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The Solution of Simultaneous Linear
Equations with the Aid of the 602
Calculating Punch

I. Introduction.—The method of solving simultaneous equations de-
scribed here is the basic elimination method with certain modifications and
improvements. Specifically, the usual elimination method requires the use
of a “back-substitution” procedure to evaluate the remaining (» — 1) un-
knowns after the nth unknown is determined. This ‘‘back-substitution’
procedure is a departure from the basic elimination formula and requires a
change in the elimination technique. In the proposed method ‘‘back-
substitution” is eliminated, and the same basic elimination procedure is
repeated throughout. After z successive reductions, one obtains the values
of the # unknowns on 7 corresponding punched cards.

This improvement is effected by the use of an augmented matrix of some-
what greater dimensions. The character of the particular augmented matrix
is determined by the desired end result. In certain cases it is necessary to
obtain only the values of the respective unknowns. Other physical problems
are such that the matrix of the coefficients of the unknowns remains invari-
ant, whereas the matrix of the constant terms is varied and several solutions
are required for the given coefficient matrix. Finally, in some cases it is
desirable to compute the inverse of the given matrix of the coefficients of the
unknowns. The corresponding variations in the composite matrix for each
of these three cases is given in the following mathematical discussion.

The choice of this modified elimination method as the basic scheme to
be mechanized was further dictated by its direct nature. In contrast to the
indirect iteration procedures, only one application of the method is necessary
to obtain the desired solutions with an accuracy consistent with the number
of significant figures in the given matrices and the associated round-off error
incurred. There is never a question of the lack of convergence of the method
or even the slowness of convergence of the method.

Much has been written regarding the magnitude of the round-off errors
incurred in such an elimination procedure.! 22 Since these derivations of the
magnitude of the possible round-off errors are based on maximum value
criteria, they are very pessimistic. Fortunately, in most practical cases en-
countered, this error is small. The retention of one, or at the most two, extra
guard figures is frequently an adequate precaution against the accumulation
of round-off errors.*

II. Mathematical Discussion.—Consider the set of simultaneous linear
equations,

X1 + QX + -0 Qe = by
1%y + Qoo + - - QonXn = b2
an1X1 + Qn2X2 + crct OpnXn = bm
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454 THE SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

which may be rewritten in matrix notation as
AX = B,

in which 4 is a matrix of order (# X #n) and X and B are single column
matrices representing vectors of the nth order.

In the usual elimination method, the equations are so arranged that ay
is not zero and the first equation is divided by ay;. By successively subtracting
ax1 (where ax; represent the leading column coefficients of the last (n — 1)
equations) times this new equation from each of succeeding (» — 1) equa-
tions, x is eliminated from these (# — 1) equations. If the resulting (n — 1)
square matrix is similarly treated, x, will be eliminated from the last (n — 2)
equations. After (z — 1) such reductions, we have a single equation relating
the last unknown and a constant term, i.e.,

hnnxn = Cny

which may be solved for x,. This value of x, may be substituted back into
the next-to-the-last equation relating x,—; and x,, and the value of x,_, ob-
tained. In a similar manner the remaining unknowns, x, s, Xn—3, *** %2, X1,
may be evaluated by ‘‘back-substitution.”

This “back-substitution’” procedure may be avoided by the use of the
following composite matrix:

Tan a2 a3+ Ga | bl,n+1
A1 Q22 Q23 °°*° Q2n { bz. 41
n l
|
I
,L Qn1 Qn2 Qn3 °° " Gan I bn. n41
T B T .
. —1 0 0 ----0 | O
0O -1 0 - 0 | 0
} .
" \
o 0 01| 0
" ¢ n >

which may be rewritten in matrix notation as:

l
4 | B
_———)———
-1 | o

If the same basic forward elimination operations are applied to this com-
posite matrix for # successive reductions (see later discussion of Machine
Computation for exact details of these operations), we obtain a matrix of
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the form:
1 ki ks - hin | hBynnr
0 1 h23 e hzn || hz.n+1
|
|
0 0 o ----1 [
(2) _____________ l _____ ’
00 0o ----0 | 2
00 0 0 | %o
| .
I
l
: |
00 o ----0 | %Xn

in which the desired #» unknowns appear in column (n + 1) without the use
of the ‘‘back-substitution’ procedure.

A further consideration of the matrices of (1) and (2) will reveal that
certain terms of the negative identity matrix —I contribute nothing during
the above elimination process. These terms are those below the main
diagonal. Therefore, the ‘“‘unit upper triangular matrix”” may be used with
an economy of space and an increase in speed of operation.

In certain physical applications sets of simultaneous equations occur in
which the coefficient matrix 4 is a constant but the constant term matrix B
assumes different values for each set of equations. Clearly, such a system
of equations is directly amenable to solution. In fact, the entire group of m
sets may be simultaneously evaluated with an identical procedure using the
following composite matrix:

a1 G2 Q13- Gin | Dintr DOrnt2 = " Dinim
Q21 Q22 Q23 °°** G2a |l bonpt bante s bonim
l .
| .
| .
An1 Qn2 Qp3 Ann | bn n+1 bn.n+2 bn n4m
______________ l.________.________._._
-1 0 0 -0 | 0 0 0
-1 0----0 | O 0 0
—-1----0 | 0 0 0
-
|
I

This matrix resembles (1) except that additional columns have been added
to both the B and O matrices. The reduction procedure is identical with that
described above except that 2#(m — 1) additional cards are needed.
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The evaluation of the inverse of a matrix may be readily accomplished
by this method. The decision as to whether a direct solution is to be obtained
or whether the inverse matrix is to be evaluated depends upon the physical
problem represented as well as the relative magnitudes of m and n.

The inverse matrix provides an accurate indication of the sensitivity of
the solution to small changes in the coefficients of 4 and B. In addition, the
unknowns may be readily evaluated for various values of B by means of the
following equation:

X = A"'B.

The actual number of multiplications involved in this matrix multiplication
is determined by the respective values of m and n. It is sometimes advisable
to solve the following composite matrix:

@3) e el
(0]

If the same basic elimination procedure is followed, after # reductions the
values of the unknowns will appear in the column of the original O matrix
located under the B matrix. Furthermore, the inverse matrix A~ will appear
in the original (z X 7)O matrix located under the I matrix.

The B matrix and its associated single-column O matrix may be omitted
from (3), and only the inverse of A will be obtained. However, the
inclusion of the B matrix entails very little additional work, and it does
provide an immediate check on the accuracy obtained. That is, the values
of the unknowns for one B are available, and they may be substituted into
the original equations, and the residuals ascertained.

Sometimes a set of simultaneous equations is obtained with a single
column entry for B, it being known however that many different values of B
will arise in the course of the experimental investigation for a constant value
of A. In such a case it is advisable to evaluate (3) in the form given and
use the value of the inverse of 4 to evaluate the unknowns for each new
value of B as it occurs in the later investigations.

III. Machine Computation with the Aid of the 602 Calculating Punch.
—At any stage of the reduction of the composite matrix

Arm l Bnl
@ G=|----1----|,
_Ifml Onl

only (n 4+ 1) rows of the matrix are used because of the character of the
— I matrix. That is, the leading column coefficient of the (n + 2)*! row is al-
ready zero. At each succeeding reduction, one leading row of the composite
matrix is omitted and a new row is added—maintaining (z 4+ 1) rows
throughout the solution. The number of columns to the left of the vertical
line is reduced by one at each reduction. Finally, after the nth reduction,
nothing remains to the left of the vertical line, and the desired unknowns
appear in the lower right-hand corner.
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Punched-Card Layout.—In addition to the actual coefficients which ap-
pear in the above matrix some identification of data is necessary to permit
efficient machine operation. The following punched-card layout is used:

Card Columns Data
1-2 row number of element in G
34 column number of element in G
5 1 for elements of 4

2 for elements of —1
3 for elements of B
4 for elements of O

5 for elements of I

6 for elements of O+

6-7 reduction number
8, 9-10 problem number
11-20 sign and data (P = ay;)

(The decimal point appears between columns 13-14 when
seven-decimal places are used in the computation.)

21-30 value of Q = a;1 (sign in column 22)
31-40 value of R = (ai;/au) (sign in column 31)
44-53 value of ||a;; — aal(ai;/an)| = ||P — QR[l

Key Punching and Verification Procedure.—The respective coefficients of
the A and B matrices are supplied to the Key Punch operator on a special
coefficient form sheet. In addition to the actual columns of coefficients there
is a check column supplied, each entry of which is the sum of all the elements
in its corresponding row. Similarly, a check row is supplied, each entry of
which in turn is a sum of all the elements in its corresponding column. These
check vectors serve two purposes: first, as a check of the key-punched data;
second, as a continuous check throughout the actual computation.

The verification of the key punching is effected by means of a suitably
wired tabulator board. Each coefficient of the composite matrix is entered
on a separate punched card in card columns 11 through 20. The tabulator
board is wired to print the successive coefficients of a particular row on the
same horizontal line in a tabular array in accordance with the columns of
the given matrix. Furthermore, the board is wired to obtain the totals of the
columns. It is evident that one can automatically check the key punching
of all entries by passing the cards through the tabulator twice—once with the
cards arranged in order of matrix row and next with the cards arranged in
order of matrix column. Any discrepancy between the known check sums
will affect two check sums and immediately identify the entry which is
in error.

Flow Chart for the 602 Calculating Punch.—The basic elimination process
consists of evaluating the following mathematical expression:

IP — QR|| = llai; — aa(ai/an)l,

in which the use of subscripts will be avoided hereafter by use of the letters
P, Q, and R. Because of the repetitive nature of this reduction process, the
quantity (P — QR) of one reduction becomes the P of the next reduction.
The actual manner in which this is effected may be seen from Figure 1.

Division Cards.—The coefficients of the leading row of the matrix are
used to evaluate R in accordance with the equation:

R = ayj/an = D/E.
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F16. 1. FLow CHART DiIAGRAM OF THE 602 CALCULATING PUNCH.

The punched cards corresponding to the leading row are characteristically
designated by an X71 punch. The values of D and E are added into the
dividend and divisor counters of the 602, respectively. Since these quantities
may be either positive or negative, the algebraic sign must be examined,
and the correct sign of the quotient R is determined automatically by
the algebraic sign control circuits of the 602 calculator. The quotient is
punched on the card and is stored within the calculator for use in succeeding
computations.

Multiplication Cards.—The remaining cards of the matrix (exclusive of
the leading row X71 cards) are designated by an X68 punch. Each of these
cards contains its corresponding matrix coefficient, P = a;;, as well as the
associated element in the leading column, i.e., Q = a,. Since the entire set
of cards corresponding to the composite matrix are sorted in order of the
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matrix column in which they appear, all X68 cards of a particular column
follow the appropriate X71 card.

The values of P and Q are read into the multiplicand and LHC (left hand
component) counter, respectively, for each X68 card. The calculator uses
the previously stored value of R as a multiplier and performs a combined
crossfooting and negative multiplication operation to obtain P — QR with
due regard to the algebraic sign of the respective variables. Notice that R
is used as a group multiplier for all cards of a particular column of the matrix.

The quantities (P — QR) and R are punched on each X68 card. The
value of R is required whenever the product QR is verified by the calculator
in a verification-of-multiplication operation. The identification in card
columns 1-10 is read into counters 14—15 for both X68 and X71 cards and
is retained there until it is transferred to the appropriate columns of the
following blank card.

Blank Trailer Cards.—Each of the X71 and X68 cards is followed by a
blank trailer card. These blank cards receive their appropriate identification
by reading out the contents of counters 14-15 into card columns 1-10. They
also have the value of P — QR punched upon them in card columns 11-20,
i.e., the quantity (P — QR) of reduction no. 1 becomes the new P for reduc-
tion no. 2, etc. In effect the 602 performs an interspersed offset-gang-punch
operation. Furthermore, the blank cards have the corrected reduction num-
ber punched in card columns 6-7. The set of “‘blank” cards of one reduction
becomes the new active set in the next reduction.

Operational Steps in a Reduction Process.—The following reduction pro-
cedure is equally applicable whether the operation is:

a. the evaluation of the unknowns for a single system of equations,

b. the concurrent evaluation of the unknowns for several sets of simul-
taneous equations,

c. the evaluation of the unknowns for a constant 4 matrix and a multiple
column B matrix system of equations,

d. the evaluation of the inverse of a matrix, A~

The only difference is the respective constituents of the original com-
posite matrix. Specifically, the matrix (4) is used in the solution of # simul-
taneous equations. The procedure is as follows:

1. Select the first (n + 1) rows of the above composite matrix (i.e., all the rows of
A and B plus the first row of —I and 0). Sort on card columns 2, 1.
2. Sort on card columns 4, 3, and remove the leading column cards from the above
selected group.
3. Gang-punch X71, X77, and X80 on the first card of this leading column group.
Gang-punch X68, X77, and X80 on the remaining cards of this leading column group.
4. Reproduce a copy of these leading column cards on yellow-top cards EXCEPT for
the X77 and X80.
5. Assemble the cards in the following order:
a) X80 cards of the leading column group,
b) NX80 cards (i.e., cards which do not have an X in position 80) of the
leading column group,
c) remnants of step 2.
6. Sort the assembled group in order of increasing matrix row number, i.e., card
columns 2, 1.
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7. Offset-gang-punch ‘‘Q" from the leading column X80 cards upon the other cards of
the matrix in the SAME row. (X68 and X71 are gang-punched directly).

8. Verify the offset-gang-punching.

9. Sort on column 80, remove, and file the X80 cards.

10. Sort on card columns 4, 3, and arrange the cards in order of matrix column.

11. Insert a blank trailer card after each card of this group.

12. Card count this merged set, and check the card count against the supplied check
data sheet.

13. Precede this new group of cards with a blank card, and feed the entire group to
the 602.

14. Sort the cards obtained from the 602 on card column 7, and segregate the former
“blank’’ cards from the original composite matrix. (Label and file the latter.)

15. Sort on card columns 4, 3, and remove and file the leading column cards of the new
matrix (i.e., the former blank cards). These are all equal to zero.

16. Check the computation in this reduction by feeding these cards to the tabulator.
The sum of the entries in a particular row is automatically obtained by the tabulator,
and it should agree with the number on the card of the final check column.

17. Sort on card column 2, 1, and remove and file the leading row cards of the new
matrix. Again, these should all be zero.

18. Add the (n + 2)** row of the original composite matrix to the new matrix (i.e., add
the second row of —I and O to the new matrix). Check the card count sheet.

19. Repeat steps 2 to 18 # times.

The cyclic nature of this elimination procedure is clearly shown in Figure 2. The num-
bers next to the machine diagram refer to the corresponding step in the above reduction
procedure. Each reduction is effected by a single passage of the cards around the circular
path 2 to 18.

Checking Procedures.—Several of the operations shown in Figure 2 serve only as a check
on the reduction procedure. These checks include:

1. an automatic verification of the offset-gang-punching,
2. a continuous check on card count,
3. a verification of the 602 computation of S = (P — QR) by automatically checking
the following equation:
S—P-0QR)=0
for a zero balance,
4. a computational check by means of the inclusion of check row and check column cards.

An additional final check may be performed, although it is not shown on the flow chart
diagram. This check consists of an evaluation of the residuals which are obtained when the
answers are substituted back into the original equations. This check provides an accurate
evaluation of the magnitude of the round-off error which is incurred during the elimination
process.

Evaluation of the Residuals.—The n cards which are obtained as a result
of the nth reduction have the values of the #» unknowns in card columns
11-20. If this set of cards is reproduced reversing the row and column
identification, we obtain «x; in column 1, x, in column 2, etc. If an X71, X22,
and a 1 in column 23 are gang-punched on each of these cards, they may
be used to evaluate the residuals with the same 602 and tabulator boards.

These cards served as ‘“divisor”’ cards in which the unknown is divided
by —1 to obtain the necessary sign reversal in the expression (P — QR). In
this case P = 0 and R represents the unknowns x,. The variable Q represents
the given coefficients ay;, i.e., in effect we solve the equation

(P — QR) = 0 — aii(— %xa) = @ijxn.
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F1G. 2. A MAcCHINE FLow CHART DIAGRAM OF THE ELIMINATION METHOD.

Hence, by sorting the original cards of matrix 4 behind the associated x,
card in order of matrix column, the 602 utilizes the particular x, as a group
multiplier and provides the desired product a;;x, on each card. If these cards
are now fed to the tabulator which totals the cards on matrix row number,
we obtain a sum which is the desired residual.

Accuracy Considerations.—The final results are obviously in error by an
amount which is determined by the rounding-off errors. One or two guard
figures are required in the original coefficient to insure the desired accuracy
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in the final answers. The exact magnitude of the error incurred in the case
of a set of ill-conditioned equations is still subject to question and requires
additional investigation with the aid of high-speed digital equipment.

The usual methods for shifting the decimal point of the given matrix so
that the maximum coefficient is near unity are easily effected in this pro-
cedure. Furthermore, if it is known (from some physical considerations)
that a certain unknown is many times smaller than the rest of the unknowns,
its decimal point may be shifted by using —10 or —100 in the corresponding
row of the —I matrix.

Obviously the “pivotal condensation’’ method may be easily incorporated
into the described method, since it is a simple matter to select the row with
the largest leading coefficient and use it as a pivot in the reduction process.

Computation Time Considerations.—The solution of a single set of equa-
tions of the form (10 X 10 X 1) requires four hours when performed sepa-
rately. It is quite evident that a multiple set of equations would require
less time.

A set of 10 equations with 10 unknowns and multiple right hand sides,
e.g., a set involving the same A matrix but 14 columns in the B matrix,
(10 X 10 X 14) requires ten hours, when a single set is computed. Again it
is true that concurrent reduction of several sets will reduce the computa-
tion time.

The inversion of a single matrix of ten equations with ten unknowns
requires eight hours. Again this time can be reduced by concurrent inversion
of several matrices.
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