Thus the values of p_n for $2100 \le n \le 2500$ are still significantly low but higher than the value of p_n at n = 2000.

Note that the general size and trend of p_n , as well as its sudden deviation at n = 2000, indicate a non random character in the digits of e.

More detailed investigations are in progress and will be reported later.

Los Alamos Scientific Laboratory	N. C. Metropolis
Ballistic Research Laboratories	G. Reitwiesner
Institute for Advanced Study Princeton, N. J.	J. von Neumann

¹ Both e and 1/e were computed somewhat beyond 2500 D and the results checked by actual multiplication.

Notes on Numerical Analysis—2 Note on the Condition of Matrices

1. The object of this note is to establish the following theorem.

THEOREM. Let A be a real $n \times n$ non-singular matrix and A' be its transpose. Then AA' is more "ill-conditioned" than A.

This theorem confirms an opinion expressed by Dr. L. Fox¹ based on his practical experience. The term "condition of a matrix" has been used rather vaguely for a long time. The most common measure of the condition of a matrix has been the size of its determinant, ill-conditioned matrices being those with a "small" determinant. With this interpretation imposed, the theorem is clearly correct. More adequate measures of the condition of a matrix have been proposed recently by JOHN VON NEUMANN & H. H. COLDSTINE² and by A. M. TURING.³ Their definitions concern all matrices, not just the ill-conditioned ones, characterized by very large condition numbers. The following two of these definitions will form a basis for the proof of the above-mentioned theorem:

The *P*-condition number is $|\lambda_{max}|/|\lambda_{min}|$, where λ_{max} and λ_{min} are the characteristic roots of largest and smallest modulus.²

The N-condition number is $N(A)N(A^{-1})/n$, where³

$$N(A) = (\sum_{i,k} a_{ik}^{2})^{\frac{1}{2}}.$$

2. Proof of the theorem in the P case:

Let λ_i be the characteristic roots of A and μ_i those of AA' (which are in general distinct from the squares of the absolute values of λ_i). E. T. BROWNE⁴ has shown that

 $\mu_{\min} \leq \lambda_i \bar{\lambda}_i \leq \mu_{\max}.$ From this it follows that

$$1 \leqslant \left| rac{\lambda_{\max}}{\lambda_{\min}}
ight| \leqslant \left| rac{\lambda_{\max}}{\lambda_{\min}}
ight|^2 \leqslant rac{\mu_{\max}}{\mu_{\min}},$$

which implies the required result.

3. Proof of the theorem in the N case:

It is known that N(A) is the square root of the trace of AA' and therefore equal to $(\sum \mu_i)^{\frac{1}{2}}$. The numbers μ_i are all positive since AA' is symmetric and positive definite. Since the characteristic roots of A'A and AA' are the same and since the characteristic roots of the inverse of a matrix are the reciprocals of those of the original matrix, it follows that

$$N(A^{-1}) = (trA^{-1}(A^{-1})')^{\frac{1}{2}} = (tr(A'A)^{-1})^{\frac{1}{2}} = (\sum \mu_i^{-1})^{\frac{1}{2}}.$$

The N-condition number of A is therefore

$$\frac{1}{n} (\sum \mu_i)^{\frac{1}{2}} (\sum \mu_i^{-1})^{\frac{1}{2}}.$$

In a similar way it can be shown that the N-condition number of AA' is

$$\frac{1}{n} (\sum \mu_i^2)^{\frac{1}{2}} (\sum \mu_i^{-2})^{\frac{1}{2}}.$$

The theorem follows from the inequality

$$\sum \mu_i^2 \sum \mu_i^{-2} \ge \sum \mu_i \sum \mu_i^{-1},$$

which is in fact true for all real and positive numbers. (It is, indeed, true when the first power on the right is replaced by an arbitrary power r and the second power on the left by a power s > r.) The proof of the inequality is as follows:

$$\sum \mu_i^2 \sum \mu_i^{-2} - \sum \mu_i \sum \mu_i^{-1}$$

= $n + \sum_{i \neq j} \mu_i^2 \mu_j^{-2} - n - \sum_{i \neq j} \mu_i \mu_j^{-1}$
= $\sum_{i < j} (\mu_i^2 \mu_j^{-2} + \mu_j^2 \mu_i^{-2}) - \sum_{i < j} (\mu_i \mu_j^{-1} + \mu_j \mu_i^{-1})$
= $\sum_{i < j} \{ (\mu_i \mu_j^{-1} + \mu_j \mu_i^{-1}) (\mu_i \mu_j^{-1} + \mu_j \mu_i^{-1} - 1) - 2 \} \ge 0,$

since

$$\mu_i \mu_j^{-1} + \mu_j \mu_i^{-1} \ge 2$$
, and $\mu_i \mu_j^{-1} + \mu_j \mu_i^{-1} - 1 \ge 1$.

There is equality if and only if

$$\mu_1=\mu_2\cdots=\mu_n$$

Olga Taussky

NBSMDL

¹ In a course of lectures given at the British Admiralty by himself and D. H. SADLER in 1949.

¹¹ 1949.
² J. VON NEUMANN & H. H. GOLDSTINE, "Numerical inverting of matrices of high order,"
Amer. Math. Soc., Bull., v. 53, 1947, p. 1021-1099. (These authors consider symmetric matrices only, but it is reasonable to apply the definition to the general case.)
³ A. M. TURING, "Rounding-off errors in matrix processes," Quart. Jn. Mech. Appl. Math., v. 1, 1948, p. 287-308.
⁴ E. T. BROWNE, "The characteristic equation of a matrix," Amer. Math. Soc., Bull., v. 24, 1029 - 262, 268

v. 34, 1928, p. 363-368.

BIBLIOGRAPHY Z-XI

1. E. G. ANDREWS, "The Bell Computer, Model VI," Electrical Engineering, v. 68, 1949, p. 751–756, 7 figs., 5 tables. 22.2×29.5 cm.

Controlled from remote stations, this new digital computer of the relay type reduces punched-tape instructions to a minimum. With novel control features similar to those used in recent automatic dial-telephone developments, this "upper-class" computer possesses six "intelligence levels." Sub-