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For (15, 2, 1) (10, 5, 3)i2, (9, 6, 3)n, (8, 7, 3)2, (8, 6, 4)3, read (15, 2, 1) (10, 5, 3)„,

(9, 6, 3)h, (8, 7, 3)3, (8, 6, 4)4;/or (14, 3, 1) (8, 6, 4)2, read (14, 3, 1) (8, 6, 4),; for (12, 4, 2)
(11, 6, 1)>, read (12, 4, 2) (11, 6, l)e. These corrections change the total number of 4 X 4

magic squares from 539136 to 549504.

S. Urata, A. Sakai & A. Hirayama
Yamagata-Ken

Japan

UNPUBLISHED MATHEMATICAL TABLES

82 [F].—L. Poletti, Factor Table and List of Primes for the 30000 natural
numbers nearest 15,000,000. Manuscript table deposited in the library

of the American Math. Soc. New York.

This table gives new information for the range 14984970-15000000. The second half

from 15000000 to 15015000, is also covered by W. P. Durfee's factor table for the 16th mil-

lion, a table which is in the same library.

The factor table, which the author calls "Neocribrum," is a "type 3 table" arranged in

the usual way modulo 30. On p. 1 are given data on the distribution of the primes in this

range. Thus there are 1809 primes which are also classified modulo 30. There are 159 prime

pairs. There are 113 consecutive composite numbers following 14996687.

Poletti is the author of Tavole di Numeri Primi entro Limiti Diversi e Tavole Affini,

Milan, 1920.

D. H. L.

83[G, I].—H. E. Salzer, Coefficients of the first fifteen General Laguerre

Polynomials. Ms. in possession of the author.

The writer announced previously (MTAC, v. 2, p. 89) a manuscript giving the coeffi-

cients of Laguerre polynomials, which are a special case of general Laguerre polynomials

Lnm(x), namely for a = 0. The present manuscript gives the polynomials in a which are

the coefficients of x" in the general Laguerre polynomial

L„<«>(x) m exx-a — ( — ) (e-xx"+a) =  S ( ) ¡¡--, for y = 0(1)»,
n\ \dx/ „_0 \ n — v /     v\

and for » = 0(1)15.

H. E. Salzer

AUTOMATIC COMPUTING MACHINERY

Edited by the Staff of the Machine Development Laboratory of the National Bureau

of Standards. Correspondence regarding the Section should be directed to Dr. E. W.

Cannon, 418 South Building, National Bureau of Standards, Washington 25, D. C.

Technical Developments

Our contribution under this heading, appearing earlier in this issue, is "The California

Institute of Technology Electric Analogue Computer" by Prof. G. D. McCann.

Discussions

Procedure for the Machine or Numerical Solution of Ordinary Linear

Differential Equations for Two-Point Linear Boundary Values

Introduction. Increased attention is being focused on machine and

numerical solutions of differential equations which cannot be solved by

ordinary mathematical methods. There is need for more information on this
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subject for engineers and others who deal with such equations. This paper

describes a procedure applicable to numerical or machine solutions of the

general non-homogeneous ordinary linear differential equation with variable

coefficients where the form of these coefficients does not easily permit of

solution by series. The method is based on the well-known properties of

linear differential equations.

Ordinary differential equations of order higher than the first commonly

describe problems where the known boundary conditions are expressed

at two different values of the independent variable. Such problems are known

as two-point boundary-value problems. Although a great many linear equa-

tions, such as the Bessel and Legendre equations, may be rigorously

handled by the method of Frobenius, there are frequently those where the

variable coefficients of the derivatives are so complex that a series solution

is not feasible. For such equations, recourse to solution by numerical methods

or by some type of computing machine or analyzer may be sought. In this

event, a difficulty is at once encountered if divided boundary conditions are

present. In the case of an equation of order n, the dependent variable and its

n — 1 derivatives must possess assigned values at some point within the

interval in order that a machine or step-by-step solution may proceed from

that point. Consider the case of a second-order equation where the two

boundary conditions are divided between both ends of the range of the

independent variable. Only one of an unlimited number of possible values

of the initially unknown dependent variable or one of its derivatives, as the

case may be, at one end of the interval of solution will satisfy the boundary

condition at the other end. For a fourth-order equation with equally divided

boundary conditions, a double latitude of possible initial choices would exist.

The theory of ordinary linear differential equations appears extensively

in the mathematical literature.12'3 Application to the two-point boundary

problem where numerical or machine solutions are involved does not appear

to be generally well known. The purpose of this paper is to show in relatively

simple mathematical terms and by graphical illustration how the two-point

boundary problem may be handled. The method applies to any ordinary

linear differential equation of order n where the boundary conditions are

expressible in terms of linear combinations of the dependent variable and its

n — 1 derivatives and where K boundary conditions are known at one point

of the interval of solution and the remaining n — K conditions are known

at some other point of the interval. It is shown that for K < n/2 only

K + 1 trial solutions with arbitrarily selected values for those derivatives

which are initially unknown are required to determine the unique solution

satisfying all n boundary conditions. It is also shown that n + 1 trial solu-

tions will give data for any solution of the non-homogeneous equation. In

addition, a possible graphical procedure is suggested for converging on the

solution of non-linear equations.

Theory. Consider an ordinary non-homogeneous linear differential equa-

tion of order n with variable coefficients. This is

(1)     fo(d»y/dx") + Md^y/dx-1) + ■ ■ ■ + fn-x(dy/dx) + fny = /.

Assume fa, f\, ■ • • fn, f are finite, one-valued, and continuous functions of x

in the interval a0 < x < b0, and that /0 does not vanish at any point in the

interval. Under these conditions, there is known to exist a solution y such
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that y and its first n derivatives are continuous and have unique values at

every point in the interval. The reduced or homogeneous equation corre-

sponding to equation (1) is

(2) fo(d"y/dx») + Md^y/dx"-') + • • • + fn^(dy/dx) + fny = 0

and is known to have n and only n linearly independent solutions,4 yu y2,

■ ■ ■ y„. The known complete solution of equation (1) is then

i'=n

(3) y = cryi + c2y2 + ■ ■ ■ + cny„ + yp = yp + £ dyt,
i=l

where yp is any particular solution of equation (1) and C\, c2, • ■ ■ cn are

arbitrary constants to be determined by the n boundary conditions.

If the quantities Bk which assume boundary values are linear,6 we may

express them in the following manner :

(4) Bk = 3j:   aiiWy/dxi),       k -1, 2, • • • »,

where each of the coefficients, ak, ¡, represents a constant or some known

function of x, and where \ak, ,-| ^ 0 since the boundary conditions are

linearly independent. Substituting the general solution, equation (3), into

equation (4) and factoring out the c's, we have for the particular point,

x = xk, at which Bk has a known value,

(i=n        j=n— 1 j=n—\

Bk = £ Ci   £   aki j(d'yi/dx>) +   £   ak, ¡(d'yjdx') \

k = 1,2,3, ■■■ n.

In this expression for Bk, all terms are of fixed value. Since there are n such

linear expressions for the B's, and the product \ak,,-\ ■ \d'yi/dx'\ does not

vanish, we may solve explicitly for the n values of the c's. Carrying this out

one obtains linear equations of the form,

k=*n

(5) Ci = bi + £ bi,kBk,        i = 1, 2, • • • n.

The term bi is a combination of the constant values of yp and its derivatives

for the particular x involved, and biik is a combination of the constants

ak, j and the fixed values of y< and its derivatives. Substituting equation (5)

into equation (3) one obtains

i=n k=n i=n

(6) y = yp + E b,yi + £ Bk E &**?«•
i=-l *=1 ¡=I

This is a formal statement of the fact that the general solution may be ex-

pressed directly in terms of linear combinations of the n boundary param-

eters. It now becomes evident that for a given equation of order n, if n arbi-

trary but linearly independent solutions y¿ of equation (2) and any particular

solution yp of equation (1) are obtained, then the solution to the problem

with any desired values of divided boundary parameters, Bi, B2, ■ ■ ■, Bn,

known at any points within the interval (a0, ¿>o), maY be obtained by direct

substitution into equation (6). It should be emphasized that y< and yp are

any solutions  to  their respective  equations,  barring  linearly dependent
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y/s, without restriction on initial or final values. It is seen from equation (6)

that, if the boundary conditions are all homogeneous, then each B equals

zero and the solution is simply

y = Jv + £ biyt.
i-l

Also, if the equation is homogeneous but not all of the boundary conditions

are homogeneous, then

k=n i=n

y = £ Bk £ bi,kyi.
k—l ¿-1

The term in &¿y¿ is zero since 6,- is a linear combination of the fixed boundary

values of yp and its n — 1 derivatives, and these quantities exist only in the

non-homogeneous equation. If the equation and boundary conditions are all

homogeneous, then it is apparent that y = 0, and there is no problem.

The advantage of expressing the solution directly in terms of the bound-

ary parameters will now be illustrated for a fourth-order equation with

boundary values B\ and B2 existing at x = a and B3 and Bt existing at

x = b. The limits a, b are ordinary points of the interval (ao, b0). For n = 4,

the solution y and its first n — 1 derivatives may be written from equa-

tion (6) as

y = 5x7! + B2Y2 + B3Y3 + BtYt + Y
dy/dx = B^dYi/dx) + etc.,        d2y/dx2 = Bx(d2Yi./dxt) + etc.,

d3y/dx3 = B1(d?Y1/dx3) + etc.,

where Yi, Y2, Y3, Yt are linear combinations of y\, y2, y3, y\, and F is a

linear combination of the same y's and yp. Now consider the problem of a

machine or step-by-step solution starting at x = a where the two boundary

parameters have the desired values B\ = ßi and B2 = ß2. From the two

boundary relations at x = a given by equation (4) we may write

ßi = [>i,oy + ai,i(dy/dx) + aX2(d2y /dx2) + a^^d'y/dx3)^^,

ßi = ía2,0y + a2,i(dy/dx) + a2,2(d2y/dx2) + a2,3(d3y/dx3)2x-a

from which two of the initial values of the derivatives may be solved in

terms of the remaining two. Thus, for any arbitrary values assigned to

yx=a and (dy/dx)x=a, the values of the second and third derivatives at x = a

may be calculated.6 With B\ and B2 assigned the values ß\ and ß2, respec-

tively, the solution and its first derivative become

y = 58F3 + B4Yi + Yt,       dy/dx = BsdY3/dx + BdYi/dx + dY6/dx,

where F6 is the new function, Y + ßiYi + ß2Y2. At x = a, F,- and dYj/dx
(where j = 3, 4, 5) assume fixed values so that

(7)       yx_a = dsB3 + diBi + d6,        (dy/dx)x^a = e3B3 + ejii + e6,

where the ¿'s and e's are constants. Equations (7) show that the initial

values of y and dy/dx are related linearly to the boundary parameters at

x = b. This linearity may be represented graphically as shown in Fig. 1.

Although the existence of these linear families of boundary parameters is

now established, their determination is still unknown for any trial solution.
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Assume now that the problem at hand requires that B3 = ß3 and B4 = ßt

at x = &. It is readily seen that there exists a point 5 which defines the proper

initial choice of yx_a and (dy/dx)x=a- It is also evident from the linearity of

equations (7) that, in proceeding on a straight line joining any two points,

such as 1 and 2 in Fig. 1, the values of B3 and B\ will vary linearly with the

distance measured along that line. With these facts in mind, let us make

three separate trial solutions with any arbitrary combination of yx„a and

(dy/dx)x=a which define three non-collinear points 1, 2, 3. The initial values

of the second and third derivatives for each trial are of course determined

so as to satisfy B\ = ßi and B2 — ß2 at x = a. When these trial solutions

have reached x = b, the values of y and its three derivatives at this point

are used to calculate B3 and Bt. By linear interpolation point Pi which

represents a point where B3 equals the desired value ß3 may be located on

line 1-2. Likewise points P2 and P3 which lie on the desired ß3 line are located

by linear interpolation and extrapolation along lines 2-3 and 3-1. Similarly

points Q\, Q2, Q3 are located on the desired ßi line. These two parameter lines

may now be constructed and the desired solution point 51 determined by

their intersection.

POSSIBLE
VALUES

>F  B,

x=ct

AT X=b

POSSIBLE
VALUES
B, AT X.= b

Yx=a
Fig. 1. Control plot for solution of fourth-order linear differential

equation with equally divided boundary values.

Although the desired boundary conditions can now be satisfied with a

fourth solution which begins with the correct combination of yx-a and

(dy/dx)x=a, it is not necessary to effect this fourth solution. For any particular

value of x in the interval (a, b), the correct values of y and its derivatives

may be obtained by linear interpolation and extrapolation to the solution

point S from the corresponding values at points 1, 2, 3. This further linearity

is at once evident from equations (7) if we replace B3 and Bt by any two of

the derivatives of y at this particular value of x.

Consider next a sixth-order equation with three boundary conditions

known at x = a and the other three at x — b. Here, there is a triple latitude

of possible choices of the three initially unknown values of y and its five

derivatives at x = a and only one unique combination will satisfy the given
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conditions at x = b. To solve this problem, we may visualize, in place of

Fig. 1, three families of parallel planes in a three-dimensional space defined

by the three initial values of y and its derivatives which are unknown. To

determine the solution point S representing the common intersection of the

three boundary-value planes will require four different trial solutions, each

satisfying the three conditions at x = a. These trials will define four non-

coplanar points in the three-dimensional space. Linear interpolation and

extrapolation along any three non-coplanar lines joining these points will

determine three sets of three points, each set uniquely defining one of the

desired boundary-value planes. Again the values of y and its derivatives can

be obtained at point 5 for any value of a; by a three-dimensional linear

interpolation and extrapolation from the four points.

In the case of a second-order equation with its two boundary conditions

divided, only two trials, each satisfying the initial condition at x — a, are

necessary to establish the solution. The relationship is shown graphically in

Fig. 2 where the solution point 5 is determined by the linearity along the line

joining the trial points 1 and 2.

HI

-I

.Q
II
X

CD

r%~

P
O D
cQcy

DESIRED VALUE

(0FB s

^2
CORRECT

f^ INITIAL VALUE

INITIALLY   UNKNOWN  y
OR   DERIVATIVE  AT X=a

Fig. 2. Control plot for solution of second order linear differential
equation with equally divided boundary values.

So far, only cases of equally divided boundary conditions have been

discussed. If unequal division occurs, the solution should be started at the

point where the greater number of known conditions exists. In the case of a

fourth-order equation where three conditions are known for x = a, only

one derivative of y is unknown, and two trials will be sufficient for solution.

Boundary conditions need not exist at the extremities of the interval of

solution. In such cases the solution may begin at a point within the interval

where at least half of the conditions are known. It will be necessary to re-

verse the direction of the independent variable in order to cover the com-

plete range, but otherwise the procedure will be the same.

The following rules may be stated from the foregoing development.

They hold for any ordinary linear differential equation of order n defined

by equation (1) where K boundary conditions are known at one point within
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the interval of solution and the remaining n — K conditions are known at

some other point within the interval. If K < n/2, only K + 1 trial solutions

with K + 1 arbitrarily selected initial values of the initially unknown de-

rivatives are required to determine uniquely the desired solution which

satisfies all boundary conditions. If data for the solution for any or all

possible combinations of the n boundary conditions are required, then any

n solutions, barring linearly dependent ones, of the homogeneous equation

without reference to initial conditions and any one solution of the complete

equation, or a total of n + 1 arbitrary trial solutions, must be made.

Discussion. Although the n + 1 trial solutions are sufficient to solve all

boundary value problems for a given equation, in most practical cases,

where interest is centered on a given set of boundary values, the method

described using K + 1 trials, where K < n/2, will be the simpler procedure.

Even in this case K + 1 families of solutions may be had with the K + 1

trials, since any boundary value at x = b for each of the K boundary param-

eters and any value of b within the interval (a0, b0) may be used. All of these

solutions must satisfy the same conditions at x = a.

Graphical illustration has been used to describe the linearities involved

in order to aid in visualizing the problem. The solution point and the values

of the various functions at this point may be determined by direct solution

of the linear relationships involved. And indeed, if it is necessary to discuss

an equation of order higher than the sixth, our spatial visualization which is

limited to three dimensions would not aid in this problem. If the method

of the » + 1 trials is adopted, the use of determinants will facilitate the

necessary computation of Z>¿ and £>,,& in equation (6).

There are several practical considerations which place some limits on the

success of these methods. It is essential that the distances between the trial

points be of the same order of magnitude as the distance from any point to

the solution point. Although the danger of interpolation and extrapolation

on curved lines is absent, still the errors inherent in any machine or numerical

solution will limit the extent of accurate extrapolation. It is usually possible

in most physical problems by approximation, comparison, and reasonable

guessing to predict the general region of solution and thus choose trial

points which are not too far removed from the solution point. If a reasonably

close estimate cannot be made, any K + 1 trials will point to the approxi-

mate location of 5 whereupon K + 1 additional trials in the neighborhood

of 5 will yield the solution.
In order to insure sufficient accuracy in the results, a reasonable estimate

of the range of magnitudes of y and its n — 1 derivatives must be made in

the case of a machine solution. It may be necessary to repeat one or more

trials with adjusted scale factors if the estimate is far in error.

Although K + 1 trial solutions are mathematically sufficient for solu-

tion, one or two more may be desirable in the case of a machine solution

as a check on the accuracy of the work. In the case of the fourth-order equa-

tion with equally divided boundary values, the triangular configuration of

trial points shown in Fig. 1 might well be replaced by four points represent-

ing the corners of a square. Any three of the six possible line segments

joining the four points may be considered as locating these points. These

three segments then determine independently three points on the desired
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parameter line. The remaining three segments may be considered as de-

pendent on the first three and hence will determine three dependent points

on the same parameter line.

The method described in this paper has been used successfully by the

author in the solution of a problem in the theory of shells involving a fourth-

order equation with equally divided boundary conditions. Triangular sets

of trial points in the machine solution used were adequate.

In the case of non-linear equations or linear equations where the bound-

ary conditions are non-linear a procedure similar to that described in the

foregoing paragraphs is suggested. In this case graphical representation

would be indicated, and, in a control plot corresponding to Fig. 1, the families

of lines representing boundary parameters would no longer be straight lines

or linearly spaced. However, by the principle of uniqueness of solution, it is

evident that any one boundary parameter line of one family will not cross

any other boundary parameter line of the other family more than once.

Also, if a reasonably good initial estimate is made, it should be possible to

converge on the solution with a few successive sets of trial points.

J. L. Meriam
Univ. of California
Berkeley
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value in connection with the present problem). In addition, it is possible to use a different

criterion than that chosen by the authors for determining which addresses are to be modi-

fied. For example, NBSMDL has recently coded an analogous preparatory routine for the

EDVAC, using the first binary digit in each address to indicate whether or not the address

requires modification.

2. Time requirements for machine modification of subroutines are certainly negligible

compared to those for manual operations relating to insertion of subroutines from a "library"

into the memory. This does not, however, necessarily rule out special routine-preparing

equipment, since the latter may facilitate the manual operations themselves and may make

coding more convenient.

3. There seems to be little reason for not including the constants of the preparatory

routine in the main routine instead of inserting each constant manually as indicated by the

authors. Also, the space taken up by the preparatory routine might be used by the main
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routine at some time after the address modification is completed. For this purpose, it might

be more convenient to locate the preparatory routine at the beginning of the memory rather

than at the end. After reading in the subroutines and the preparatory routine (with con-

stants), the latter could be carried out and followed by instructions to read in the balance

of the main routine, re-using memory locations originally containing the preparatory routine.

4. The authors mention the possible convention of having all subroutines coded as if

they begin at 0, but they do not require this in their preparatory routine. Such a convention

seems simpler to use than the requirement that the actual position occupied by a sub-

routine be further along in the memory than the position for which it is coded. Use of the

convention would cut the length of the preparatory routine. It might also be noted that one

of the subroutines (by choice, the longest) can always be inserted in the memory in the same

position for which it was originally coded and, in such a case, requires no modification.

5. The coding given by the authors for the preparatory routine can be materially

shortened. A new code of the routine has been prepared by Otto T. Steiner & Samuel

Lubkin requiring only 36 + 21 "words" (where I represents the number of subroutines) as

compared to the 58 + 4/ "words" required in the original routine. It was prepared without

the use of flow diagrams or sub-sectioning. Indeed, most MDL coders find such aids, in the

form used by the authors, confusing and even detrimental.

Samuel Lubkin
NBSMDL

12. D. R. Hartree, "A historical survey of digital computing machines";

M. H. A. Newman, "General principles of the design of all-purpose

computing machines"; M. V. Wilkes, "The design of a practical high-

speed computing machine. The EDSAC" ; F. C. Williams, "A cathode-
ray tube digit store"; J. H. Wilkinson, "The automatic computing

engine at the National Physical Laboratory"; A. D. Booth, "Recent

computer projects," R. Soc. London, Proc, v. 195A, Dec. 1948, p.

265-287 + 3 plates. Discussion held 4 Mar. 1948. 17.2 X 25.6 cm.
Reported in Nature, v. 161, May 8, 1948, p. 712-713. 15.5 X 25.5 cm.

The discussion was confined to automatic digital general-purpose computing machines.

The EDSAC (Electronic Delay Storage Automatic Calculator) is at the Lmiversity Mathe-

matical Laboratory, Cambridge, England. Compare MTAC, v. 3, p. 214-215.

13. Wm. A. McCool, An Improved Electronic Analog Computing Circuit.

Report no. P-3423. Washington, Naval Res. Lab., Feb. 23, 1949, 15 p.
illustr. 26.5 X 20 cm.

Abstract: An improved electronic analog computing circuit, employing only two vacuum

tubes and characterized by both simplicity and accuracy of computation, is described and

analyzed. The theoretical error is calculated for integration, differentiation, and constant

multiplication with step-function and sine-wave forms of excitation. The results of a cursory

experiment, made to evaluate the performance of the improved circuit functioning as a

differentiator, agree with the theoretical results.

14. T. K. Sharpless, "Design of mercury delay lines," Electronics, v. 20,

Nov. 1947, p. 134-138, illustre. 28.25 X 20.25 cm.

Mercury is used to obtain millisecond delays for radar, computers, and memory devices

because it transmits compression waves relatively slowly, introduces negligible loss, and has

an impedance comparable to that of crystal transducers. Recirculation and temperature

compensation techniques are presented.
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15. Norbert Wiener, Cybernetics. Hermann et Cie, Paris, and John Wiley

& Sons, New York, 1948, 194 p. 22.5 X 14.5 cm.

The term, cybernetics, has been chosen by Wiener and his collaborators to designate

the entire field of control and communication in the animal and the machine. The justifica-

tion for a common treatment of apparently diverse phenomena in control and communica-

tion, ranging, for example, from the operation of purely mechanical feed-back systems to

neurological phenomena like memory and visual perception, would appear to lie in the

identity of the mathematical approach. However, as is explained in a thirty-nine page

narrative which serves as an introduction to the text of the book, the underlying motif of

research in cybernetics is rather the investigation of boundary regions of science, areas

formerly "neglected as a no-man's land between the various established fields."

The volume, Cybernetics, contains eight formal chapters, beginning with a chapter on

Newtonian and Bergsonian time and ending with a chapter on information, language, and

society. The remaining chapters are concerned, respectively, with "Groups and statistical

mechanics," "Time series, information, and communications," "Feed-back and oscillation,"

"Computing machines and the nervous system," "Gestalt and universals," and "Cybernetics

and psychopathology." In addition there is a note, refreshingly objective by comparison

with popular press notices on the subject, in which the capability of a computing machine

at chess playing is discussed briefly.

The introduction gives a somewhat detailed account of the origin of Wiener's interest in

the investigation of the nature of control and communication in the human being and of the

manner in which group effort was developed in the field. It is stated that the book represents

the outcome of a program of work undertaken jointly with Dr. Arturo Rosenblueth,

formerly of the Harvard Medical School, and now of the Instituto Nacional de Cardiología

of Mexico. The assistance of scientists, distinguished for their outstanding work in such

diverse fields as electro-mechanics, anthropology, sociology, and statistical opinion sampling,

is acknowledged.

In chapter I, "Newtonian and Bergsonian time," the implications of reversibility of

time are discussed. It is pointed out that planned physical experiments introduce asym-

metry into reversible time systems. In fact, the very nature of the questions asked, of prob-

ability and prediction, must of necessity be asymmetrical, distinguishing between the past

held in the present by the fixing of certain quantities, and the future. Newtonian astronomy

and meteorology, Newtonian dynamics and Gibbsian statistical mechanics, physics, and

biology are discussed from the standpoint of reversibility of time. The difference between

the irreversible time of evolution and biology and the reversible time of physics was em-

phasized by Bergson. In Wiener's opinion, the controversy between vitalism and mechanism

had at its kernel the fact that Newtonian physics is not the proper frame for biology.

Chapter II, "Groups and statistical mechanics," is, in a sense, an introduction to the

following chapter, "Time series, information, and communications." These two chapters

alone, while they are exacting from the standpoint of the mathematical maturity and back-

ground required of the reader, would appear to justify the cost of publishing the book.

For example, a lucid yet concise account is presented of the foundations of statistical me-

chanics, including the role of Lebesgue measure and the metrical invariants of transforma-

tion groups in the development of the ergodic theory, and a discussion of the notion of

entropy. Also a satisfying formal exposition of a statistical theory of time series is made

showing how the theory applies to message-noise problems in communication, to the en-

semble of time series associated with Brownian motion, and to prediction problems. Single

and multiple time series, both continuous and discrete, are treated from the viewpoint of

full knowledge of the parts of the series. The role of the theory of time series in quantum

mechanics is touched upon and the line of development of a practicable theory of time series

involving conclusions based on a sampling of the past is indicated.

In the remaining chapters of Cybernetics, IV, "Feed-back and oscillation," V, "Com-

puting machines and the nervous system," VI, "Gestalt and universals," VII, "Cybernetics
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and psychopathology," and VIII, "Information, language, and society," the reader of

moderate mathematical interest will find the going easier. It is necessary, says the author,

to use mathematical symbolism and mathematical techniques in IV, but the mathematical

treatment is made more palatable to the average reader by extensive verbal explanation.

In IV, feed-backs found in human and animal reflexes and homostasis are discussed. In

chapters V, VI, and VII, discussion of both normal and abnormal action of the nervous

system centers about the ultra-fast, automatically-sequenced computing machine as a

model. The reviewer cannot repress a feeling that the author is unrealistic in his discussion

of possible future lines of development of such computing devices, for example, the incor-

poration in them of the ability to learn ; nevertheless, the utility of such devices outside the

field of numerical computation is made clear.

The last chapter, "Information, language, and society," ends the Cybernetics on a

sombre note, seeming to possess a tincture of misanthropy. One can only hope that in its

impact upon sociology, the new science of cybernetics will exert a beneficent influence and

that the social sciences will not be too greatly retarded in development by the comparatively

close coupling of the observer with phenomena mentioned in this chapter.

E. W. Cannon
NBS

Editorial Note: Professor Wiener's book was printed in France and is filled with
typographical errors, sometimes making the mathematics quite unintelligible.

News

Association for Computing Machinery.—Charles B. Tompkins has resigned from the

Council of the Association, and Jan Rajchman has been appointed. At present, the member-

ship totals about 600. Prof. Edy Velander of Sweden has been authorized to undertake the

formation of a Swedish section, and Mr. Albert Cahn of NBSINA is in charge of forming a

California section of the Association.

About 200 members of the Association attended the meeting in Oak Ridge, Tennessee,

April 18-20, 1949. Those who were present found it to be an informative and satisfying

meeting. The Association greatly appreciated the welcome and hospitality of the Oak Ridge

National Laboratory, the Oak Ridge Institute of Nuclear Studies, and the other Oak Ridge

groups.

The papers listed below were delivered. Plans are being made to furnish summaries (or

the full version) of these papers to members. In some cases the full paper will be submitted

to the editors of MTA C.

1. "Address of welcome," A. M. Weinberg, Oak Ridge Nat. Lab. 2. "Limitations of

electronic digital computing machines," E. W. Cannon, NBS. 3. "Analog and special-

purpose computing machines," S. H. Caldwell, MIT. 4. "Inversion of large matrices,"

Gertrude Blanch, NBSINA. 5. "Problems in linear programing," Emil Schell,

Office of the Air Comptroller, USAF, Washington. 6. "Computing machinery in Australia,"

T. G. Room, Univ. of Sidney, Australia. 7. "The forgotten man of computing," Mina Rees,

ONR, Washington. 8. "Statistical theory of round-off errors," H. D. Huskey, NBSINA.

9. "The relations of symbolic logic and large-scale calculating machines," Edmund C.

Berkeley, New York. 10. "Calculation of neutron age by Monte Carlo," A. S. House-

holder, Oak Ridge Nat. Lab. 11. "Computing statistical atomic fields on the selective se-

quence electronic calculator," L. H. Thomas, IBM. 12. "Binary notation in arithmetic

algorithms and operation code partitions," B. F. Cheydleur, Naval Ordn. Lab., White

Oak, Silver Spring, Md. 13. "602A calculating punch—time saver in computing thermo-

dynamic properties of gases," Jack Belzer, H. L. Johnston, & Lydia Savedoff, Dept.

Chem., Ohio State Univ., Columbus, O. 14. "The register code for the ENIAC," R. F.

Clippinger & B. Dimsdale, BRL, Aberdeen, Md. 15. "Recent progress on the Selectron,"

Jan Rajchman, Radio Corp. Amer., Princeton, N. J,. 16. "Analog computer for Fourier

transforms in crystal analysis," Raymond Pepinsky, Alabama Polytechnic Inst., Auburn,

Ala. 17. "The philosophy of computing machine design," George R. Stibitz, Burlington,
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Vt. 18. "Internal conversion calculation on Mark I," M. E. Rose, Oak Ridge Nat. Lab., &

Bernard Spinrad, Argonne Nat. Lab., Chicago. 19. "Experience with the use of the

Aiken Relay Calculator," Clarence Ross, Naval Proving Ground, Dahlgren, Va. 20.

"Logical design of direct-coupled vacuum tube control circuits," Theodore Kalin, Com-

putation Lab., Harvard Univ. 21. "The statistical mechanics of high polymers," Gilbert W.

King, Cambridge, Mass. 22. "The NBS Interim Computer," Samuel Lubkin, NBS. 23.

"Uses of pulse transformer in a-c coupling of computers," Ralph Slutz, Electronics Div.,

NBS. 24. "An intercomparison of storage devices," S. N. Alexander, NBS.

NBSINA.—Two symposia were held on June 22 through July 1, 1949, on subjects

pertinent to the effective utilization of automatic digital computing machinery. A representa-

tive group of the nation's engineers, physicists, and mathematicians participated.

The subject of the first one, June 22-25, was the Construction and Applications of

Conformai Maps. The applications of conformai maps in such fields as aerodynamics and

electronics were emphasized, and special attention was devoted to the actual current needs

of research workers in these fields. Construction methods were discussed, along with the

problem of programing such methods on existing and proposed automatic digital computing

systems. In this connection, particular reference was made to the electronic machine now

being designed at NBSINA under the direction of Harry D. Huskey.

The program opened with a one-day course designed to acquaint those attending the

Symposium with the preparation of problems for automatic digital computing machines.

The following talks were included: "Definition of an automatic digital computing machine"

by H. D. Huskey; "Description of a specific automatic computer" by Roselyn Siegel,

NBSINA; "Programing the solution of » simultaneous linear equations" by H. D.

Huskey; and a laboratory session in which participants were urged to work out detailed

routines for causing the computers to perform such operations as division, floating addition,

solving a simple differential equation, and possibly solving a set of simultaneous linear equa-

tions. On subsequent days the following Sessions were held :

I. June 23, General Session, J. H. Curtiss, NBS, chairman:

"On network methods in conformai mapping computation" by R. von Mises, Harvard

Univ.

"Conformai mapping of domains of higher topological structure illustrated by flow

patterns" by R. Courant, New York Univ.

II. June 23, Session on Physical and Industrial Applications, D. V. Widder, Harvard

Univ., chairman :

"Applications of conformai mapping to torsional rigidity, principal frequency, and

electrostatic capacity" by G. Szegö, Stanford Univ.

"Some industrial applications of conformai mapping" by H. Poritsky, General

Electric Co.

"Conformai maps involving multiple-connected regions and their technical applica-

tions" by G. Stein, Westinghouse Electric Corp.

"On the use of conformai mapping in problems of two-dimensional elasticity" by I. S.

Sokolnikoff, UCLA.

III. June 24, Session on Fluid Dynamics, J. L. Barnes, UCLA, chairman:

"On the Helmholtz problem of conformai representation" by A. Weinstein, U. S.

Naval Ordn. Lab. and Univ. of Maryland.

"Aspects of conformai mapping in aerodynamics" by I. E. Garrick, NACA.

"On Theodorsen's method of conformai mapping" by Alexander Ostrowski,

Univ. of Basle and NBS.
"On conformai mapping of variable regions" by S. E. Warschawski, Univ. of Minne-

sota and NBS.

"Fluid dynamics, conformai mapping, and numerical methods" by Andrew Vazsonyi,

U. S. Naval Ordn. Test Sta. Pasadena, Cal.
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IV. June 24, Session on Theory of Conformai Maps, W. T. Martin, MIT and UCLA,

chairman :

"Some remarks on variational methods applicable to multiple-connected domains" by

D. C. Spencer, Stanford Univ.

"A variational method for simply-connected domains" by A. C. Schaeffer, Purdue

Univ.

"Kernel functions and conformai mapping" by Stefan Bergman, Harvard Univ., &

Menahem Schiffer, Stanford Univ.

"The kernel function and canonical conformai maps" by Zeev Nehari, Washington

Univ.

"A new proof of the Riemann mapping theorem" by P. R. Garabedian, Stanford Univ.

V. June 25, General Session, J. W. Green, UCLA, chairman:

"Conformai mapping applied to electromagnetic field problems" by Ernst Weber,

Polytechnic Inst., Brooklyn.

"An extremal method in conformai mapping" by L. V. Ahlfors, Harvard Univ.

"Some generalizations of conformai mappings occurring in gas dynamics" by Lipman

Bers, Syracuse Univ.

"The use of conformai mapping in the study of flow phenomena at the free surface of an

infinite sea" by Eugene P. Cooper, U. S. Naval Ordnance Test Sta., Pasadena, Cal.

"Recent contributions of the Hungarian school to conformai mapping" by G. Szegö,

Stanford Univ.

VI. June 25, Session on Numerical Methods, H. F. Bohnenblust, Cal. Inst. Techn.,

chairman :

"Relaxation methods as ancillary techniques" by Sir Richard Southwell, London,

England.

"The use of conformai mapping to compute flows with free streamline" by D. M.

Young, Harvard Univ.

"An approximation method for conformai maps" by Lee H. Swinford, Univ. of Cali-

fornia, Berkeley.

The second Symposium dealt with Probability Methods in Numerical Analysis, with

special reference to the techniques now known among physicists by the name, "Monte

Carlo." It was held on June 29-July 1, under the joint sponsorship of NBSINA and the

Rand Corp. with the cooperation of the Oak Ridge Nat. Lab.

A word of explanation concerning the "Monte Carlo" technique is in order here. It is

well known in the theory of stochastic processes that the probability distributions associated

with certain random walk or random flight problems satisfy certain classical integro-

differential equations. This fact provides a novel method for approximate numerical integra-

tion of such equations through the medium of building up large samples of trials of

corresponding random walks. It also suggests the possibility and desirability of directly con-

structing appropriate random walks as discrete mathematical models for given physical

situations, to be used in place of the more classical continuous models. This method of solu-

tion of problems in mathematical physics by sampling techniques based on random walk

models constitutes what is known as the "Monte Carlo" method. The method as well as the

name for it were apparently first suggested by John von Neumann and S. M. Ulam.

"Monte Carlo" techniques are now being used rather extensively in connection with high-

speed automatic digital computing machinery.

Many mathematical and physical problems remain to be solved in the theory of "Monte

Carlo" techniques. Most of the current "Monte Carlo" applications are classified; how-

ever, the proceedings of the Symposium were unclassified. The program was as follows :

I. June 29, Orientation Session, J. H. Curtiss, chairman:

"The Monte Carlo method" by S. Ulam, Los Alamos Sei. Lab.

"Discussion of the Monte Carlo method" by J. von Neumann, Inst. Adv. Study
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II. June 29, Session on Physical Applications of Stochastic Methods, J. von Neumann,

chairman :

"Introductory remarks" by the chairman

"Showers produced by low energy electrons and photons" by Robert R. Wilson,

Cornell Univ.

"Nomograms for Monte Carlo solution of the Milne problem" by B. I. Spinrad,

Argonne Nat. Lab. and G. H. Gortzel, New York Univ.

"Neutron age calculations in water, graphite, and tissue" by A. S. Householder, Oak

Ridge Nat. Lab.

"Methods of probabilities in chains applied to particle transmission through matter"

by Lewis Nelson, Oak Ridge Nat. Lab., & Wendell DeMarcus, Fairchild Engine and

Airplane Corp.

"Multiple-scattered gamma rays" by Ugo Fano, NBS

"Stochastic methods in statistical mechanics" by Gilbert W. King, Arthur D.

Little Co.

III. June 30, Session on Physical Applications of Stochastic Methods (continued), Frank

C. Hoyt, Argonne Nat. Lab., chairman:

"Calculations on a water shield for fast neutrons, I" by Maria Mayer, Argonne Nat.

Lab.

"Calculations on a water shield for fast neutrons, II" by Preston Hammer, Los Alamos

Sei. Lab.

"A Monte Carlo technique for estimating particle attenuation in bulk matter" by B. A.

Shoor, Northrop Aircraft; Lewis Nelson, Oak Ridge Nat. Lab.; Wendell DeMarcus,

& Robert L. Echols, Fairchild Engine and Airplane Corp.

"Neutron transmission through thick slabs" by Williston Shor, U. S. Navy.

"Estimation of particle transmission by random sampling" by Herman Kahn, Rand

Corp. & T. E. Harris, Rand Corp.

IV. June 30, Session on Random Digits, Jerzy Neyman, Univ. of California, Berkeley,

chairman :

"Generation and testing" by George W. Brown, Rand Corp.; Nicholas Metropolis,

Los Alamos Sei. Lab. ; & George E. Forsythe, NBS.

"Various techniques used in connection with random digits" by J. von Neumann.

General discussion from the floor.

V. July 1, Mathematical Session, John W. Tukey, Princeton Univ., chairman:

"The connection between stochastic processes and partial differential equations" by

Will Feller, Cornell Univ. and NBSINA; Mark Kac, Cornell Univ. and NBS; & J. L.

Doob, Univ. of Illinois.

Discussion from the floor.

VI. July 1, Round Table Discussion: Critique of Applications and Discussion of Possible

New Directions for Research, John W. Tukey, discussion leader:

Panel: J. Neyman; M. A. Girschick, Stanford Univ.; W. A. Wallis, Univ. of Chicago;

D. H. Blackwell, Howard Univ. ; T. W. Anderson, Columbia Univ. ; & L. J. Savage,

Univ. of Chicago.

Also on June 27-28, a condensed, relatively elementary course on automatic computa-

tion was held at NBSINA. The purpose of this course was to introduce interested persons

to the logical theory and performance characteristics of automatic digital calculators being

developed at the present time. Preparation of problems for the calculators was emphasized.

It was composed of two lecture and two laboratory sessions.


