
486 automatic computing machinery

80[F].—A. Gloden, Nouvelle extension des solutions delà congruence x* +1 = 0

(mod p) pour p entre 6-106 et 107. Mss. in possession of the author, 11 rue

Jean Jaurès, Luxembourg, and in the Library of Brown University.

This manuscript table gives solutions x of the congruence mentioned in the title for

approximately 1300 primes p beyond the limit 600000 set by previous tables 1 and under

ten millions. With a few exceptions, only one solution x is given for each p (instead of the

usual pair) and in each x < 40000. The table is a byproduct of the results of factoring num-

bers of the form x4 + 1.

D. H. L.

1 For references to previous tables of this sort see .MT^IC v. 1, p. 6, v. 2, p. 71, 210,
v. 3, p. 96.

81[F].—A. Gloden, Table de factorisations des nombres N* + 1 pour N < 400.

Mss. in possession of the author, 11 rue Jean Jaurès, Luxembourg, and

in the Library of Brown University.

The table of Cunningham » giving the factors of N* + 1 for N < 200 is extended in

this manuscript not only by doubling the upper limit of N but also by raising limit 100000

of the smallest prime factor omitted to 600000. Of the 400 entries of the table 140 are com-

plete factorizations, 213 are composite but incompletely factored, while only 47 are of

entirely unknown character, beyond the fact that their factors lie above 600000. The

smallest number of this latter kind is |(438 -f 1) = 5844100138801. The author hopes to

raise his 600000 to 800000 by extending his already extensive tables of solutions of the

quartic congruence2 x4 + 1 = 0 (mod p).

A comparison of this table with that of Cunningham reveals the following errata in the

latter.

p. 140        y = 86      insert the small factor 61057

y = 148    delete the factor 97

p. 141        y = 125    for semicolon read full stop.

D. H. L.

1 A. J. C. Cunningham, Binomial Factorisations, v. 1, London 1923, p. 140-141.
2 See MTAC, v. .2, p. 71-72, 210-211, 252, 300.
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Technical Developments

Our contribution under this heading, appearing earlier in this issue, is "The solution

of simultaneous linear equations with the aid of the 602 calculating punch," by Frank M.

Verzuh.

Discussions

A New General Method for Finding Roots of Polynomial Equations

The problem of finding all of the roots of polynomial equations of fairly high degree

arises so frequently that a routine for accomplishing this automatically on a high-speed

digital computer would be of considerable practical value. However, for every one of the

standard methods for finding the roots of a polynomial equation, there are some exceptional

cases in which the particular method applied fails to work.

Horner's method and Newton's method require a good initial approximation, to prevent



AUTOMATIC   COMPUTING   MACHINERY 487

the resulting sequence of approximations from diverging (as in the example/(x) = x3 — 5x,

where Xo = 1) or involving division by zero. The method of false position will fail completely

for complex roots and for real roots of even multiplicity. Both Lagrange's method and the

method of Sturm functions fail for complex roots. The Graeffe method will furnish the abso-

lute value of each root and the total number of roots having each absolute value, but it will

not give the roots themselves if there are several complex roots of equal modulus. Since in

the case of real polynomials the complex roots always occur in pairs of equal modulus,

further refinements of the method are necessary.1 The refined methods either fail or become

extremely complicated in the case of several pairs of roots of equal modulus. In using the

Graeffe method efficiently, it is also necessary to exercise considerable judgment to know

which one of the possible modifications to use or to know when to stop the squaring process.

Bernoulli's method does not converge if there is more than one root of largest absolute value.

A modification of Bernoulli's method 2 will give the absolute value if there are re roots having

this absolute value, but a different method is required for each different re. Also, considerable

judgment must be exercised to know which method to use or when to change methods.

In the case of a mathematician working with a desk computer, exceptional cases will

not cause much trouble, since they occur rarely, and, by the use of intelligent judgment,

they can be detected and an appropriate change of method made. But it would be an im-

posing task (even without considering the limitations necessitated by the proposed memory

sizes of all the digital machines now under construction) to set up routines for detecting and

handling every one of the possible combinations of exceptional cases that can arise. It would

be of advantage to have a single method which will always give all of the roots, regardless

of their positions or multiplicities.

The method outlined below is a first attempt at such a universal method. It is admittedly

not a speedy or efficient one, since, in fact, it would require a prohibitive amount of time to

carry out the method except on high-speed digital calculating machinery, and even on these

machines the process would be time consuming. But it has the advantage that regardless of

the nature of the original polynomial, this method will always converge to a root, to as much

accuracy as the machine uses. Furthermore, the convergence always takes place within a

fixed number of steps (independent of the degree of the polynomial equation).

After finding the "first" root, the equation can be reduced in degree by removal of this

root and the other roots found by repeating the same routine. Thus, the entire set of roots

and their multiplicities can be found by a machine without the necessity of any human inter-

vention during the problem.

The proposed method is as follows: Given any point p„ which is the reth approximation

to a root, the following operations produce the (re + l)th approximation. Expand the poly-

nomial around the point pn by synthetic division. Then, by performing the Graeffe process

a fixed number of times, find (to some known degree of accuracy in terms of relative error) R,

the absolute value of the root of the transformed equation which is smallest in modulus.

Since R is a function of pn, it will be denoted by R(pn), and geometrically it is the distance

from the point p„ to the nearest root of the original polynomial.

The number actually obtained by applying the Graeffe root-squaring process a fixed

number of times will be denoted by R*(pn), where (1 + dn)R*(pn) = R(pn), and by using

enough significant figures in the synthetic division and the Graeffe process it is possible to

insure that the error term d„ satisfies [d„| < < 1.

Since there will be at least one root of the polynomial equation near the circumference

C„ of the circle of radius R*(p„) about the center pn, if a suitable set, S„, of points (such as

the vertices of a regular inscribed heptagon or octagon s) on C„ are chosen, Sn will contain

at least one point s such that R*(s) < iR*(p„). Choose any one, 5 (e.g., the first one which

is tried) of these points, and call it p„+i.

Starting with the initial approximation pa = 0 and finding each successive pn by itera-

tive applications of the above procedure, one can easily verify by induction from R*(pni.¡)

< iP*(Pn) that R*(pn) < 2~"R*(p0).

Then, if p denotes a root of the original equation which is nearest to pn, it follows

that \p\ > R(Po) = (1 + d„)R*(p0).
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The relative error of p„, considered as an approximation to p, is

\P« -P\ m RiPnl      (1 + d„)R*(pn)      (1 + dn)2-"R*(Po) _ 1 +dn        ^ 2_n

\p\ \p[   '- (1 +do)R*(p0) -    (l+do)R*(Po) 1+do

It is clear that on a binary computer the reth approximation pn is good to about re sig-

nificant figures, if the computer carries several extra significant figures in the calculation

to assure that | d„ | is always sufficiently small.

This method is universal in that it does not depend on the location or multiplicities

of the roots or on the degree of the original equation.

Since the Graeffe process easily gives the number of roots having the absolute value R,

the multiplicity of the root to which p„ converges would be apparent without further

calculation.

Complex numbers can arise in the course of the calculation, even when the original

coefficients are real numbers. For this reason, and also because very large powers of 2 or

10 can arise as exponents, the use of corresponding complex, floating-point addition and

multiplication computer subroutines will be necessary. Such subroutines make it possible

for the original equation to have complex coefficients covering a very wide range of magni-

tudes without involving extra programing.

The time required to find one root by this method (as calculated from the number of

multiplications and additions) will be proportional to the square of the degree of the original

polynomial. It follows that the time required to find all roots will be proportional to the

cube of the degree of the polynomial.

Several modifications of this method could be made which would speed up convergence,

but probably not sufficiently to make the method actually feasible for extensive machine

use. The constant §, the number of points in 5», and the degree of accuracy to which R

should be calculated, could be adjusted to minimize the time. Also, it would save time to

test for convergence during the computation rather than to iterate a fixed number of times.

The author wishes to express his appreciation to Dr. L. B. Tuckerman, Jr., Dr. E. W.

Cannon, & Mr. George Gourrich, all of the NBS, for their suggestions and assistance in

developing this method.

Edward F. Moore
Brown University

1E. Bodewig, "On Graeffe's method for solving algebraic equations," Quart. Appl.
Math., v. 4, 1946, p. 177-190.

2 Bernard Dimsdale, "On Bernoulli's method for solving algebraic equations," Quart.
Appl. Math., v. 6, 1948, p. 77-81.

3 The choice of an octagon will allow enough overlap to permit this method to converge
even if |d„| is fairly large.
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