tables of which are listed in MTAC, v. 1, p. 250, v. 2, p. 336, v. 3, p. 417, 467, 479, v. 4, p. 24, 30.

We may suppose that a_{2} is positive so that $a_{2}=a^{2}$. Completing the square and using the cosine addition theorem gives

$$
\begin{aligned}
a(2 / \pi)^{\frac{1}{I}} I(t) & =[C(b t+c)-C(c)] \cos \delta \\
& -[S(b t+c)-S(c)] \sin \delta,
\end{aligned}
$$

where

$$
\delta=a_{0}-a_{1}^{2} /\left(4 a^{2}\right), \quad b=a(2 / \pi)^{\frac{1}{2}}, \quad c=(2 \pi)^{-\frac{3}{3}} a_{1} / a .
$$

S. V. Soanes

64 Airdrie Road
Toronto 17, Ontario

CORRIGENDA

V. 1, p. 184, 1. 20 for 9D read exact.
V. 1, p. 336, 468 for Eschbach read Eshbach.
V. 3, p. 457, 1. 19 for $a_{1 i}$ read $a_{1 j}$.
V. 3, p. 458, 1. 2, for $a_{i j}-a_{i 1} a_{1 i} / a_{i i}$ read $a_{i 1} a_{1 j} / a_{11}$.

