tables of which are listed in MTAC, v. 1, p. 250, v. 2, p. 336, v. 3, p. 417, 467, 479, v. 4, p. 24, 30.

We may suppose that a_2 is positive so that $a_2 = a^2$. Completing the square and using the cosine addition theorem gives

$$a(2/\pi)^{\frac{1}{2}}I(t) = [C(bt+c) - C(c)]\cos \delta$$
$$- [S(bt+c) - S(c)]\sin \delta,$$

where

$$\delta = a_0 - a_1^2/(4a^2), \quad b = a(2/\pi)^{\frac{1}{2}}, \quad c = (2\pi)^{-\frac{1}{2}}a_1/a.$$

S. V. SOANES

64 Airdrie Road Toronto 17, Ontario

CORRIGENDA

V. 1, p. 184, l. 20 for 9D read exact.
V. 1, p. 336, 468 for Eschbach read Eshbach.
V. 3, p. 457, l. 19 for a_{1i} read a_{1j}.
V. 3, p. 458, l. 2, for a_{ij} - a_{i1}a_{1i}/a_{ii} read a_{i1}a_{1j}/a₁₁.