, lci(u)J, lsi(u)J,
\lci(u)J + [si(«)]2)*, for u = [0(.1)20; 4D or 4S].

Table II is of C(u) and S(u), for u = [8(.02)15.98; 4D].
Among tables of this kind are those of C(u) and S{u) for u = [0(. 1)8.5; 4D] in Jahnke

and Emde, 1945, American edition, which are in agreement with the tables under review

except for the Navy error in S(7.3), where for .3189, read .5189.

R. C. A.

621[L, M].—J. C. Jaeger, "Repeated integrals of Bessel functions and the

theory of transients in filter circuits," Jn. Math. Phys., v. 27, Oct. 1948,

p. 210-219. 17.3 X 25.3 cm.

JinAt) = fo'dtfo'dt ■ ■ ■ S0tJ„(.t)dt, T. I is of 2'Jin.r(t), for r = 1(1)7, t = [0(1)24; 8D].
*»(/) = fa°Ja{_2v(ut)yn(u)du, Jn(t) = f,TJ<¡í2v{ut)^n{u)du, T. II-III give 4D values of

*.(i), and *»'(/), for re = 1(1)7, t = 0(1)24. tf„(i) = |[*2n(0 + *2„+2(/)], T. IV gives 5D
values of ^„W.for n = 0(1)2, t = 0(1)24.

Extracts from text

622[L, Z].—P. I. Zubkov, "Primenenie universal'nogo raschetnogo stola

peremennogo toka dira tabulirovaniiâ otnoshenifà modifitsirovannykh

funktsiï Besselfâ" [The application of a universal alternating current

computer to the tabulation of ratios of modified Bessel functions], Akad.

N., SSSR, Izvestiià, Otdelenie tekhnich. n., 1948, p. 489-498.

The computer mentioned in the title is not described in the present paper. It appears

to be a sort of AC network analyzer with adjustable resistances, inductances and capacities.

The author mentions negative resistances from which one would infer the existence of two

or more amplifiers probably with feedback facilities.

The functions referred to are the familiar z/„_i(z)//„(z) whose well known continued

fraction development is exploited by the computer. Just how many terms of this develop-

ment the machine can use is not revealed. The values of n considered are n = ± .1. The

complex number z is of the form fix where x is real. Tables are given to 4S of the real and

imaginary parts of the functions for x = 0(.2)2. These tables were computed by hand.

Corresponding readings taken from the machine bear no superficial resemblance whatever.

With a certain amount of careful guesswork, values of the functions can be derived from

the readings. The agreement is said to be within 2 percent.

D. H. L.

623[M].—E. C. Bullard & R. I. B. Cooper, "The determination of the
masses necessary to produce a given gravitational field," R. Soc. London,

Proc, v. 194A, 1948, p. 332-347.

A(x) = 2((r/7r)>cos 2<rxexp [<t(1 - X2)] - (1/x), ¿(x, 0-*)4<{x, v) = v'^^f-^"^ + y2)'1

X exp [ - (x - yhYldy; A(r) - rf^e-^nTJis(pr)pdp.

T. 1 gives values of \(x) for a = 1(4D), 4(3D) and x = 0(.1)5, with modified sec-

ond differences; also for a = 1(4D) the values of Jlx\(xi)dxi; also 4D values of A(r) and

JorA(ri)dri, for r = 1. Graphs of X(x) for a = 1 and A(r) for r «■ 1. The column giving

\{x) for a = 4 cannot be interpolated.
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Beyond the limits of T. 1, the following expressions will give results accurate to four

places of decimals:

w\(x)-1/x2 - (3/2<7 - 1)M    irS<s"\(xi)dxi ~ Í7T + 1/x + (3/2<r - l)/3x3;

A(r) ~ - \/r2 - 3(3¡It - l)/2r\   S0r\(ri)dri ~ 1 + 1/r + (3/2t - l)/2r3.

T. 2, 3D values of f£\{x)dx, for intervals 0 to .25; .25 to .5; .5 to 1; 1 to 1.5; 1.5 to 2;

2 to 3; 3 to 4; 4 to 5; 5 to 10; 10 to 20; 20 to °o.
T. 3, ID values of frr2A.(r)dr, for intervals 0 to .23; .23 to .34; .34 to .44; .44 to .54;

.54 to .65; .65 to .83; .83 to 1.35; 1.35 to 1.59; 1.59 to 2.12; 2.12 to 2.54; 2.54 to 3.4; 3.4
to 5.05; 5.05 to 10.02; 10.02 to ».

Extracts from text

624[M].—Ft. G Hay, & Miss N. Gamble, "Five-figure table of the function
y¿°° e-'v-Ai2(y — ji)dy in the complex plane," Phil. Mag., s. 7, v. 39,

Dec. 1948, p. 928-946. 17.2 X 25.6 cm.

Except for two references to recent literature this paper is simply an edition for the

general public of the report in Nov. 1946, which we have already reviewed in MTAC, v. 2,

p. 344-345. In the reprint a small misprint has been introduced, p. 931, 1. — 1; for 3.3,

read 3.2. We are told that a full description of the method used in the computation is due

to G. G. Macfarlane, "The application of a variational method to the calculation of radio

wave propagation curves for an arbitrary refractive index profile in the atmosphere," Phys.

Soc. London, Proc, v. 61, July 1948, p. 48-59. A reference is also given to P. M. Woodward,

Phil. Mag., s. 7, v. 39, Aug. 1948, p. 594-604 (RMT 614), for his method of using coupled
differences in bivariate interpolation for a function of a complex variable. A single-page

sample of Woodward's tables appeared in the 1946 report of Hay & Gamble.

R. C. A.

625[Q].—Paul Herget, The Computation of Orbits. Published privately by
the author, University of Cincinnati, and lithographed by Edwards

Brothers, Inc., Ann Arbor, Michigan, 1948, ix, 177 p. including 24 p. of
tables. Light cardboard binding, 22 X 28 cm. $6.25.

There are so few works on the computation of orbits and perturbations in English, while

foreign works are so thoroughly out of print, that Herget's highly condensed but surprisingly

comprehensive treatment of the subject must perforce be welcomed wherever advanced

astronomy is studied. Some devotees of Leuschner's modification of Laplace's method

will be stunned by its omission, but Herget has treated the various methods of computing

preliminary orbits with his own independent and experienced approach. His inclusion of

numerical differentiation and integration, special perturbations, and the application of

Hansen's method of general perturbations as well as the computation of preliminary and

corrected orbits in so small a volume is remarkable. Compactness is gained by the use of

vector notation, unfortunately at times because of the difficulty in distinguishing vector

from scalar font. The few, highly specialized, tables are also extremely compact and most

of them require second difference interpolation. Most of these tables are available elsewhere

in various forms.

The book should contribute appreciably to the preservation of orbit work in present-day

astronomy.

Table I (3D) gives constants for correcting rectangular coordinates of the sun from an

origin at the center of the earth to the position of the observer. Arguments: astronomical

latitude and selected Observatories.

T. II is a critical table (4D) of Everett second differences interpolating coefficients.

This interpolating formula is often useful in tables where the fourth differences can be

neglected, and especially where also the second differences are tabulated.

If S is the chord between positions in a parabolic orbit at times /,• and t, and solar dis-
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tances r¿ and r¡, then T. ILT (7D) gives 5/(r,- + r¡) = ?|f as a function oí r¡ — 2k(t¡ — t,)/

(ri + r¡)i, 0(.01).6; it gives also y, the ratio of the sector area to triangle area, for the same

argument. In adjacent columns T. Ill (7D) gives the solution y of the equation

y3   _   yS   _   hy   _   /j/O    _   Q

with argument h = 0(.01).6, and also Ai/o used in numerical approximating. These tabulated

quantities are useful in the Gaussian method for calculating parabolic orbits.

T. IV (7D) gives, both for ellipse and hyperbola, two highly specialized quantities used

in solving Lambert's equation and used in Gauss's method mentioned above. Included also

in T. IV is the function/, (6D), where

fq - 1 - (1 + 22)-»

with argument q = — .03(.001) -+- .03. This function occurs in Encke's method of special

perturbations.

In relating true anomaly with time in a nearly parabolic orbit, either elliptic or hyper-

bolic, certain auxiliary quantities, A, B (8D), C (7D), and D (7D), given with argument

A = 0(.0001).3, in T. V reduce the numerical work involved.

T. VI gives the interpolating coefficients to be used in tables of double and single

numerical integration in an "Everett" form, where only even-order differences "on the line"

need be tabulated. The argument is re = 0(.001)1, the fraction of the interval, for the coeffi-

cients (6D and 7D) of the second and lower order differences. Coefficients (5D) of the fourth

and sixth differences are given at the end of the main table.

Herget states: T. VII "is an 'optimum-interval' table which gives 1/r3 with the argu-

ment r2. The interpolating formula is

F(r2) = F„ - N(Di - ND2)

where N consists of all of the portion of r2 which is not printed in full-size type in the r2

column." The quantities F0, Dt, and £>2, to seven significant figures (8D or 9D), are given

with argument r2 = 4(.01 )40, where the second or the first and second decimals are small-size

type. The table covers only three pages!

[T. I is an abbreviation of a table by E. C. Bower in Lick Observatory, Bull., v. 16,

1932, p. 41; parts were given earlier in the British Nautical Almanac.—T. II, VI, see J. D.

Everett, BAAS, Report 1900, p. 648-650; E. T. Whittaker & G. Robinson, (a) A Short

Course in Interpolation. London, 1923, p. 40; (b) The Calculus of Observations. . . . 1924,

p. 40.—T. III. For Ay, see RAS, Mon. Not., v. 90, 1930, p. 814; rf is condensed from T. 26
in J. Bauschinger, Tafeln zur theoretischen Astronomie, second ed. by G. Stracke. Leipzig,

1934.—T. V, Logarithmic equivalents are given by A. Marth, Astron. Nachrichten, v. 43,

1856, cols. 121-134.—T. VII, see, for example, British Nautical Almanac 1933, Table X,

"Planetary coordinates for the years 1800-1940."]

Fred L. Whipple
Harvard College Observatory

Editorial Note: On Jan. 6, 1949, we received from Professor Herget a "First List of
Errata and Addenda" containing 34 entries.

626[U].—Istituto Idrografico della Marina, Tavole H per il calcólo

delle Rette d'Altezza. (Publication No. 3118.) Genoa, 1947. xxv, 30 p. and
2 charts. 17.1 X 24 cm. 600 lire.

This attractive small volume, bound in tan cloth, was prepared, according to its preface,

to replace "Tavole F" which was out of print. Although no information on the point is

included in this volume, one may reasonably suspect that "Tavole F" was an Italian reprint

of the German "F-Tafeln" \_MTAC, v. 2, p. 81-82]. In any case, the preface states specifi-

cally that this volume, save for a few additions and changes in the explanatory material

and a few examples, is a direct copy of Tavóle A B per le rette di altezza, a publication of the
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Istituto Geográfico Militare, which was in turn made up of the table of S. Ogura, and the

azimuth diagram of A. Rust.

Thus this table may be compared to H.O. no. 208 (Dreisonstok) \_MTAC, v. 1, p.

79-80], with the inclusion of Rust's Azimuth Diagram permitting a reduction in the amount

of material in Tables I and II. The astronomical triangle is divided into two right triangles

by a perpendicular dropped from the zenith upon the hour circle of the celestial body ; N

is the length of this perpendicular and K is the declination of its foot. In the usual American

notation, in which L, d, t, h, Z are the latitude of the observer, the declination, hour-angle,

altitude and azimuth of the celestial body, the formulae used to compute the values in

Table I are:

tan K = tan L sec t,        and        cos N = sin L ese K.

Table I is a double-entry table with vertical argument, L = 0(1°)65°, and horizontal

argument, 12 values to a page, / = 0(1°)180°; for each argument pair are tabulated the

values of A = 106 log sec N to 0.1 for t = 0(1°)20° and 160°(1°)180° and to the nearest in-

teger for intermediate values of /, and of K to O'.l for t = 0(lo)180°.

Table II is one of the values to the nearest 0.1 of 105 log sec (K — d) for (K — d)

0(1')10° and to the nearest integer for (K - d) 10°(1')80°, and of 10s log ese h to the nearest

integer for h = 10°(1')80° and to the nearest 0.1 for h = 80°(1')90°.

h and Z may be obtained from these tables by the use of the formulae

105 log csc re = 106 log sec N + 106 log sec (K - d),

106 log csc Z = 106 log csc / + 105 log sec d — 105 log sec re,

or Z may be obtained from the Rust diagrams.

These tables have the common disadvantage of having the values corresponding to a

single latitude scattered over all of the pages of Table I. Also they are useful only between

65°S and 65°N latitudes. They have the great advantages of simplicity and compactness

and they can be used for all four of the basic problems of celestial navigation : the computa-

tion of altitude, of azimuth, the identification of stars, and the computation of great circle

courses.

It might be added that the end papers in the front and back are very nice examples of a

repetitive pattern involving a number of objects common in the navigator's world; these

papers have no particular value in navigation but they do add to the attractiveness of the

small volume. There are doubtless many navigators who would rather have some of the

frequently used small tables, refractions, etc., on the inside covers and reserve the fine

printing for the end papers of volumes on art and history.

To obtain an estimate of the accuracy of the tabular values, 1040 values of A in Table I

were examined and 171 values were found to be in error. However, all of these errors were

rounding-off errors of one unit in the last place given, except for a single error of two units.

This would indicate that Tavole H is slightly more accurate than H.O. no. 208 (Drei-

sonstok).

Charles H. Smiley
Brown University

627[U].—Lapushkin, Morekhodnye Tablifsy 1943g [Nautical Tables for the
year 1943], Leningrad and Moscow, Hydrographie Administration,

Military and Maritime Fleet, USSR, 1944. lxiii, 245 p. 16.5 X 25.7 cm.
+ 13 cards 15.2 X 24.9 cm.

This collection of tables was designed for the use of the surface navigator and is based

upon an earlier publication of the same name, edited by V. V. Akhmatov and published

in 1933, with second and third editions appearing in 1934 and 1939. It is somewhat similar

to, but rather more extensive than, the tables in Bowditch, American Practical Navigator.

There are 57 pages of explanation followed by 59 tables, not counting those on the cards,
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found in a pocket on the inside of the back cover. Actually tables 44 to 59 inclusive are

almost exclusively conversion tables, time to arc and conversely, inches to millimeters to

millibars, degrees Fahrenheit to degrees Centigrade, etc.

Tables 1-6 are 4D: 1-2, logarithms and antilogarithms; 3-4, addition and subtraction

logarithms; 5-6, natural values for 0(10')90°, and logarithmic values for 0(r)90°, of the six

trigonometric functions.

T. 7 is a collection of 3D tables corresponding to T. 1-6.

T. 8 gives the 4D values of log sin2 it and sin2 |c for t = 0(1')180°. Sin2 it will be recog-

nized as the familiar haversine. T. 9 and 11 give the corrections to OM to observed altitudes

5° to 90° of the lower limb of the sun and of stars to take care of refraction, height of eye 0,

10(2)60 feet, and semi-diameter of the sun, the latter in T. 9 only. T. 9a gives the additional

correction necessary to take into account the variable semi-diameter of the sun and T. 10

tabulates the values of the diameter of the sun on selected dates of the year.

T. 12 and 13 give the corrections to O'.l to be applied to the altitudes of the lower and

upper limbs of the moon for refraction, semi-diameter, parallax and height of eye 20 feet. T.

12a-13a are identical and provide the corrections necessary to take into account heights of

eye other than 20 feet, 8(2)60 feet. T. 14 gives the dip of the horizon to O'.l for height of eye

0(0.5)3(1)18 meters; it is probable that the user will find the change of units, from feet in

T. 12a and 13a to meters in T. 14, confusing. One wonders also whether 20 feet will not be

rather a small height of eye for the average sea-going vessel. T. 15 provides the corrections

to be applied to an altitude measured from a shore line rather than from a visible horizon.

T. 16 yields the corrections to O'.l for refraction for low altitudes -10'(2')1°30'(10')5°,

as well as for other altitudes 5°(20')10o(30')12t,(r)25°(2<')37o, 40°(5°)80°, 90° for a standard

temperature of 10°C. and a standard barometric pressure of 760 mm. of mercury. T.

16a-16b give the corrections to be applied to the values taken from T. 16 for temperatures

— 20°(5°)40° and barometric pressures 720(5)780 mm of mercury respectively.

T. 17-19 are intended for use in determining the correction to the meridian of altitudes

observed near the meridian. The formula used is

C = (200 sin2 it)/K arc 1' - §C2 tan H arc 1'

where K = 100 tan L — 100 tan d, and H is the approximate meridian altitude. T. 17 is a

critical table of values of 100 tan x for x, 0 to 90°, allowing one to evaluate K quite easily.

T. 18 is a double-entry table providing the first (and often the only significant) term to O'.l

with arguments K and t. T. 19 yields the second term to O'.l with arguments, the approxi-

mate value of the first term and the approximate meridian altitude.

T. 20 gives the range in hours and minutes for the use of near-meridian altitudes with

arguments latitude 0(5°)40°(4o)60°(2°)80o and declination, same name and opposite name,

0(5°)20°, 24°. T. 21, intended to be used in correcting the time of culmination, gives values

of 15.28 tan x to .01 for x = 0(1°)79°. T. 22 gives the correction to .01 to be applied to an

altitude measured near the meridian to obtain the corresponding meridian altitude.

T. 23-24 give the hour angle to the nearest minute of time and the altitude to 0°. 1 of a

celestial body on the prime vertical with declination r(r)24°(2°)52°(4°)60° at a point in

latitude l°(lo)40o(2o)80°. T. 25-26 give the change in altitude to O'.l in one minute of time

and the interval of time to 03.1 corresponding to a change in altitude of 1', for latitudes

0(10°)80° and azimuths 5°(5°)50°(10,>)90o.
T. 27, well hidden two thirds of the way through the volume shares with T. 8, one third

of the way through, honors in importance as a navigating table. It occupies 23 pages and

is intended to be used with the formulae given below in the usual American notation where

t, d, L, Z and h are the hour angle and declination of the celestial body, the latitude of the

observer and the azimuth and altitude of the celestial body:

T(K) - T(d) + S(t), T(Z) = T(t) - S(K) + C\K - L\, T(90° - h) = T\K - L\ + S{Z).

The tabulated quantities, each given to the nearest integer, are:

C(x) = 2(10)4 log csc x,    S(x) = 2(10)4 log sec x,    T(x) = 2(10)4 log tan x 4- 70725,
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for x = 0(1')90°. These formulae correspond to a division of the astronomical triangle into

two right spherical triangles by a perpendicular dropped from the celestial body upon the

meridian. K is the declination of the foot of the perpendicular.

T. 28-29 give the apparent azimuth angle to 0°.l of the rising and setting upper limb of

the sun for latitudes 0(5°)20°(1°)75° and declination, same name as latitude and opposite

name, 0(1°)24°.

T. 30-33 give respectively the change in longitude resulting from a 1' change in latitude,

the change in latitude corresponding to a Is change in time, and the changes in latitude and

in time for a 1' change in altitude. T. 34 provides the values to O'.l of the difference of

latitude and departure corresponding to a distance 0(1)100 nautical miles for course angles

1°(1°)90° [courses 1°(1°)360°]. T. 35 gives the difference in longitude to .01 corresponding

to a departure 1(1)9, 100 and a mid-latitude 0(lo)30o(0o.5)60o(0o.2)70o(0°.l)81o. T. 36 is

one of meridional parts based on Bessel's formula; values are given to .1 for latitudes

0(1')89°59'. T. 37, 37a-37b are for navigation along an arc of a great circle; they provide

the latitude i of a point on the great circle path corresponding to a longitude X as a solution

of the equation:

tan L = sin (X — Xo) tan Co,

where Xo is the longitude of the nearer point of the path on the equator and Co is the course

along the great circle at that point. Table 38 gives the distances to .01 of an object from two

points by two bearings measured with respect to the ship's course at these two points, and

the distance to .01 from the point where the second bearing was taken to the point of closest

approach to the object, each distance being given in terms of the distance run between the

first and second bearings.

T. 39a is a double-entry table giving the speed of sound in sea water to the nearest

integer in meters per second corresponding to a salinity of 0(5)40 per cent and a temperature

of 0(5)30 degrees Centigrade. T. 39b is another double-entry table giving the correction to

be applied to the depth 5, 10(10)500 meters found by an echo-sounding device when the

speed of sound varies from the standard for the device by 5(5)100 meters per second.

Turning to the cards which are contained in a pocket on the inside of the back cover,

Nomogram (N.) I gives the correction of an altitude to the meridian; it may be used instead

of table 18. N. II is designed to permit the plotting of a position line from an azimuth ob-

servation; the example given to illustrate the use of the nomogram appears to be in error.

If one uses h = 19° instead of 10° as given, one obtains the answer given. The numerals on

this particular nomogram are almost illegible, even in a good light. N. Ill provides azimuth

angle from altitude and conversely, when local hour angle and declination are known. N. IVa

yields the distance at which an object of known height above sea level can be seen by a

person whose height of eye above the ocean is known. T. IVa and lVb give the distance to

the visible horizon for heights of eye in feet, 0 to 23000, and in meters, 0 to 5100.

T. V gives the distance in miles to .01 with arguments, minutes of time elapsed 1(1)10

and speed in knots 1(1)60. T. Va gives minutes of time to .01 with arguments miles 1(1)10

and speed in knots 1(1)60. This latter table appears to be superfluous and impractical. All of

the information in it likely to be of value is contained in T. V. One finds difficulty in imagin-

ing a circumstance where one will need to know the time to a hundredth of a minute required

to travel an integral number of miles at an integral number of knots. However the criticism

of superfluity can be levelled at a number of o'ther tables in this volume.

T. VI-VIIb and N. Vila are for computations made to allow for the ship's log and

currents. T. VIII and N. Villa provide corrections to the ship's course. There are five tables,

IXa, IXb, etc., yielding the distances of objects from observed vertical angles. T. X is pro-

vided for computation involved in manoeuvering.

The volume is well bound in fabrikoid and the paper is rather better than was formerly

found in Russian publications.

Charles H. Smiley


