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in the final answers. The exact magnitude of the error incurred in the case

of a set of ill-conditioned equations is still subject to question and requires

additional investigation with the aid of high-speed digital equipment.

The usual methods for shifting the decimal point of the given matrix so

that the maximum coefficient is near unity are easily effected in this pro-

cedure. Furthermore, if it is known (from some physical considerations)

that a certain unknown is many times smaller than the rest of the unknowns,

its decimal point may be shifted by using —10 or —100 in the corresponding

row of the —I matrix.

Obviously the "pivotal condensation" method may be easily incorporated

into the described method, since it is a simple matter to select the row with

the largest leading coefficient and use it as a pivot in the reduction process.

Computation Time Considerations.—The solution of a single set of equa-

tions of the form (10 X 10 X 1) requires four hours when performed sepa-

rately. It is quite evident that a multiple set of equations would require

less time.

A set of 10 equations with 10 unknowns and multiple right hand sides,

e.g., a set involving the same A matrix but 14 columns in the B matrix,

(10 X 10 X 14) requires ten hours, when a single set is computed. Again it

is true that concurrent reduction of several sets will reduce the computa-

tion time.

The inversion of a single matrix of ten equations with ten unknowns

requires eight hours. Again this time can be reduced by concurrent inversion

of several matrices.

Frank M. Verzuh

Mass. Inst. Technology

1 J. von Neumann, & H. H. Goldstine, "Numerical inversion of matrices of high
order," Amer. Math. Soc, Bull., v. 53, 1947, p. 1021-1099.

2 A. M. Turing, "Rounding-off errors in matrix processes," Quart. Jn. Mech. Appl.

Math., v. 1, 1948, p. 286-308.
3 L. Fox, H. D. Huskey, & J. H. Wilkinson, "Notes on the solution of algebraic linear

equations," Quart. Jn. Mech. Appl. Math., v. 1, 1948, p. 149-173.
4 H. F. Mitchell, "Inversion of a matrix of order 38," MTAC, v. 3, p. 161-166, 1948.
8 Any person interested in obtaining information about the wiring diagrams used in

this procedure should write directly to the author.
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628[A].—H. E. Merritt, Gear Trains including a Brocot Table of Decimal

Equivalents and a Table of Factors of all useful Numbers up to 200 000.

London, Pitman, 1947, viii, 178 p. 13.5 X 21.4 cm. Compare MTAC,
v. 1, p. 21-23, 66-67, 91-92, 100, 132.

T. I. "The factor table," p. 15-54, contains the factors of the 4032 numbers <200 000,

having prime factors not less than 7 and not more than 127, the largest convenient tooth

number in a change-gear train. T. II. "Brocot table," p. 65-95, 6D; the numerator of the

fractions is ^ 99 and the denominator ^ 100; there is a column of exact remainders for

each division.

Extracts from text
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629[A, F].—Dragoslav S. Mitrinovich, "O Stirling-ovim brojevima" [On

Stirling numbers], Skoplje, Yugoslavia, Univerzitet, Filozofski Fakultet,

Prirodno-matematichki oddel, Godishen Zbornik [Year Book], v. 1, 1948, p.
49-95 ; Russian resume, p. 90-92; French resume, p. 93-95. 15.4 X 22 cm.

x(* - 1)(* - 2) •• • (* - » + 1) ■ Snhe + S„2x2 + ■■■ + Sn^x"'1 + &,«*" and £,"■

are the integral Stirling numbers of the first kind.
c"»     _   e m-l _ «Cm

On+i   —   On »On   .

If  (X   -   1)(*   -   2)   ■■■   (X   -   n)   =  Xn  -  (t>n1Xn~i  + <t>n2X"-2  -  0„3X"-3  +•••+(-   l)"0„n,

0„™ = (- ly-s&r*1,   s„» = (- i)»->n:r.

There are five tables:

LSn"-1 - - (X),n = 2(1)52; II. S„"-2 = ï(V)@n - 1), n = 3(1)65;

in. 5„»-3 = - i(*)«(»- 1), n » 4(1)51;

IV. ¿V"4 = iV(") (15re3 - 30re2 + 5n + 2), n = 5(1)50;

V. &,»-« = - tV (")»(» - 1)(3«2 - In - 2), n = 6(1)51.

¿V for « = 1(1)9, m = l(l)re — 1 was given by J. Stirling (1692-1770) in his Methodus

Differenlialis, London, 1730, p. 11; The Differential Method, Engl. transi, by F. Holliday,

London, 1749, p. 10. For n = 1(1)9, m = 1(1)«, also re = - 4(1) - 1, m = 0(1)8, see E.

P. Adams, Smithsonian Mathematical Formulae. Washington, 1939, p. 159. For n = 1(1)22,

m = 1(1)«, see J. W. L. Glaisher, Q. Jn. Math., v. 31, 1900, p. 26. For « = 1(1)12,
m = 1(1)« see H. T. Davis, Tables of the Higher Math. Functions, v. 2, Bloomington, Ind.,

1935, p. 215; also given, 1933 by Charles Jordan. See also MTAC, v. 1, p. 330.

R. C. A.

630[A-E].—H. M. Sassenfeld & H. F. A. Tschunko, Mathematische Tafeln
für Mathematiker, Naturwissenschaftler, Ingenieure. Erster Teil: Ele-

mentare Funktionen. Walldorf bei Heidelberg, Fr. Lamadé, 1949, viii,

36 p. stiff cover. 20.7 X 29.5 cm.

Contents: T. 1 (p. 1): P.P., d = 0(.1)199; also reprinted on a moveable card. T.

2 (p. 2-3): Prime factors and 6D mantissae of logs of the prime numbers in the range

» = 1(1)2000. T. 3 (p. 4-13): re2, re3, n\ and »», 4D, lOOO«"1 5D (6S for n < 100), wn and

ii«2 5-7S, n = 1(1)2000. T. 4 (p. 14): For <*> = 0(1°) 180°, 5D or 5S values of arc-length I;

chord s; segment height h; l/h; segment area F. T. 5 (p. 14): Spherical area, 6S, and volume,

7S, for d = 1(1)200. T. 6 (p. 15): Arc lengths [0(0°. 1)180°; 5D]. T. 7 (p. 16-17): x",
±» = 2(1)15, and« = -1,*- [1.1(.1)10.9; 5S]. T. 8 (p. 18): 4D mantissae and antilogs,
x = 10(1)999. T. 9 (p. 19) : 4D values log sin x, log cos x, log tan x, log cot *, * - 0(0°.1)90°.

T. 10 (p. 20-21): tables involving relations between sexagesimal, centesimal and radian

systems of measurement. T. 11 (p. 22-23): sin x, cos x, and tan x, cot x, for x = [0(0°. 1)10°,

(0°.1)90°; 5D, 4D], [0(0».1)10«, (0». 1)100«; 5D, 4D]. T. 12 (p. 24): \nx,x = [0(.001)1(.01)-
10(1)109; 5D]. T. 13 (p. 25): e±x, x = [0(.01)10.09; 5S]. T. 14 (p. 26-28): sin x, cos x,

tan x, sinh x, cosh x, tanh x, x'= [0(0r.01)6r, mostly 5D]. T. 15 (p. 29): sin x, cos x,

x' = [6'(0'\01)11'-; 5D]. T. 16 (p. 30-31): sin"1 x, cos'1 x, x = [0(.001).999; 5D], tan"1 x,

x = [0(.001)1.1(.01)10.09; 5D]. T. 17 (p. 32): 9D and 10D values of log x, In x, e±»/u">,

sin (n/10), cos (re/10), sin (re/1000), cos (re/1000), sin (re/100), cos (re/100), re = 0(1)99.

Also sinre0, cos re°, n = 0(1°)90°. T. 18 (p. 33): x"/n\ re - 2(1)12, x = 1.1(.1)10.9. T. 19

(p. 34): Miscellaneous numerical tables.
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631[A-E, I, K].—L. J. Comrie, Chambers' Six-Figure Mathematical Tables.
Volume I: Logarithmic Values. Volume II: Natural Values. Edinburgh

and London, W. & R. Chambers, 1948, xxii, 576, xxxvi, 576 p. 17 X 25.4
cm. 42 shillings per v. American edition, offset print: New York, D. Van

Nostrand Co., 1949, $10.00 per v. or $17.50 for the two v. The binding
and type-pages of the British edition are much the more attractive, and

the volumes weigh about three quarters of a pound less.

These volumes will be everywhere welcomed as a very valuable compilation of tables.

They cover the field of elementary functions, with some minor excursions into no man's

land between the frontier of elementary functions and the domain of higher mathematical

functions.

In consideration of the fact that even in this day and age there are many who have no

access to calculating machines, the editor has considered it worthwhile to compile two

volumes, the first, intended for those who have no access to calculating machines, listing

the logarithms of functions, and the second, listing natural values of functions, for those

to whom calculating machines are available.

The editor has made a convincing case for the desirable tabulation of functions to six

decimal places, and has adhered to this policy with but few exceptions (for example: T. II,

III, VIII, in v. I; T. XIII in v. II). The intervals in arguments have been chosen so that

most tables are essentially linear, i.e., linear interpolation is adequate for six-place accuracy.

To facilitate interpolation, first differences are given for most (but not all) of the

tabulated functions, frequently with appropriate proportional parts; in the case of two

tables in II second differences are also given. The first differences have been printed in

italics, as a warning to the reader, whenever second differences are not negligible.

To obviate interpolation where interpolation is inherently troublesome auxiliary func-

tions have been tabulated. Thus v. I contains tables of 5 = log sin x — log x; T = log tan x

— log x and of the corresponding Sh and Th functions. V. II contains tables of a = x csc x

and t = x cot x and of the corresponding ah and tä functions. Auxiliary functions are also

tabulated in the case of inverse circular and hyperbolic functions. Regarding interpolation

in the functions csc x and cot x it is important to point out the remarkable formulae on

p. xiv of II which express the values of cot x and csc x for small x in terms of the cotangents

and cosecants of the angles lOx and lOOx. An important feature worth mentioning is the

inclusion of a very large number of critical tables, i.e., tables in which the functional values

appear at equidistant intervals, the corresponding arguments being unevenly spaced.

The texts preceding the tables consist of introductions followed by detailed descriptions

of the various tables, including numerical examples illustrating the use of the tables, with

particular emphasis on both direct and inverse interpolation. The introductions contain a

fairly extensive discussion of such topics as the motivation for the choice of the range and

intervals of the tables, the essential facts underlying the theory of direct and inverse in-

terpolation, numerical differentiation and integration, etc. As was to be expected the intro-

ductions include a discussion of the throw-back method of modifying differences, popularized

by the editor, his technique of inverse interpolation and his technique of applying the

Lagrangean interpolation formula in the case of unequal intervals. The bibliographies at

the end of I—II contain the most important references to other tables of the functions tabu-

lated in I—II with more than 6D.

No one will challenge the editor's statement that "great attention has been paid to

typography"; nevertheless the reviewer feels that the legibility of T. VII in I, would have

been enhanced by lines separating the columns and by providing spaces between groups

of values corresponding to five or perhaps ten arguments. Also, the reviewer does not favor

the use of the headings sin, tan, or sin x and tan x in I where log sin x and log tan * are

intended.

While the reviewer agrees with the editor's comments on the shortcomings of interpola-

tion by means of Lagrangean interpolation coefficients, he feels however that interpolation

by means of differences is not altogether free from similar shortcomings.
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The reviewer has not sampled the volumes for accuracy (freedom from error). There is,

however, no doubt in his mind that they come up to the usual high standards which one

is accustomed to find in "Comrie" tables.

We shall now indicate some of the essential contents of the volumes; a number of small

auxiliary and critical tables have been omitted from this account.

I—T. I (p. 2-181): logarithmic mantissae for 10,000(1)100,009.
T. II (p. 182-191): 8D logarithmic mantissae, and 6D values of Mx and x/M, for

x = 0(.001)1, together with 6D values of multiples, 1(1)10(10)90, of M and \/M, for the

purpose of converting from common to natural logarithms and vice-versa.

T. Ill (p. 192-211): 8D values of logarithms for 1(.00001)1.10009. One use of this table
is in compound interest and annuity problems; a second use is in the evaluation of 8D values

of logarithms by the factor method in conjunction with T. II.

T. IV (p. 212-231): antilogarithms, giving the values of 10* for x = 0(.0001)1.

The next three tables (p. 232-340) are devoted to the tabulation of the logarithms of

trigonometric functions of angles expressed in degrees, minutes and seconds:

T. VA: log sin x and log tan x for x = 0(1")1°20'.

T. VB: log sin x, log cos x, log tan x, and log cot x for x = 0(10")10°.

T. VC: log sin x, log cos x, log tan x, and log cot x for x = 10°(1')45°.

The next four tables (p. 341-489) give the values of trigonometric functions of angles

expressed in degrees and decimal subdivision of the degree and in radians:

T. VIA: critical table for log cos r where r varies from 0 to Or.025, and for log sin r

where r varies from P.546 to P.571 (Jir).

T. VIB: values of log sin and log tan for angles 0(.001°)5° together with the radian

measures of the angles.

T. VIC: rounded off proportional parts for 10(10)170 units of the last decimal of the

radian arguments for the differences 2(1)231(3)876.

T. VID: logarithms of sin, cos, tan, and cot for the angles 0(.01°)45° and the correspond-

ing values of the angles in radians.

T. VII (p. 490-499): critical table for the functions 5 = log sin x — log x and T =

log tan x — log x for x expressed in seconds of arc, minutes of arc, degrees and decimal sub-

division of the degree, radians, seconds of time and minutes of time. In all cases the values of

log sin x and log tan x corresponding to the unevenly spaced arguments x are also given.

T. VIII (p. 500-539) : logarithms of the hyperbolic sin x, cos x, and tan x for x = 0(.001)-

3(.01)5 and several auxiliary tables (critical tables, proportional parts, etc.).

T. IX (p. 540-543): logarithms of r(x) for x = 1 (.001)2.

T. X (p. 544-549) : conversion of degrees, minutes, and seconds into radians, radians into

degrees and decimal subdivision of the degree, radians into degrees, minutes and decimals,

radians into degrees, minutes and seconds, and other conversion tables.

T. XI (p. 550-569): first nine multiples of the numbers 1(1)999.

II—There is some "overlapping" between I and II. Specifically the first three tables

in II (p. 2-215) are the counterparts of T. V, VI, and VII in I, and are devoted to the tabu-

lation of the natural values of the trigonometric functions while T. IV is the counterpart

of T. VIII in I, and contains a tabulation of the hyperbolic functions. T. IVD, IVE, IVF,

IVG of II include values of e±x for 0(.001)3(.01)6(various) ».

T. V (p. 318-335): natural logarithms for x = 0(.001)10.

T. VIA (p. 336-355): sin^x, cos_1x, tan_1x, cot-1 x, sinh-1 x, and tanh-1 x for

x = 0(.001)1.
T. VIB (p. 356-357): sin~'x and tanh-1 x and some auxiliary functions for x in the

range from .99 to 1.

T. VIC (p. 358-359) : sec-1 x, cosh-1 x, coth-1 x, and some related functions in the range

from 1 to 1.01.
T. VID (p. 360-401): inverse functions which can have values larger than unity for

x = 1(.001)2(.01)10(.1)35(1)80. The frequent use of italics indicates that the tables are

"non-linear," i.e., linear interpolation will not give six-place accuracy.
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T. VII (p. 402-425): gudermannian and its inverse; gdx = Jox sech x dx is tabulated

for x = 0(.001)4.5(.01)10; and gd^x for x = 0(.001)1.400(.0001)1.57050(.00001)(1.570780-

(.000001)1.570796.
T. VIIIA (p. 426-465): x2, x3, x4, x6, x±», x-2, xr\ x1'3, x1'4, x1'6, x!, log x! and the prime

factors of x = 1(1)1000.

T. VIIIB (p. 466-489): xs, and (x/1000)3 and the prime factors of x = 1000(1)3400.
T. IX (p. 490-491): prime numbers up to 12919.

T. X (p. 492-513): to facilitate the conversion from rectangular to polar coordi-

nates, 1 — k2, (1 — k2)\, (1 + k2)*, tan-1 k (both in degrees and radians) and cot-1 k for

k = 0(.001)1. If s is the smaller of the numbers x and y and I is the larger, then (x2 -f- y2)*

= /Ql + (s//)2]* = 1(1 + k2)i and tan_1(y/x) is either tan-1 k or cot-1 k. The values of

1 — k2 and (1 — &2)' have been included because of their use in certain statistical problems.

T. XI (p. 514-517): r(x) for x = 1(.001)2.
T. XIIA (p. 518-519): erf x for x = 0(.01)4.

T. XIIB (p. 520-524): z = (l/(2w)i)e-i'\ for x = 0(.01)5, and a = (2/tt)* So' e~^dt,
for x = 5(.01)6; also the values of certain related functions.

T. XIIC (p. 525-531): probability abscissa x and ordinate z, the argument \(\ + a)

being the integral between — «¡ and x, for respective arguments .5(.001)1 and .99(.0001)1.

T. XIII (p. 532-543): for the coefficients B" and B'" in Bessel's interpolation formula,

where the B's are functions of re, the fraction of the tabular interval for which the funda-

mental value is desired. Also two short tables of 4-point and 6-point Lagrangean interpola-

tion coefficients.

T. XIV (p. 544-549): formulae for numerical differentiation and integration.

T. XV (p. 550-561): proportional parts for 6"(1")10"(10")50" for the differences

2(1)1015.
T. XVI (p. 562-567): conversion table identical with T. X in I.

Arnold N. Lowan

632[A-E, K, M].—Harold D. Larsen, Rinehart Mathematical Tables. New

York, Rinehart & Co., 232 Madison Ave., 1948, viii, 264, [2] p. 14 X 21
cm. $1.50.

Partial Contents: T. 1-3, p. 3-94, 5D tables of logs of numbers, trigonometric func-

tions (sin, tan, cot, cos) at interval 1', log trig, functions. T. 4, p. 95-114: N = 1(1)1000,

N2, N3, N*, (l0N)i, Ni, (l0N)i, (100iV)i, 1000/iV. T. 5, p. 115-116: Four-place log. T. 6,

p. 117-120. 5D Nat. trig, functs., 0(0°.1)90°. T. 7, p. 121-124, 5D log trig, functs. at interval
0°.l. T. 13, p. 131: 5D log. factorials. T. 14, p. 132-135: Four-place In. T. 15, p. 136-141:
e, e~x, loge1, x = 0(.01)5(.05)10. T. 16, p. 142-145: sinh x, cosh x, tanh x, x = 0(.01)-
3(.05)7.5(.25)10. T. 17-18, p. 146-147: Mortality tables. T. 20-23, p. 150-153: (1 + r)±n,

± [(1 + r)±B — 1]A. T. 24-25, p. 154-155: Ordinates and areas of the normal probability

curve. T. 26, p. 156-159: Values of F and t 5% and 1% points. T. 27, p. 160: Values of x2

corresponding to certain chances of exceeding x2- Various formulae and constants, p. 164-

199. Curves for-reference, p. 200-214. Derivatives, p. 215-217. Indefinite integrals (430),

p. 218-250. Definite integrals (431-494), p. 251-255. Series, p. 256-260. Index, p. 261-264.

Proportional parts, 2 p.

633[A-F, H, L-N].—M. Boll, Remarques et Compléments aux Tables Nu-
mériques Universelles. Paris, Dunod, 92 rue Bonaparte (VI), 1949, 32 p.

18.2 X 27 cm. The publisher will supply these pages free to any purchaser

of the original work, published in 1947; compare MTAC, v. 2, p. 336-338.
This pamphlet is dated, inside, 9 Nov., 1948.

It contains a list of corrections and additions to the original work, p. 4-882. Only one

of the numerous errors which we listed has been corrected.

As an addition to the original, p. 26-45, a new table of re' is given (p. 4-8) for

re = [1(1)1000; 7S].
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T. 13, p. 62-70: "Nombres premiers et plus petits diviseurs" has been completely dis-

carded in favor of a new table of the same character, p. 10-18.

Various additions including Euler numbers are set forth for p. 232.

A new table of tan x — x, for x = [1°(1°)60°; 6D] is given (p. 21) as a supplement to

p. 234.
The old Fresnel integrals tables, p. 362-363, uniformly 4D, are replaced by corrected

tables (p. 23-24) with many 5-6D values.

To the regular polyhedra table, p. 374, an addition is given on p. 25.

Many corrections are given (p. 30) for the table of roots of cubic equations p. 710-711.

R. C. A.

634[A, C, D].—Heinz Wittke, Vademekum für Vermessungstechnik. Stutt-

gart, Metzlersche Verlagsbuchhandlung, 1948, 334 p. 10.5 X 15.4 cm.
See also the author's work on Rechenmaschine, MTAC, v. 3, p. 390.

This is an elementary miscellany useful for the surveyor. Among the 24 tables, p. 131—

334 are the following 5D tables, p. 132-279: log x, x = 1000(1)10009, A; log sin, log tan,
log cot, logeos, for 0(0«.01)10k(0«.1)100«, A, PP (beginning with 2«); natural sin, tan, cot,

cos, for 0(0«.1)1008, A, PP. Then there is also a 4S table of 100 cos2 a and 50 sin 2a for

a = 0(0«.1)100«, p. 290-299.
R. C. A.

635[C, D],—Vega, Seven Place Logarithmic Tables of Numbers and Trigo-

nometrical Functions. New York, Hafner Publishing Co., 1948, XVI,

575 p. 15 X 22.9 cm. $3.00.

Carl Bremiker (1804-1877) edited the fortieth edition of the Logarithmisch-Trigo-

nometrisches Handbuch of Georg, Freiherr von Vega (1756-1802), published in Berlin

by Weidmann, in 1856, XXXII, 575 p. The interesting preface occupied p. I-XVI, and the

Introduction p. XVII-XXXII. In the following year the same publisher issued an English

translation, prepared by W. L. F. Fischer (1814-1890), F.R.S. 1855, with the title: Log-
arithmic Tables of Numbers and Trigonometrical Functions by Baron von Vega. Translated

from the fortieth or Dr. Bremiker's thoroughly revised and enlarged edition. Fischer was a fellow

of Clare College Cambridge and professor, at the University of St. Andrews, of natural

and experimental philosophy (1849-59), and of mathematics (1859-1879). Alumni Canta-

brigienses tells us that his Christian names were "Frederick William Lewis (or Wilhelm

Ferdinand Ludwig)," that he was born in Magdeburg, Prussia and naturalized in 1848, and

that he was fourth wrangler in 1845. Of this Fischer edition there were numerous reprints

such as the 83rd edition of Vega in 1912. The first edition of Vega's Handbuch was in 1793,

and the 19th edition, 1839, was edited by J. A. Hülsse. The Italian translation of the Vega-

Bremiker Handbuch by Luigi Cremona (1830-1903), and a French translation were also

published by Weidmann in 1857, as well as a Russian translation in 1858.

The volume under review, denuded of every name except that of Vega, is simply

Fischer's English translation of Bremiker's edition of Vega's tables with the 16 pages of

Bremiker's historical preface eliminated. In 1941 G. E. Stechert & Co. (the forerunner of

the Hafner Publishing Co.) published a similar English edition, but with the original German

preface and introduction.

The first long table (p. 1-185) is log N, N = 1(1)10009, P.P., with 5 and T tables at

bottoms of pages.

The second principal table (p. 187-287) is of sin x and tan x,x = 0(1")5°.

The third main table (p. 289-559) is of sin x, tan x, cot x, cos x, x = 0(10")45°, A.

An Appendix (p. 561-575) contains: Tables for the conversion of (i) sidereal time into

mean time; (ii) mean time into sidereal time. Tables of refraction. Constants.

See J.  Henderson,  Bibliotheca  Tabularum  Malhematicarum,  Cambridge,   1926   p

126"127- R. C. A.
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636[F].—G. N. Watson, "A table of Ramanujan's function i(n)," London

Mathematical Soc, Proc, s. 2, v. 51, 1949, p. 1-13; in the press since

1942. Compare MTAC, v. 2, p. 26-27; v. 3, p. 23, 177, 298.

This table gives the coefficients r(re) of xn_1 in the power series expansion of the 24th

power of Euler's product (1 — x)(l — x2)(l — x3) ■ • ■ for re = 1(1)1000. As noted above

it has already been discussed in this journal. Its appearance will be very welcome to in-

vestigators of this mysterious function since it more than doubles the range of previous

tables, described in the above reference. Besides the function t(«) the table gives r(n)n~^

to 5D. According to a conjecture of Ramanujan this function is less than 2 in absolute value

when re is a prime. The table shows that this function with re a prime lies between —1.91881

and +1.90410 and attains these values for « — 103 and 479 respectively. For the composite

number 799 the function is equal to —2.01623.

The method used to construct the table is the same as that described and used by the

reviewer.1 When re is composite short methods of calculation yield r(n). When re is a prime

a comparatively long recurrence formula, based on Euler's pentagonal number theorem, is

used. In this latter case the author used the long calculation for both re and re + 1 to ensure

accuracy.

D. H. L.

1 D. H. Lehmer, "Ramanujan's function r(n)," Duke Math. Jn., v. 10, 1943, p. 483-492.
See MTAC, v. 1, p. 183-184.

637[G, I, K].—William Edmund Milne, Numerical Calculus. Approxima-

tions, Interpolation, Finite Differences, Numerical Integration, and Curve

Fitting. Princeton, N. J., Princeton Univ. Press, 1949, x, 393 p. Offset
print. 15 X 22.8 cm. $3.75.

This introductory treatise on numerical analysis contains one of the finest and most

thorough presentations of the subject by a well-known specialist in that field. In the space

of a modestly-sized volume the author succeeds in explaining the essentials of finite differ-

ences, interpolation, numerical integration and differentiation, important techniques in

smoothing and approximations by least squares, and the solution of simultaneous linear

equations, algebraic equations, and difference equations. The text is supplemented by an

adequate bibliography and useful tables. Also the presentation of the theory is reinforced

with clear illustrative examples and sets of exercises at the ends of the chapters. Besides

serving well as a standard text for an undergraduate course in finite differences and nu-

merical methods, this book provides more than an adequate foundation in numerical analysis

for those who seek to specialize in applied mathematics or branches of science involving

calculation, such as statisticians, computers, actuaries, engineers, physicists and biologists.

Furthermore, all mathematicians, even those of the purest type, should be cognizant today

of the subject matter in this book because of the enormous development of numerical

analysis by present-day electronic computational devices, and its probable influence upon

mathematics as a whole. The primary purpose of this book is to enable one with a previous

background of only high school mathematics, analytic geometry, and elementary calculus,

to bridge the gap between classroom mathematics and the important practical applications

where concrete numerical results are required, or to paraphrase the author in his preface,

"the gap between knowing of a solution and actually obtaining it." The entire work is

written simply, clearly and directly; the treatment is elementary. But besides covering most

of the fundamentals of numerical calculation, a number of special topics (e.g., treatment of

the remainder in quadrature formulae, alternative treatment of smoothing formulae, excep-

tional cases in reciprocal differences) are treated with an appealing thoroughness which is

also capable of stimulating the reader to further deeper investigations. Even the experienced

worker in numerical mathematics, who has in his possession the other standard books of

Milne-Thomson, Scarborough, Steffensen, Jordan, Whittaker & Robinson, etc.,

could still find it advantageous to add this treatise to his collection, for its value in ready
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reference, as a quick refresher, and for its few features that are not in those other texts,

but which are otherwise available only in scattered sources.

Chapter I treats determinants, systems of linear equations, matrices, and homogeneous

equations. Its most noteworthy feature is its exposition of one of the most convenient

methods for solving a system of linear equations, the concise scheme of elimination described

by P. D. Crout, which is suited to the evaluation of determinants and calculating the

inverse of a matrix, and is thus adapted to solving a number of different sets of equations

having the same left members but different right members. There follows a discussion of

the magnitude of the inherent error, the uncertainty in the result due to the initial uncer-

tainty in the values of the coefficients of the unknowns, which cannot be reduced by any

improvement in the technique of solution.

Chapter II deals with the solution of non-linear equations in one or more variables by

various methods of successive approximations. For one equation in one unknown, there is

described Newton's method and some simpler variations (as a fixed slope m in place of f'(x„)

which is employed at the reth step of the iteration to obtain x„+i). Also the exceptional case,

where/'(x) vanishes or is small near the root, is explained. For solving two equations in two

unknowns there is given both the extension of Newton's method and successive substitutions,

together with a detailed study of the exceptional cases where there may be multiple solu-

tions, distinct solutions close together, or no solution. A procedure is given for finding the

complex roots of algebraic equations with real coefficients, by synthetic division by quadratic

factors, the end result being the real quadratic factor that yields a pair of complex roots.

A very simple iterative scheme is described for the solution of symmetrical X-determinants

whose elements an correspond to a positive definite quadratic form. The method enables

one to find simultaneously with the X's, the sets of x,'s corresponding to the different roots X,

which satisfy the system of equations

n

2 a,,'Xj = Xx¿,    i = 1, 2, • ■ -, re.
i-i

Chapter III introduces the notion of interpolating function of polynomial, rational, or

trigonometric type, and then is devoted entirely to polynomial interpolation. Aitken's

process for reducing any degree polynomial interpolation to a succession of linear interpola-

tions is explained together with Neville's variation of Aitken's principle. Then, Aitken's

method is applied to inverse interpolation. The usual expression for the error in reth degree

polynomial approximation in terms of/(n+1)(x) is derived from Rolle's theorem. The rest

of the chapter contains a detailed account of Lagrange's interpolation formula and its

usefulness for functions that are tabulated at equally spaced intervals when tables of

Lagrangian interpolation coefficients can be employed.

Chapter IV, on numerical differentiation and integration, deals mainly with the latter

topic, which is the more important. For differentiation (first derivative only) based upon

the approximation by Lagrange's polynomial, an estimate for the error is obtained for the

derivative at one of the points of interpolation, and differentiation formulae are given up

to the seven-point case. Numerical integration is based also upon Lagrange's polynomial

and the method of "undetermined coefficients" is described, which merely means the finding

of coefficients by solving a system of linear equations arising from the integration (or differ-

entiation) of a very simple set of polynomials like x", re = 0(1)« — 1. The investigation of

the error is interesting and somewhat advanced, but well worth mastering since the final

result has wide application. The author considers the remainder of a quadrature formula

R(f), as special cases of operators of degree «, when R(xm) = 0 for m Sí «, but R(xn+1) ¿¿ 0.

First R(f) is obtained in the form f^a,œf«+l''(s)G(s)ds, where G(s) = («!)-'Äx[(x - s)»],

with (x — s)" = (x — s)n if x > s, and (x — s)" = 0 if x < s, so that G(s) can be evaluated.

Under a few mild restrictions \R(f) | < max|/<»+1>(s) | •X-œm|C7(i) \ds. When G(s) does not

change sign, R(f) =/(n+1)(z)i?[xn+1/(re + 1)!], least x < z < greatest x. The advantage in

this latter form is that R[_xn+1/(n + 1)!] is easier to evaluate than JLj° G(s)ds. This theory

is then applied to the trapezoidal rule, to several "trapezoidal rules with corrections," to
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Simpson's rule, and finally to the series of Newton-Cotes quadrature formulae. Both closed

and open types of Newton-Cotes formulae are tabulated as far as the nine-point case and

seven-point case respectively, with a discussion of their merits and the remainder terms.

Chapter V is on the numerical solution of differential equations by stepwise methods.

A very simple integration formula is used to introduce the subject. A second method em-

ploys two formulae, one as a "predictor," and the other as a "corrector." Special formulae

are given for second-order differential equations. Simultaneous equations are also touched

upon. The short chapter concludes with some useful five-term integration formulae.

Chapter VI introduces the subject of finite differences. The fundamental properties of

factorial polynomials and binomial coefficient functions precede the definition and illustra-

tion of differences, with an indication of the important role of differences in the detection

of errors in tabulated functions. Then Newton's interpolation formulae, employing forward

and backward differences, are readily derived from the properties of A* and factorial poly-

nomials, which are also employed to give Sheppard's rules. Gauss's forward and backward

interpolation formulae are obtained here from Sheppard's rules. Then the definitions of

central and mean-central differences are introduced, followed by Stirling's central differ-

ence interpolation formula. From Gauss's forward formula, in a few neat steps, the highly

useful and elegant Everett central difference interpolation formula is derived. Finally,

from Gauss's forward and backward formulae Bessel's interpolation formula is derived.

The tabulation of polynomials is discussed from the standpoint of building them up from

differences. The important role played by differences in subtabulation of a function from

interval H to the smaller re is shown from the symbolic formula Aa™ = fj(l -+- Ajj)Wff — 1 Jm.

Formulae for derivatives in terras of differences are found by differentiation of Stirling's

and Newton's interpolation formulae. By integrating Newton's interpolation formula, the

author derives both Laplace's formula for numerical integration over a single interval,

and several more general formulae for integration over a number of intervals, the most

noteworthy being Gregory's formula where the differences involve only ordinates in the

range of integration. Integration of Stirling's formula is employed to yield a number of

elegant formulae for J~x^n f(x)dx (symmetric integrals), in terms of /o and S2mfn as far as

510/o, for re = 1(1)5. Finally, Everett's formula is integrated to give the rapidly convergent

Gauss-Encke formula, whose differences use ordinates outside the range of integration.

Chapter VII is devoted to divided differences, their definition, proof of symmetry in

their arguments, and the derivation of the fundamental Newton divided difference formula

for polynomial interpolation. Then the flexibility of divided differences in giving a number

of different versions of the same interpolating polynomial is shown by means of Shep-

pard's rule.

Chapter VIII treats reciprocal differences and the approximation of functions by rational

fractions. The general idea of the reciprocal difference is arrived at from the determinantal

form of the interpolating rational fraction. Thiele's definition of reciprocal differences and

his interpolating continued fraction are discussed with great thoroughness. The author

shows both symmetry, and the expression of reciprocal differences as a quotient of two

determinants. Then, after defining the "order" of a rational fraction, a uniqueness theorem

is proven for interpolation by a rational function of given order k for k + 1 points. Also

there is proved the constancy of the kth order reciprocal differences for irreducible rational

fractions of order k, and the converse. The chapter ends with a detailed study of exceptional

cases and a sufficient condition for the existence of a unique irreducible fraction of order k,

which is determined by k + 1 points.

Chapter IX deals with the important subject of polynomial approximations by least

squares. The normal equations are derived for the unknown coefficients as a necessary cri-

terion for minimizing the sum of the squares of the errors, and with the aid of determinants

whose elements are Sk = 2 x¿*, these equations are shown always to possess a unique solu-

tion. Furthermore, a sufficient condition for this solution to give a minimum, is shown to

hold always. When the integral of the squares of the errors, instead of the sum, is to be

minimized, the approximating polynomial is given as a sum of Legendre polynomials. The

explicit expression for the mth Legendre polynomial Pm(x) is derived from the orthogonality
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condition Jl1 x"Pm(x)dx, s = 0(l)?re — 1. Pm(x) is given explicitly as far as m = 8; it is

shown that Jll Pm2(x)dx = (2m + 1)_1; and the roots of Pm(x) are shown to be real, dis-

tinct, and between 0 and 1. Since the method of least squares via the solution of the normal

equations becomes too laborious beyond the third or fourth degree approximation, a more

convenient alternative method utilizes sets of polynomials which possess orthogonality

properties relative to sums, entirely analogous to the Legendre polynomials for integrals

(first considered by Chebyshev in 1858), and the author develops the subject in a manner

similar to that for the Legendre polynomials. The subject of graduation or smoothing of

data is treated first from the least squares viewpoint, employing these orthogonal poly-

nomials under the assumptions that the observations of the unknown function f(x) are

equally spaced in x, and that f(x) can be represented with sufficient accuracy by a poly-

nomial of degree m over several consecutive values. Explicit formulae are given for m = 3

and 5, for 7(2)21 points of observation. An alternative treatment of smoothing formulae,

under four reasonable assumptions involving the random errors, leads to those same for-

mulae, but in terms of central differences, together with an estimate of the improvement

in the smoothing formula over the use of unsmoothed entries. Gauss's quadrature formula

using the zeros of the Legendre polynomials is derived, and the zeros with corresponding

weight factors are tabulated for Pm(x), m = 2(1)9, to 7D.

Chapter X considers other approximations by least squares, not necessarily using poly-

nomials, for both the continuous and discrete cases. After introducing the general problem

of least squares approximation, and the role of orthogonal functions, a fundamental theorem

is proved which shows that when the "true function" u is assumed to be a sum of orthogonal

functions, a function y, obtained as an approximation to an observed function z, is closer

to u than z itself. Trigonometric interpolation is developed first from the standpoint of the

Fourier series, whose coefficients minimize the integral of the square of the difference, and

then from the standpoint of harmonic analysis whose coefficients (resembling Fourier coeffi-

cients, but in terms of sums instead of integrals) minimize the sum of the squares of the

difference. A method for computing the coefficients in harmonic analysis is described. The

Gram-Charlier approximation for functions approaching zero very rapidly as | x | becomes

infinite leads, in the continuous case, to the Hermite polynomials H„(x) and the calculation

n

of the coefficients c¡ of f(x) as a sum (2w)~le~ix* 2 CiH,(x), from the moments of f(x). This
t'-O

method is applied to obtain the Gram-Charlier approximation to the function G(s) of

Chapter IV. For the discrete case, with points equally spaced, the author employs Hi<-"'>(s)

n

= AÍ("lJ), re,  s,  and Í integral, whose orthogonality property   2 Hk<-")(s)Ht<-n)(k) = 0 if

s ¿¿ t, 2" if s = t, makes them suited to least squares approximation.

Chapter XI contains introductory material on simple difference equations. First the

author distinguishes between particular discrete solutions, particular continuous solutions,

and general solutions. Then several pages are devoted to a list of differences of functions,

to be used in solving the difference equation Au, = f(s), where f(s) might be a polynomial,

rational fraction, exponential, trigonometric, or logarithmic function. It is shown how certain

difference equations are converted into exact equations by multiplication by a suitable

factor. For homogeneous linear difference equations of order higher than the first, the solu-

tion by the substitution u, = a", depends upon the solution of an algebraic equation in a.

Also, it is shown how to solve a few cases of nonhomogeneous linear difference equations

with constant coefficients, by means of undetermined coefficients. The author concludes by

touching on the solution of linear equations, with variable coefficients, by means of factorial

series, and the vanishing of all coefficients of factorials of like degree by virtue of the given

difference equation.

Appendix A clarifies notation and symbols. Appendix B lists 21 reference texts, 13

tables available in book form, 9 tables in journals, and 4 bibliographies. Appendix C fur-

nishes a classified guide to formulae and methods in this book. The section on Tables con-
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tains: T. I. Binomial coefficients ®, k = 0(1)10, re = 1 (1)20. T. II. Interpolation coefficients

(J) for Newton's binomial interpolation formula, k = 2(1)5, s = [0(.01)1; 5D]. T. III.

Everett's interpolation coefficients ('t1), CÍ2), s = 0(.01)1 ; 5D. T. IV. Lagrange's coefficients

for five equally spaced points, L¡(s), i = — 2(1)2, 5 = [0(.01).5; 6D]. T. V. Legendre's

polynomials Pm(x) normalized to the interval 0 ^ x ^ 1, m = 1(1)5, x = 0(.01)1; m = 1,2,

exactly; m = 3, 4, 5, 5D. T. VI. Orthogonal polynomials P¡(s), (for sums, properties in

Chapter IX), for re + 1 equally spaced points, given exactly for j = 1(1)5, « = 5(1)20,

i = 0(l)re. T. VII. Integrals of binomial coefficients So" Qdt, k = 0(1)9, s = - 1, 1(1)8;

exactly. T. VIII. Gamma function r(x + 1) and digamma function d In T(x + \)/dx (also

known as the "psi function"), for x = [0(.02)1; 5D].

Herbert E. Salzer
NBSCL

638[H, L].—R. Westberg, "On the harmonic and biharmonic problems of a

region bounded by a circle and two parallel planes," Acta Polytechnica,

Stockholm, no. 18, 1948, 66 p. 17.5 X 24.6 cm. Also Physics and Appl.
Math, series v. 1, no. 3. Also as Ingeniörsvetenskapsakademiens Hand-

Ungar, no. 197.

On p. 61 are tables of Im = f<r tmdt/2, 5S; Jm = fo°° tme~2tdt/X, 1-5S; Km - I„
4- 2Im+i — Jm, 5-6S; m = 1(2)15, 2 = sinh 2/ 4- 2í. This table is an abridgement of one

given by Howland « for m = 1(1)20.

On p. 64 are given 9D values of the first 11 zeros2 z„, n = 0(1)10, of sinh z + z, each

to 9D. For example:

zo = 2.250728611 +¿4.212392231
zu, = 4.907438417 + ¿67.471628635

Extracts from text

1 R. C. J. Howland, "On the stresses in the neighborhood of a circular hole in a strip
under tension," R. Soc. London, Trans., v. 229A, 1930, p. 67; correction v. 232A, 1933,

p. 169.
2 The first four zeros were given, 4-5S, by F. Seewald, "Die Spannung und Formänder-

ungen von Balken mit rechtwinkligem Querschnitt," Aerodynam. Inst. Aachen, Abhand.,
Heft 7, 1927, p. 16. These values differ in some cases in the third figure from those obtained

by the present author.

639[I].—Herbert E. Salzer, "Coefficients for facilitating trigonometric

interpolation," Jn. Math. Phys., v. 27, p. 274-278, 1949. 17.4 X 25.3 cm.

The problem of expressing the trigonometric sum,

f(x) = Co + (Ci cos x + Si sin x) + ■ ■ ■ + (C„ cos rex + Sn sin rex),

so that f(x) assumes given values, /o, }i, • • ■, fin, when x assumes the values, x0, Xi, • ■ •, x2„,

leads to what is commonly called Gauss's formula for trigonometric interpolation, namely,

2n

f(x) =  2 n>„ sin i(x - x,)/i/n;2_"0 sin i(x> - Xj).
¿-0

The symbol II' has its customary significance that the factor corresponding to i = j is

omitted from the product.

The present paper is concerned with the tabular values of the coefficients,

¿4<*.-H) = l/n>o sin i(Xi - Xj).

If the values of Xi are equally spaced, then the coefficients satisfy the relationship,

The author describes his tables as follows: "Coefficients At'***0 are given for the 3-, 5-,

7-, 9-, and 11-point cases, all at intervals in x equal to 1, .5, .2, .1, .05, .02, and .01; also
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^j¿(2n+i) are given for functions tabulated at 2re + 1 equally spaced points over a range of jt

and Jtt, for 2re + 1 = 3(2)11, since those ranges, i.e., 180° and 90°, are important for many

periodic functions. AH the quantities ^4j(2"+,) are given to eight significant figures."

H. T. D.

640[J].—E. H. Copsey, H. Frazer, & W. W. Sawyer, (a) "Empirical data
on Hubert's inequality," Nature, v. 161, 6 March 1948, p. 361. (b) "A
research project," Math. Gazette, v. 32, May 1948, p. iii-iv.

The problem of Hubert's inequality is discussed in detail in MTA C, v. 3, p. 399^00,

where the results of (a) and (b) are set forth. The tables of (a) and (b) are of the largest

latent root of the matrix of the reth order for which

o-a = (¿ + j - 1)~>

(a) gives this root X„ to 9D for re = 1(1)5, 10, 20 while in (b) will be found X» to 5D for

« = 1(1)20.

D. H. L.

641[K, L].—Zdenëk Kopal, "A table of the coefficients of the Hermite
quadrature formula," Jn. Math. Phys., v. 27, p. 259-261, Jan. 1949.
17.5 X 25.3 cm. Compare MTAC, v. 1, p. 152-153, v. 3, p. 26.

A GAUSs-type quadrature formula for an approximate evaluation of definite integrals

with doubly infinite limits appears to have first been established by Gourier,1 who proved

that if f(x) is a function of degree not in excess of 2re — 1,

(1) f° e~x2f(x)dx = 2"+'re!TJ 2 /(*<)/[#»'(*<)]',
—œ t"»i

where H„(x) denotes the polynomial defined by

(2) Hn(x) = ex,d«(e~x2)/dx",

and the Xi's in (1) are roots of the Hermite polynomials of reth order (2). Numerical values

of the Christoffel numbers

(3) pi = 2-^n\/lHn'(xi)J

for re = 2(1)4 were given by Berger,2 and a more complete set of 7D values corresponding

to re = 2(1)9 was later completed by Reiz; 3 the latter's paper was the first one in which

the respective Christoffel numbers were given in decimal form.

In certain computations performed recently at the MIT, a need arose for the Christoffel

numbers of the quadrature formula (1) corresponding to re = 10(1)20. Since their values do

not appear to have been evaluated before and are apt to be frequently needed in the future,

a 6D table for x,- and a 6-13D table for pi in this range are given.

In computing the Christoffel numbers by equation (3), use has been made of values of

the roots of the Hermite polynomials published previously by Smith; 4 their accuracy of 6D

imposed the limit to the accuracy with which the corresponding Christoffel numbers could

be evaluated. The error of no published value of p is expected to exceed one unit of the

last place.

Extracts from the text

1 G. Gourier, Acad. d. Sciences, Paris, Comptes Rendus, v. 97, 1883, p. 79-82.
!A. Berger, K. Vetenskaps Societen i Upsala, Nova Acta, s. 3, v. 16, no 4  1893  p 3
3 A. Reiz, Arkivf. Math. Astr. och Fysik, v. 29A, no. 29, 1943, p. 6.
4 E. R. Smith, Amer. Math. Mo., v. 43, 1936, p. 354.
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642[K, L, M].—J. Barkley Rosser, Theory and Application of Jl' e~xldx
and Jlz e-p'vldy Jly e~x2dx. Part I. Methods of Computation. Brooklyn

4, N. Y., Mapleton House, 5415 Seventeenth Ave., 1948, iv, 192 p.
13.8 X 21.6 cm. $8.00. Offset print, bound in cloth.

This is a second edition of the quarto-format report, published in November 1945, which

has been already reviewed in MTAC, v. 2, p. 213f. In smaller format the reprint is prac-

tically identical with the original, and the smaller number of pages was made possible by

five times putting the material of two pages of the first edition on one in the second.

The volume contains a survey of various methods of calculating the integrals mentioned

in the title. Known methods are discussed and new ones developed. The accuracy of various

methods is subjected to a painstaking analysis. The author's attention is focussed on complex

values of the variables, and a great number of new asymptotic developments are derived.

The book contains two tables, each covering four functions. Put

Rr(u) = i cos i-n-u2 — i sin iwu2 + J    sin iir(u2 — x2)dx,

Ri(u) = i cos firtt2 + i sin jit«2 +  /    cos jir(re2 — x2)dx.

Table 1 gives values, to 12D, for Rr(u), Ri(u), Rr2(u) + RP-(u), and J0"Rr(u)dx. The range

covered is — .06(.02) + 3(.05)5.15, except for the integral, for which the last three entries

are missing.

Table 2 covers the following four functions to 10D:

2     Cw       2 2     Z*00 2 rw 2 /'y        2 CW       2 rM 2
e~w J    ey dy,    ew   j    e~"n dy,    J   e~" dy J Qex dx,    J    e" dy j    e~x dx.

The first is for w - - .2(.05)4(.1)6.5(.5)12.5. The second is for w - - .2(.05)3.8(.1)6.3;
the third and fourth are for w = — .2(.05) + 3.5(.1)6.

The book reviewed is "Part I." Portions of Part II, which are unrestricted, have been

expanded and completely rewritten and now appear as chapters III and IV of Mathematical

Theory of Rocket Flight by J. B. Rosser, Robert R. Newton, & George L. Gross, New

York, McGraw-Hill, 1947, viii, 276 p.
Will Feller

Cornell Univ.

643[L].—J. Deschodt, Arcs-Aires-Volumes, Centres de Gravité, Moments

d'Inertie. Paris, Office National d'Études et de Recherches Aéronautiques

(ONERA), 3, rue Léon-Bonnat, 1948, Div. no. 3, vi, 73 p. 21.2 X 27 cm.
Offset print from ms.

A useful summary of formulae indicated by the title. Each formula is accompanied by

a figure clearly indicating the meaning of every formula element. There are more than

seventy formulae for moments of inertia of plane surfaces and of solids.

644[L].—Harvard University, Computation Laboratory, Annals, v. 11:

Tables of the Bessel Functions of the First Kind of Orders Forty through

Fifty-One. Cambridge, Mass., Harvard Univ. Press, 1948, x, 620 p. The
volume is dated 1948, although not published until March 1949. 19.5
X 26.7 cm. $10.00. Compare MTAC, v. 2, p. 176f, 261f, 344; v. 3, p. 102,
117-118, 185-186, 367.

This is the ninth of the thirteen planned volumes of the monumental edition of tables

of Bessel functions, up to and including /ioo(x), prepared at the Harvard Computation

Laboratory. Practically all of the results set forth in this volume are entirely new. We

are given Jia(x) - /6i(x) for x = [18.38(.01)99.99; 10D]; the first significant values,

.00000 00001, for /6i(x) are when x - 26.75(.01)27.40 inclusive.
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In K. Hayashi, Tafeln der Besselschen, Thêta-, Kugel-, und anderer Funktionen. Berlin,

1930, are the following values of J„(x): « = 40-51, x = 20, and at least 23D; x = 30, and

at least 27D; x = 40, and at least 32D; x = 50, and at least 29D.

The values of Hayashi, rounded to 10D, in every case agree with those in the Harvard

volume.

John A. Harr designed the sequence control tapes, supervised the computation, and

prepared the manuscript for publication.

R. C. A.

645[L].—G. G. Macfarlane, "The application of Mellin transforms to the

summation of slowly convergent series," Phil. Mag., s. 7, v. 40, Feb. 1949,

p. 188-197. 17.2 X 25.2 cm.

Many problems in applied mathematics are reduced to the numerical calculation of a

series. To those who have spent any time with such problems, it is common knowledge that

the series oftentimes converge slowly in some sense or other. That is, the series might be

of the nature

(1) 2  1/re",    1 < a < 2
n-l

and the time necessary to sum such a series to a given number of significant figures can be

prohibitive. On the other hand for such a simple series as (1) (which is, incidently f(a),

where f is the Riemann zeta function), the method of Euler serves quite adequately. The

author discusses here a method which is particularly useful for the summing of series of

the form

(2) 2 /[(re + an

presuming, of course, that f(x) is sufficiently well behaved to accept the Mellin transform

and that the interchange of summation and integration at certain stages of his procedure

is permissible.

Subject to appropriate conditions, the Mellin transform pair is

(1) F(s) = f~ f(x)-x°-Hx

and

(2) f(x) = (2«)-»  f  "° F(s)x~>ds,    <n < a < o2

where a = Re(S) and the a\ and a2 define the abscissae of convergence of the integral (1).

[See E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford, 1937]. From

(2) we note that for re integer

J'V+too
F(s)(n +a)'"ds

tr—loo

and hence
" Pc+ix

(3) 2 /(re + a) = (2ir¿)-» J F(s)Ç(s, a)ds,    <n < a < o-2,

where

t(s, a) =  2 (a + re)-',    Re(s) > 1
n=0

is the generalized Riemann zeta function. It is, of course, assumed that interchange of sum

and integral is permissible. By various devices known to those versed in the methods of

contour integration and by use of the properties of f (s, a) it is possible to do something

about the evaluation of the integral in equation (3) for a known function f(x).
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The author considers three examples of this procedure. First, the well-known sum

CO

2 (cos rey)/«2
n-1

is treated. Here /(*) = cos x and hence

F(s) = 2'-irir(is)/r(i - is).    0 < <x < 1

Therefore cos x/x2 has the transform

F(s) = 2*-«ir»r(ii - l)/r(| - §i).    2 < «r < 3

Hence

2 (cos rey)/(rey)2 = (2W)"1 f* "° 2ä-Mr(±.s - l)y-°ï(s)ds/r(ï - is),    2 < a < 3.
n=\ (T—icc

Since the integrand has simple poles at $ = 0, 1 and 2 and behaves properly at infinity,

we get

2 (cosrey)/(rey)2 = ir2/(6y2) - ir/(2y) + l
n-1

A second series is

(4) 2 (-l)»(2re + l)->    /,[(2« + l)y],
n-0

where Ji(y) is the finite Bessel function of the first order. Here we get for y < 1, the rapidly

convergent series

_ £ (-)" B2n+i(j)(2y)2^

n-o   2   (2« + i)r(« + i)r(« + 2)

The B„(a) are the Bernoulli polynomials of order «.

A final example is

M

2  (1 - xm»)»/m»,

where M is the largest integer such that xAf* < 1. In this case we get an asymptotic series

for small x, that is M large. The answer in this case is expressed in terms of f (s, 1 ) and powers

of x. The technique employed in the second and third examples is similar to the one em-

ployed in the first one. Observe that the summing of the series (4) involves terms which are

0\_(2m + l)-'(-)7" cos {(2m + \)y - 3x/4J]

for m sufficiently large and hence great difficulties would be encountered in getting the

sum of the series directly from (4).

The note ends with a table of 72 Mellin transforms which, of course, is equivalent to a

table of bilateral Laplace transforms under proper substitution.

A. E. Heins
Carnegie Institute of Technology

Pittsburgh, Pa.

Editorial Note: The origin of the transforms of Robert Hjalmar Mellin (1854-
1933) is indicated on p. 7 of the work of Titchmarsh referred to above. The idea of the
reciprocity exhibited in (l)-(2) above, occurs in the famous memoir on prime numbers by
G. F. Bernhard Riemann (1826-1866), "Ueber die Anzahl der Primzahlen unter einer
gegebenen Grosse," Preuss. Akad. d. Wissen, zu Berlin, Monatsberichte, 1859, p. 671-680;
Riemann, Werke, Leipzig, 1876, p. 136-144. It was formulated explicitly by Eugène Cahen
(1865- ) in his doctoral diss., "Sur la fonction f (s) de Riemann et sur des fonctions ana-
logues," Ann. de l'École Norm. Sup., s. 3, v. 11, 1894, p. 75-164. But the first accurate dis-
cussion was given by Mellin: (i) "Ueber die fundamentale Wichtigkeit des Satzes von
Cauchy für die Theorien der Gamma- und der hypergeometrischen Funktionen," Finska
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Vetenskaps Societeten, Acta, v. 21, no. 1, 1896, p. 1-115; (ii) "Über den Zusammenhang
zwischen den linearen Differential- und Differenzengleichungen," Acta Math., v. 25, 1902,

p. 139-164.

646[L].—K. Mitchell, "Tables of the function faz — log11 — y\dy/y, with
an account of some properties of this and related functions," Phil. Mag.,

s. 7, v. 40, Mar. 1949, p. 351-368. 17.2 X 25.6 cm. Compare MTAC, v.
1, p. 189, 457-459; v. 2, p. 180, 278.

Let/(x) = Sox — In 11 — y\dy/y = - Rl(l - x) = f(l, 2|x), Rl(x) = fi'\ntdt/(t- 1)
= — /(l — x). Some properties of an integral of this type have been given by Powell '

with a table of the function for x = [0(.01)2(.02)6; 7D]. An earlier table, Newman,2 gives

the function Rl(l ± x), for x = [0(.01).5; 12D], and a comparison of these two tables over

their common range (Fletcher 3) reveals discrepancies which are traced to errors in New-

man's table. Powell's table, over the common range, contains only rounding errors in the last

decimal place. Another table (Spence,4 1809) gives Rl(x), x = [1(1)100; 9D]; and yet

another (Kummer,6 1840), gives a function akin to f(x) for x = [— 11(1) + 10; 11D].

These tables offer only isolated points of comparison.

The author's attention was drawn to the function by a physical problem in 1940, and

the tables of f(x), for x = [- 1(.01) + 1; 9D], x = [0(.001).5; 9D] were calculated and

are given in this paper, p. 357-363. Comparison of the author's table with that of Powell

reveals one error in the latter; at x = .01 (Powell's variable), for 1.5886 274, read 1.5886 254.

There are several other rounding errors in the last decimal place, which have not been

separately listed. Errors in Newman's table are listed by Fletcher.

Extracts from text

1 E. O. Powell, Phil. Mag., s. 7, v. 34, 1943, p. 600-607.
2 F. W. Newman, The Higher Trigonometry. Superrationals of Second Order. Cambridge,

1892.
3 A. Fletcher, Phil. Mag., s. 7, v. 35, 1944, p. 16-17.
4 W. Spence, A re essay on the Theory of the Various Orders of Logarithmic Transcendents,

London, 1809, p. 24.
6E. E. Kummer, Jn. f. d. r. u. angew. Math., v. 21, 1840, p. 74-90, 193-225, 328-371.

Editorial Note. The table in question is on p. 88 and the function is A(x) = Jlx In (1 +t)dt/
(1 + /). A(x) = 0, for x = 4.50374185563.

647[L].—NBSCL, Tables of Bessel Functions of Fractional Order. Volume II.
New York, Columbia University Press, 1949, xviii, 365 p. Offset print.
20 X 26.6 cm. $10.00. The foreword by Prof. R. E. Langer occupies
p. vii-x. Introduction, p. xiii-xvii, by Milton Abramowitz. Compare

MTAC, v. 1, p. 93, 300; v. 3, p. 187, 339.

The present volume, devoted to the tabulation of I,(x) for ± v = \, i, f, f, is a sequel

to the volume of 1948 containing J„(x) for the same orders. The functional values in both

volumes are given either to 10D or 10S. The interval in the argument has been so chosen

that interpolation with the aid of the tabulated second central differences will yield the

maximum attainable accuracy over most of the range covered. In some regions, where this

desideratum is not met, fourth central differences are also given; in such regions it is always

possible to obtain an accuracy of at least 7S by Everett's interpolation formula involving

only second differences. Interpolation is not feasible close to the origin (for x < .05), and

therefore in this region the auxiliary function x~"I,(x) has been tabulated, together with its

second central differences.

The tables of I,(x) cover a range of x from 0 to 25. The function e~xIv(x) is tabulated

for x = 25(.l)5O(l)5O0(lO)5O0O(100)lO00O(20O)3000O. With the aid of these values it is
possible to compute Iv(x) in this range of x. For x > 30000 an accuracy of at least 9S can

be obtained with the first two terms of the asymptotic expressions for Iy(x).

Values of I—V(x) are tabulated up to x = 13 only, since for larger values of x they are

identical with those of Iy(x) to 10S. For v = - J, - f, in tables of I,(x), x = 0(.001) 1 (.01) 13;
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for „ = -i, -i, x = 0(.001).8(.01)13; for r - J, J, * - 0(.001).6(.01)25; for v - |, \,
x = 0(.001).5(.01)25.

On p. xviii are 15D values of constants including 16 involving the gamma function.

Tables of Everett Interpolation Coefficients are given p. 333-343, and of Lt(u) for interpola-

tion in the v direction, p. 345-365.

Extracts from text

Editorial Note: Except for small unreliable tables by Dinnik these valuable tables
are the first published tables of their kind.

648[L].—NBSINA, Tables of I,(2<x), J1(2V*)/Vi, K0(2^c), Kx(24x)/Jx
and Related Functions. 0 ^ x ^ 410. Computed under the direction of

Dr. Gertrude Blanch, Institute for Numerical Analysis, U.C.L.A.,

Los Angeles, California, February 1949. v, 26 leaves, with text on only

one side. Our leaf numbers do not agree with those of the text because

there are no leaves ii or 1 in the original. 20.17 X 35.7 cm. These tables

are a sequel to the tables reviewed in RMT 505, v. 3, p. 107.

T. I is of 7o(2x»), 71(2x»)/x*, for x = [0(.02)1.5(.05)6.2; 8S or 9S], S2, second central

differences. T. IL e-2*èJ„(2x»), e-2xiIi(2Xi)/xt, for x = [6.2(.1)13(.2)36(.5)115(1)160(5)410;

7S or 8S], S2 or modified S2. T. III. K0(2xi), Ki(2x*)/xi, for the same ranges as T. I, and 7S

or 8S, S2 or modified S2, except for a small region near the origin. T. IV. e2xiKo(2xl),

e2xiKi(2xl)/x*, for the same ranges as T. II, and 7S or 8S, S2 or modified S2.

For large values of the argument, Ia(y) and h(y) are of the order of magnitude of e",

while Ko(y) and Ki(y) behave like e~". For x ^ 6.2 (T. II and III) the tabulated functions

have been multiplied by appropriate exponential factors in order to retain the interpolable

character of the table.

Let u = F„(x) or G„(x), where Fn(x) = 7„(2x»)/x*n; G„(x) = Kn(2xi)/x¡», and h(t) and

K„(t) are Bessel Functions of order re. The u satisfies the differential equation

x d2u/dx2 + (re + \)du/dx — u = 0.

If, in .F„(x) and G„(x), the functions I„(2x*) and iC„(2x*) are replaced by /„(2x*) and F„(2x*),

respectively, we obtain wn(x) which satisfies the Bessel-Clifford differential equation (see

RMT 505)
x dhv/dx2 + (re + \)dw/dx + w = 0.

The functions -Ko(2x') and iCi(2x*)/x* have singularities at x — 0, and interpolation in

the region close to the origin, where differences are not given, can be performed more

advantageously in at least two other available tables, namely:

(a) Tables of the Bessel Functions Y0(x), Y¡(x), K0(x), Ki(x), 1948, for 0 < x < 1, 7S

in K„(x), Ki(x); MTAC, v. 3, p. 187.
(b) BAASMTC, Mathematical Tables, v. VI, Part I, 1937; auxiliary functions E„, F0,

Ei, Fi, x = [0(.01).5; 8D]; MTAC, v. 1, p. 361-363.

For x < 100 the entries were computed by interpolation from (b). A few entries near

x = 0 in T. Ill were computed otherwise.

In the following regions there may be an error of two units in the last place [the pages

are those as corrected]:

Table I. 7o(2x*), entries on p. 1, 3-11 ; x-»ii(2x»), p. 11.

Table III. Entries on p. 14, both functions.

Table IV. All entries of e2x K0(2xi), and entries of

e2'l'Ki(2xi)/xi on p. 22-24, x < 100.

All other entries should be correct to within a unit of the last place, and for x > 100 to

within .6 units.

Extracts from text
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649[L].—Lidia Stankiewicz, "Sul calcólo délia piastra poggiata su suolo

elástico," Accad. Naz. d. Lincei, Atti, Rendiconti, cl. d. sei. fis. matem. e

nat., s. 8, v. 5, Dec. 1948, p. 339-344. 18 X 26.6 cm.

F(x,y) = ./V" ./ö™ sin (xu) sin (yvjdu dv/\uv\(u2 + v2)2 + 1}] is here tabulated for x

and y = [0(.5)8(1)12, «= ; 3D].

650[L, M].—David L. Arenberg & Doris Levin, Table of Fresnel Integrals

and Derived Functions. Naval Research Laboratory Field Station, 470

Atlantic Avenue, Boston, Mass., [1948], [15] leaves, hektographed.

20.5 X 26.7 cm. Not available for general distribution.

In this publication are given 4D values of

C(u) = J    cos (iirx2)dx,    S(u) =  J    sin (iirx2)dx,

for u = 0(.1)20, and for u - 8(.02)16. The values of C(u) and S(u) for u < 8 were taken

from the tables of Sparrow.1 For u > 8 computations were made by means of approximate

formulae from the semi-convergent series given by Watson: a

(1) C(u) « i + (2irz)-*[sin z - (2z)"1 cos 2],

(2) S(u) ~i- (27rz)-»[cos z + (2z)"1 sin z],

where z = iru2. For z > 50, (1) and (2) are accurate to ±1 in the fourth decimal place. All

other functions of C(u) and S(u) will have corresponding errors.

For« = 0(.1)20, there are 4D tables of [C(u)J, \_S(u)J, Rm(u) = ([C(«)]2 + \_S(u)J\\

and Ru(u) = {[C(w) - ij + ÍS(u) - iW; and 5D or 6D tables of [C(«) - JJ and
f_S(u) — i]2. The function Ra(u) was computed mainly to obtain an independent check of

the consistency of the calculations, since this is a monotonie function giving the relative

distance between points on the Euler spiral (often called after Cornu) and the limiting value

C(°°) = 5(a>) = ± j. By taking differences between the tabulated values of R^(u), one

easily detected flagrant discrepancies in S(u) and C(u).

These tables were computed to meet the need of more extended tables than those already

available.

Extracts from introductory text

•CM. Sparrow, Table of Fresnel Integrals, Rouss Physical Laboratory, University of
Virginia, 1934.

Editorial Note: This publication, photo-lithoprint reproduction of author's manu-
script by Edwards Bros., Ann Arbor, Mich., contains ii, 9 p. (21 X 27.1 cm.), and the
tables are of C(u) and S(u), for u = [0(.005)8; 4D]. The first paragraph of the text by the
author, Carroll Mason Sparrow, 1880-1946, is as follows: "The greater part of the
following table was made some years ago in connection with a study oí imperfect gratings;
existing tables not being adequate by reason of their too large interval. This manuscript
table was resurrected and slightly extended to meet a teaching need, and is here reproduced
in the hope that it may prove of some use to others." The Arenberg & Levin tables of
C(u) and S(u), for u < 8.5 are identical with those given in Jahnke & Emde, Tables of
Functions, 1945, p. 34. In no previously published tables has u been greater than 8.5.

2 G. N. Watson, A Treatise on the Theory of Bessel Functions, second ed., Cambridge

and New York, 1944, p. 545.

651[L, M].—Harvard University, Computation Laboratory, Annals,
v. 18, 19: Tables of Generalized Sine- and Cosine-Integral Functions, Parts

I and II. Cambridge, Mass., Harvard Univ. Press, 1949, xxxviii, 462, viii,

560 p. 20 X 26.7 cm. $10.00 + $10.00.

The Computation Laboratory has here undertaken to present as complete and useful

a table of certain integrals as can be included within the scope of 1000 pages. The inte-
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grals are

S(a, x) = J    sin u dx/u,    C(a, x) = J    (1 — cos u)dx/u,

C(a, x) — f cos u dx/u = sinh-1 (x/a) — C(a, x),

(I) -\ Ss(a, x) = I sin u sin x dx/u,    Sc(a,x) = J    sin u cos x dx/u,

Cs(a, x) = I cos u sin x dx/u,    Cc(a, x) =  j    cos u(\ — cos x)dx/u,

Cc(a, x) = I cos u cos x dx/re = sinh-1 (x/a) — C(a, x) — Cc(a, x),

where u = (x2 + a2)*. Clearly, tables of these functions need include only one of the in-

tegrals C, C, and only one of the integrals Ce, Ce; C and Cc were chosen because they afford

much better interpolation near the origin.

The tabulation extends over a set of points (a, x) within the square 0 < a < 25,

0 < x < 25. The set was so chosen as to provide for interpolation in 6D tables within as

large as possible a portion of the square, and yet permit the tables to be encompassed in

two volumes.

These volumes are arranged in sections, each section consisting of the complete table,

ordered by ascending x, for one value of the parameter a. The sections (about 350) are in

turn ordered by ascending o, and those sections corresponding to 0 < a < 2 are contained

in Part I, while those corresponding to 2 < a < 25 are in Part II.

When o = 0, the integrals S(a, x), C(a, x) reduce to the sine-integral and cosine-

integral functions

Si(x) = J   sin x dx/x,    Ci(x) = J   cos x dx/x.

These functions are classical, thorough studies having been made 1 by 1906. Further they

have been exhaustively tabulated.2 On the other hand, for non-zero a the previously existing

tabulations are fragmentary and inadequate.3-6 The present volumes were prepared with

the thought in mind that the class of tabulated functions should be augmented to include

the composite functions, that 6D accuracy should be provided, that the domain of tabulation

should be large enough to cover the cases that arise in practice, and that the mesh should be

fine enough to admit interpolation to the accuracy that the applications demand.

When a = 0,

S(0, x) = 5¿(x),    C(0, x) = y + In x - Ci(x),

Sc(0, x) = iS(0, 2x) = iSi(2x),    Cs(0, x) = iS(0, 2x) = iSi(2x),
Ss(0, x) = j[In 2 + y + In x - C¿(2x)] = iC(0, 2x),

Cc(0, x) = §[ln 2 - t - In x - C¿(2x)] + Ci(x) = iC(0, 2x) - C(0, x),

where y is Euler's constant.

When a ^ 0, it may be shown that

Sc(a, x) = HSi(z) - Si(y)2,    Cs(a, x) = i[_Si(z) + Si(y)] - Si(a),

Ss(a, x) = - HCi(z) + Ci(y)2 + Ci(a),    Cc(a, x) = i\_Ci(z) - C¿(y)],

where z = u -\- x, y = u — x.

J   sin u dx/u = j7r/o(a),     I    cos u dx/u = WF0(a).
0 t/0

The six functions (1) [omitting C and Cc] can be represented as a combination of ele-

mentary functions and power series in a and x, convergent for all values of a and x. For these

power series in x, 10D tables of the first four or five of the various coefficients a¡(a), ßj(a),

7j(a)< v¡(a), Â)(a), iij(a) are given (p. xxxvi-xxxviii), for a = 0(.01).99.

In the half-unit rectangle 0<a<l,0<x<j, the integrals were computed by means

of these series. The error in the coefficients is in all cases less than 6 X 10~9; the resulting
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error in the integrals is of lower order than the truncation error. The introduction was written

by Mr. Singer with the help of Mr. Gadd. "Computation of the tables," p. xix-xxv.

"Interpolation" by J. Orten Gadd, Jr. & Theodore Singer (p. xxvi-xxx). Throughout

the tables the remainder after linear interpolation is less than 5 units in the third decimal

place, and the remainder after second order interpolation is less than 1.2 units in the third

decimal place. This is true regardless of whether the interpolation is accomplished by means

of a two-way formula or by several uni-variate interpolations. Actually, the remainders

after interpolation are much smaller throughout the greater part of the tables.

Of the eight integrals (1) six are tabulated in these volumes. The others C(a, x) and

Cc(a, x) are readily determined from C(a,x), Cc(a,x), and sinh-1(x/a). It is anticipated

that tables of the inverse hyperbolic functions will appear in the Annals, v. 20.

"Applications" by Ronold W. P. King (p. xxxi-xxxv).

The following list is partly representative of the types of problems that have been or

may be investigated by using one-dimensional Helmholtz integrals which lead to the

generalized sine- and cosine-integral functions.

(a). Vector and scalar potentials of electric circuits; open-wire transmission lines; linear,

loop, and rhombic antennae, and arrays using these as elements. Distributions of

current may be uniform, sinusoidal, or exponential,

(b). Self-impedance (including radiation resistance) of a polygonal loop antenna that is not

so small that retardation is negligible.7

(c). Mutual impedance of rectangular loop antennae separated by an arbitrary distance.7

(d). The general analysis of two-wire, four-wire, multi-wire, and polyphase transmission

lines, including the determination of radiation resistance.7'8

(e).  Radiation resistance of a linear radiator with a sinusoidal distribution of current.9

(f).   Distribution of current and impedance for a cylindrical antenna.10-17

Extracts from introductory text

•Niels Nielsen, Theorie der Integrallogarithmus. Leipzig, 1906; the author gives an
exhaustive bibliography.

2 NBSMTC, Tables of Sine, Cosine, and Exponential Integrals, v. 1-2, New York, 1940;
Table of Sine and Cosine Integrals for Arguments from 10 to 100. New York, 1942. The refer-
ences contained in these volumes include a full bibliography of tables of these functions.

3 C. J. Bouwkamp, "Note on an integral occurring in antenna theory," Natuurkundig
Laboratorium de N. V. Philips' Gloeilampenfabrieken, Eindhoven, Netherlands, Unpubl. ms.

4 R. V. D. Campbell, "Evaluation of the function S(b, re) = Jlh sin (x2 4- &2)*dx/
(x2 + b2)i" June, 1944; [see MTAC, v. 2, p. 218].

5 H. A. Arnold, R. V. D. Campbell, & R. R. Seeber, Jr., "Evaluation of the function
C(b, h) = f0h cos (x2 + b2)Ux/(x2 + b2)i," Oct., 1944; [see MTAC, v. 2, p. 218].

6 Curves of some of these functions appear in an article by Charles W. Harrison, Jr.,
"A note on the mutual impedance of antennas," Jn. Appl. Physics, v. 14, June 1943, p.
306-309.

7 R. W. P. King, Electromagnetic Engineering, New York, v. 1, 1945, p. 408, 426, 478f.
8 C. T. Tai, "Theory of coupled antennas and its application," Diss. Harvard, 1947.
9 Julius A. Stratton, Electromagnetic Theory. New York, 1941, p. 444, and R. W. P.

King7, p. 565.
10 M. Abraham, "Die elektrischen Schwingungen um einen stabförmigen Leiter, be-

handelt nach der Maxwell'schen Theorie," Annalen d. Physik, v. 302 or n.s., v. 66, 1898,

p. 435-472.
11 G W. Oseen, "Über die electromagnetischen Schwingungen an dünnen Stäben,"

Arkivf. Mat. Astron. o. Fysik, v. 9, no. 30, 1914, 27 p.
12 Erik Hallen, (i) "Theoretical investigations into the transmitting and receiving

qualities of antennae," K. Vetenskaps Soc. i Upsala, Nova Acta, s. 4, v. 11, no. 4, 1938,

44 p.; (ii) "Iterated sine and cosine integrals," R. Inst. Techn., Stockholm, Trans., v. 9,
no. 12, 1947; (iii) "On antenna impedances," Trans., no. 13, 1947.

13 L. V. King, "Radiation field of a perfectly conducting base insulated cylindrical aerial
over a perfectly conducting plane earth and the calculation of radiation resistance and
reactance," R. Soc. London, Trans., v. 236A, 1937, p. 381-422.

14 R. W. P. King & F. G. Blake, Jr., "The self-impedance'of a straight symmetrical
antenna," Inst. Radio Engin., Proc, v. 30, 1942, p. 335-349.
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16 R. W. P. King & Charles W. Harrison, Jr., (i) "The distribution of current along
a symmetrical center-driven antenna," I.R.E., Proc, v. 31, 1943, p. 548-567; (ii) "The
impedance of short, long, and capacitively loaded antennas with a critical discussion of the
antenna problem," Jn. Appl. Physics, v. 15, 1944, p. 170-185.

16 Marion C. Gray, "A modification of Hallén's solution of the antenna problem," Jn.
Appl. Physics, v. 15, 1944, p. 61-65.

17 R. W. P. King & David Middleton, (i) "The cylindrical antenna; current and
impedance," Quart. Appl. Math., v. 3, 1946, p. 302-335; (ii) "The thin cylindrical antenna:
a comparison of theories," Jn. Appl. Physics, v. 17, 1946, p. 273-284.

652[L, M].—S. A. Schelkunoff, Applied Mathematics for Engineers and
Scientists.   (The Bell  Telephone Laboratories Series.)  New York,  Van

Nostrand, 1948, p. 456.

On this page there is a table of

SC(x) =   /   Si u dCiu = j   Si u cos u du/u, x = k-w,

for A = [.2(.2)2; 5D].

653[L, S].—G. H. Godfrey, "Diffraction of light from sources of finite di-
mensions," Australian Jn. of Sei. Res., s. A. Phys. Sciences, Melbourne,

v. 1, no. 1, Mar. 1948, p. 1-17.

T. 1, p. 7: Rectangular aperture, Ix = [5¿(2x) - (sin2x)/x]/7r, x = [0(.1)15(.5)34.5;

5D]. T. 2, p. 8, 7x+2.4t - I„ * - [- 1.27r(.l7r) + 1.3»; 5D]. T. 3, p. 9, II+t.,r - h,

x = [-1.7,r(.l,r)0;5D].T.4,p. 13, Circular aperture,/, = SéHi(2x)dx/(irx2), t = [0(.1)15;

4D]. T. 5, p. 15, 1,+t., - I,,t= [- 4.2(.l) - 2.8; 4D].

654[M].—Wolfgang Gröbner & Nikolaus Hofreiter, Integraltafel.
Erster Teil: Unbestimmte Integrale. Vienna and Innsbruck, Springer-

Verlag, 1949, viii, 166 p. 20.7 X 29.8 cm. $4.20. Offset print of a manu-
script original. This work was first published at Braunschweig, in 1944.

It is stated in the preface (p. iv) that of the first edition a French transla-

tion was made by Engineer Weber (Ministère de l'Armement S.F.I.S.,

Rapport Nr. 451-01-01/02/03) in which the authors of the original work

are not mentioned.

This work by professors at the Universities of Innsbruck and Vienna respectively is

divided into three sections, namely: 1. Rational Integrands (p. 1-21); 2. Algebraic Irrational

Integrands (p. 22-106); 3. Transcendental Integrands (p. 107-166). Thus elliptic and hyper-

elliptic integrals are listed in section 2, but the Weierstrass and Jacobi elliptic functions in

section 3, along with Bernoulli and Euler numbers, sine integral, cosine integral, exponential

integral, etc. There are often 13-17 integrals on a page, all most neatly written, with numer-

ous cross references, some explanations and references to discoverers, and frequent mention

of Jahnke & Emde's Funklionentafeln. The whole presentation is exceedingly clear and

satisfactory. It is remarked in the preface that the second part of the work, on Definite

Integrals, is, with the first part, to form a unit, so that gaps now apparent in the first part

will later be satisfactorily filled.

The authors state that the following works were at their disposal: H. B. Dwight, Tables

of Integrals and other Mathematical Data. New York, 1934; M. Hirsch, Integraltafeln oder

Sammlung von Integralformeln. Berlin, 1810; W. Láska, Sammlung von Formeln der reinen

und angewandten Mathematik. Braunschweig, 1888-1894; F. Minding, Sammlung von

Integrallafeln. Berlin, 1849; C. Naske, Inlegralformeln für Ingenieure und Studierende.

Berlin, 1935; B. O. Peirce, A Short Table of Integrals. Third ed., Boston, 1929 ("Vorzügliches

Buch"); G Petit-Bois, Tafeln unbestimmter Integrale. Leipzig, 1906.

R. C. A.
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655[M, P].—E. T. Goodwin & J. Staton, "Table of f0x e~utdu/(u + x),"

Quart. Jn. Mech. Appl. Math., Oxford, v. 1, Sept. 1948, p. 319-326.

The function /(x) = fa" e~"'du/(u + x) is tabulated for x = [0(.02)2(.05)3(.1)10;

4D]. To facilitate interpolation for small x an auxiliary function g(x) — f(x) + log x is

tabulated for x = [0(.1)1; 4D]. An asymptotic expression is given for values of x greater

than 10. Full details of the method of computation are set forth and an interesting applica-

tion of the Euler transformation to the summation of asymptotic series is included.

The function f(x) arose in research connected with the determination of the response of

a detector to a random noise voltage having a narrow spectrum.

Extracts from text

656[P].—A. C. Stevenson, "The centre of flexure of a hollow shaft," London

Math. Soc, Proc, s. 2, v. 50, p. 536-549, 1949.

The author re-solves the problem of flexure by a transverse force of a bar of circular

cross-section with a cylindrical cavity of circular cross-section having any position and size

with respect to the outer circle. The load force is assumed to act through the centroid

perpendicular to the axis of symmetry of the cross-section. The general solution is obtained

in bipolar coordinates in terms of the author's modification of the classical Saint-Venant

flexure theory. This involves three plane harmonic functions which are written as appro-

priate infinite trigonometric series, of which all coefficients are determined so as to satisfy

the given boundary conditions. The most complete previous solution was given by Seth; *

this however did not consider explicitly the centre of flexure or the limiting case when the

cavity just reaches the edge of the cylinder. The present paper gives, p. 548-549, 5D tables

for determining the torsional moment, the associated twist, the centre of flexure, the "centre

of least strain energy," and the centroid, all as functions of two dimensionless parameters

which define the ratios between the radii of the inner and outer circles and the distance

between their centres, X = .1(.1).9, fi = .1 (.1) .9, X -f- m 3» 1. The formulae for the case

when the cavity just touches the outer surface are given in terms of trigamma and tetra-

gamma functions.2

Daniel C. Drucker

1 B. R. Seth, "On the flexure of a hollow shaft, I—II," Indian Acad. Sei., Proc, v. 4,
1936, p. 531-541; v. 5, 1937, p. 23-31.

2 H. T. Davis, Tables of the Higher Math. Functions, v. 2, Bloomington, Ind., 1935;
BAASMTC, Mathematical Tables, v. 1, second ed. 1946. See MTAC, v. 3, p. 424.

657[S].—NBSCL, Tables of Scattering Functions for Spherical Particles.
(NBS Applied Mathematics Series, no. 4, issued 25 Jan. 1949). Washing-

ton, D. C, Superintendent of Documents, 1948, xiv, ^ 19 p. 18 X 26 cm.

$0.45.

This is a collection of four sets of tables useful in the study of the scattering of electro-

magnetic radiation by transparent as well as absorbing and dispersing spherical particles

over a wide range of ratios of particle radius to radiation wave length.

The scattering of light by particles has been of great scientific interest from the time

of the early work of Tyndall and Rayleigh (1870) on the blue color of the sky and on the

colors produced in illuminated suspensions. The subject has attracted renewed attention

in recent years from the effect of fog and rain on the action of microwave radar, as well as

that of colloidal suspensions on visible light.

The tables presented here are based on the fundamental work of Gustav Mie,1 though

with some changes in notation. A very helpful feature is the careful definition of all tabulated

quantities as well as a description of their physical significance. The principal quantities
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tabulated are the so-called intensity functions ¿i and ¿2,

»,   = |ñ*|«   = I  S    {AnTn  + P«[X7T„  -   (1   -  X2)x„']} |2,
n-1

¿2   = |¿2*|2   = |  S    [A.lXTn  -   (1   -  X2)T„']  + PnTn) \2,
n-1

where wn(x) = dPn(x)/dx, and tt„'(x) = d2Pn(x)/dx2, Pn(x) being the Legendre polynomial

of degree re. An = an/n(n -+- 1), Pn = pn/n(n -f- 1), o„ and f>„ being complicated expressions

involving Bessel functions of half-integral order. ¿1 and ¿2 give the angular distribution of

intensity and the total radiation scattered by a small spherical particle as a function of

a. = 2nr/\, where r is the radius of the particle and X is the wave length of the radiation.

Among various tables of Part I (p. 1-51) ¿1 and ¿2 are tabulated for values of the real index

of refraction m of the scattering particle equal to 1.33 (that for water), 1.44, 1.55, and 2,

and for values of a = .5, .6, 1, 1.2, 1.5, 1.8, 2, 2.4, 2.5, 3, 3.6, 4, 4.8, 5, 6, as the angle of
scattering 7 (the angle between the direction of propagation of the scattered radiation and

the reversed direction of propagation of the incident radiation) ranges 0(10°)180°. The other

functions tabulated are real and imaginary parts of (i) A„, Pn, for various values of re, (ii)

¿1, ¿2, as well as values of ia2K(m; a) = i JoT (¿1 + ¿2) sin ydy, where K represents the total

scattering coefficient or the total energy scattered per second per unit cross-sectional area

of particle, illuminated by radiation of unit intensity.

The scattering of light by colloidal suspensions offers a useful method for the determina-

tion of the size of the scattering particles. The present tables afford a means of estimating

this from the experimentally observed intensity and scattering coefficient functions.

In Part II, p. 53-59, three functions are tabulated, for a transparent particle of refractive

index 1.5, for a range of a from .5 to 12, and for pairs of values whose ratio is 1.2, which

is the wave length ratio of the two most distinctive colors observed, namely: red light

(X = 6290 A°) and green light (X = 5240 A0). These functions are K(m; a), (2re + \)R(Cnl),

(2re + l)i?(C„2), where C»1 = (- l)"+1¿a„/(2re + 1); C2 = (- l)»¿p„/(2re + 1).

In the tables of Part III (p. 61-81) are presented the values of

CO

F(m;a) = (2/ct2) 2  (2re + 1) {CJ(m; a) + Cn2(m;a)} = K(m;ct) +iL(m;a),
n-1

for a medium containing absorbing particles with extinction coefficient k varying from 0 to .1.

This quantity is defined in such a way that e~iTk is the fraction of the radiation absorbed

in travelling a distance X through the bulk material. The tables here are restricted to the

range m = [1.44(.01)1.55; 4S or 5D] for the real part of the complex index of refraction.

The dispersion and absorption of electromagnetic radiation in liquid water are also of

importance in the microwave radar region of wave lengths from 10 centimeters to 3 milli-

meters. Consequently in Part IV (p. 83-119), tables are included giving the real and imagi-

nary parts of C„x and C„2, 4D, for significant values of re, and the scattering function

K(m*;a), 3D, for complex indices of refraction m* corresponding to this wave length interval.

The tabulations are for the following special cases of m*: 4.21 — 2.51¿, a = .1(.05)1(.1)3;

5.55 - 2.85¿, a = .1(.05)1(.1)2; 8.18 - 1.96», a = .1(.025)1; 3.41 - 1.94¿, a = .1(.05)-
1(.1)5; 7.20 - 2.65¿, a = .1 (.025) 1 (.05)1.3; 8.90 - 0.69», a = .1(.01).3(.005).43(.01).6.

This collection of tables will be of considerable value to investigators in the application

of visible light scattering to the study of suspensions as well as to those who study microwave

scattering. It is to be hoped that similar tables may ultimately be prepared for the scattering

of sound by spherical obstacles.

R. B. Lindsay
Department of Physics

Brown University

1 G. Mie, "Beiträge zur Optik trüber Medien," Annalen d. Physik, s. 4, v. 25, 1908,
p. 377-445.


