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program orders. Unless, therefore, there are some orders in the store at the

beginning of the computation, nothing can be taken in through the input,

and the machine cannot start. For this reason, there is a sequence of orders,

known as initial orders, permanently wired onto a set of uniselectors (rotary

telephone switches). These orders can be transferred to the store by pressing

a button.

There is considerable latitude in the choice of the initial orders, although

once they have been wired onto the uniselectors, it is not easy to change

them. The initial orders used in the EDSAC at present enable orders punched

in the following form to be taken in from the tape. First a letter indicating

the function is punched, then the numerical part of the order in decimal form,

and finally the letter F or D indicating, respectively, that the order refers to

a long or a short number. If the order has no numerical part, it is punched

simply as a letter followed by F. Under the control of the initial orders the

machine converts the numerical part of the order to binary form and as-

sembles the order with the function digits and the numerical digits in their

correct relative positions.
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Convergence Rates of Iterative Treatments
of Partial Differential Equations

1. Introduction. The development of high-speed digital computers1 has

made feasible the numerical solution by iterative methods of some partial

differential equations. The convergence rates of several such iterative

methods are estimated here. It is found that with the familiar elementary

iterative methods some quite simple problems require prohibitive computa-

tional labor.
The iterative methods here considered are related to the various forms

of the Southwell "relaxation method"2,4 in that they involve successively

applied local corrections to improve an approximate solution. However,

these iterative methods are routinized in conformity with the requirements

of automatic computers while the relaxation method is flexible and depends

in an essential way on the skill of its practitioners.

2. Reduction to Finite Difference Form. The iterative methods of succes-

sive approximation considered here are, like the relaxation method, not

directly applicable to partial differential equations (and associated boundary

conditions) but only to the finite difference approximations to them derived

in the customary way.3 For example, the Laplace equations, Acb = 0,

applicable within a region (R in the x, y plane may be approximated by the
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difference equation:

(1) L<b(x, y) m <p(x + h, y) + <b(x - h, y) + <t>(x, y + h)
+ <b(x, y -h) - 4<i>(x, y) = 0

applied at those points (x = jh, y = kh), of a rectangular lattice which lie

within the region (ft. We are here concerned only with the rate of convergence

to the solution of this set of algebraic equations and not with closeness of

that approximation to the solution of the differential equation. In the follow-

ing we will use this difference equation, applied within a rectangular region,

as an illustrative example for each of the iteration methods considered. We

denote the value assigned to <p(jh, kh) in the reth stage of iteration by 4>",t.

The limit approached with increasing n we denote by •>,-,*. For definiteness

we take (R to be the rectangular region

(R={j = 0,l,---,p,    k = 0,1, •••,g};

on the boundary of this region we assign fixed values of <p.    Thus

<p".t = <l>i.k = bj,k        for        j = 0 Or p,        k = 0 or q.

(2) L<t>j,k = 4>i-l,k + <f>j+l,k + <t>j,k~l + 4>i,k+l  — 40y,*  =  0

for    j = l,2,---,p - 1

k = 1,2, ••-, q - 1.

In all of the methods here considered <p°,t is a first (guessed) approximation

to <pj,k- Each of the succeeding approximations, (b1, <b2, • • -, is calculated on

the basis of its predecessors (or immediate predecessor) by some process

which guarantees the convergence of <bn to <b.

3. The Richardson Method. Following Shortley, Weller and Fried4
we term the most elementary of the familiar iterative procedures the

Richardson method.5 In this method the correction process applied to each

4>n consists of the addition of a positive multiple of L(b" (for each interior

point). Thus

#",*  = 4>j,k + o¡L<p1,t = <#?,*

(3) + <*[>?_!, t + <t>l+i.t + <t>l. t-i + <t>l t+i - Hl.tl (interior points)
<t>Ht  = <i>".t = bj,k (boundary points).

The error at each stage we denote by «" t,

n      _.    i* ,
e/.t  =  'PI.I  — <Pi,k.

By substitution in (3) we obtain the error recurrence relation,

ej^t   = e",t + otLe},t    (interior points),

since L<pj,k = 0; or more briefly

en+1 = (1 + aL)en    (interior points)

= 0 (boundary points).

The most familiar form of the Richardson method is that obtained by

setting a = \. Then equation (3) reduces to

(5)     <t> Vi1 = 1L>"-i.* + #*+i.* + <I>1 t-i + 4>1 t+i]    (interior points)

= b,\k (boundary points).
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As shown below, this form is not only numerically more convenient, by

reason of the disappearance of <£" * from the right member, but is also in one

sense the most efficient form.

To determine the convergence rate of this process we expand e° in the

eigenfunctions of the operator L subject to the boundary condition of (4).

These are evidently,6

(6) e£ts> = sin (irrjlp) sin (irsk/q), .'   '       ' .
ä        a, ¿, ' ' 'i q       r.

The corresponding eigenvalue of L we denote by L^,.)

rJ'.»)_J',>)     _L¿r-')     _l_*<r'S>     _L.„:<r,S>      —±J'-^

= [sin (irr(j-l)/p)-\-sm (Tr(j+l)/p)-2 sin (irrj/p)'] sin (irsk/q)

+ [sin (xs(¿ —l)/g)+sin (ts(&-(-1)/ç) —2 sin (irsk/q)'] sin (irrj/p)

^ ' = [2 cos (irr/£) -2] sin (irr/'/» sin (irsk/q)

+ [2 cos (irs/q) — 2~] sin (irrj/p) sin (irsk/q)

= [2 cos (rr/>) + 2 cos («/í)-4K,t" = L(r,,)eí'l!),

hence
£<,..) - - 4[sin2 (rr/2p) + sin2 (irs/2g)].

All of these eigenvalues are negative. The smallest and largest in magnitude

belong to r = s = 1 and to r — p — 1, 5 = q — 1, respectively. We denote

these by L0 and Lm.

Lo = - 4[sin2 (ir/2p) + sin2 (x/2g)] S* - x2(/>~2 + <r2)

W    Lm = - 4[sin2 (xf> - l)/2p)

+ sin2 (ir(q - l)/2g)] ^ - 8 + x2(^2 + <T2)-

The eigenf unctions of L are also eigenf unctions of the iteration operation,

K = (1 + a£), corresponding to the eigenvalues

(9) Klr,.)   =   1   + aL(r,,).

Each error-eigenfunction component is multiplied by its K(r..) at each

iteration.    Thus if
J>    — V n   J7-')(j,t — ¿-i ar,eej,t ,

r,.

then

(10) eM-Iar,AX<),
r, «

With increasing « those components, e(r,,), for which

(H) \K(r,.)\  <1

diminish in importance, the more rapidly the smaller is | j£(ri,)|. This itera-

tion method is convergent (in general) only if (11) is satisfied for all r, s.-

The ultimate convergence rate is determined by the maximum magni-

tude of K,

(12) «•-SSlJCfcol.

Since by (9) Kir,¡) lies in the range

(13) Km m 1 + aLm ^ Kir..) ^l+aL0^ K0
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the equality signs holding for (r, s) = (1, 1) and (p — 1, q — 1), K is de-
termined only by these extremes,

K* = max{\Km\,    \K0\\.

As a increases from zero, K0 drops slowly from unity, Km drops rapidly from

unity. Thus K* = K0 > 0 so long as K0 ^ — Km. For greater values of a,

K* = — Km, hence K* then rises with increasing a. The smallest K* (hence

the most rapid convergence) occurs where

Ko = 1 + cxLo = - Km = - (1 + ccLm),

hence for

(14) a = - 2/(Lo + Lm) = i

For this optimum a-value the error eigenfunctions of longest and shortest

"wavelength," e(1,1> and e1*-1"*-0, decay at the same rate

(15) K* = 1 - sin2 (ir/2p) - sin2 (7r/2g)

= ICcos (irlp) + cos (ir/q)-] £¿ 1 - ir2(p~2 + <T2)/4

(the short wavelength error alternating in sign) while other errors decay

more rapidly.
The numerical processes carried out in this iterative approach to the

solution of a Laplace equation may also be regarded as the successive steps

in the solution of the heat flow equation,

d<t> . /• • s
— = A(t> (interior)
ot

<j> = b       (boundary).

The parameter, a, then plays the rôle of

At At    _ Ai

(Ax)2 ~~ (Ay)2 ~" h2'

This method of solution of the heat flow equation is unstable7 for a appreci-

ably greater than J, i.e., for a time interval appreciably greater than

I (Ax)2 = | (Ay)2. For smaller a-values the solution approaches asymptoti-

cally a stationary form, hence one satisfying the Laplace equation.

The optimum property of a = J in the Richardson treatment of the

Laplace equation is not peculiar to the boundary conditions here considered.

If (L + 4) has an eigenfunction, tjt, belonging to the eigenvalue (I! + 4),

(L' + 4)e¿fc = íj-i.t +€j+i,t + e/,t_i + ej.k+i,

then e" = (— 1)'+V, if it is consistent with the boundary conditions, is an

eigenfunction belonging to the eigenvalue (L" + 4) = — (L' + 4),

(L" + i)e'/,t = - (L' + 4)ej't = «/-i.» + ej+1(t + £y't_i + «;.'t+i

L" = 8 - L'.

If the boundary conditions permit this reversal, e' —> e", then for each eigen-

value, Lu there also occurs the eigenvalue — 8 — Li. Then L<¡ + Lm = — 8

leading to optimum convergence for a = \.

For other linear equations,

Lcb = 0,
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where L is the linear difference operator corresponding to the linear differ-

ential operator under consideration, the Richardson method,

(16) 4>n+1 = 4>n + aLtp",

may be made convergent provided all of the eigenvalues of L are of the same

sign (and not zero).

The optimum convergence rate is given by

/.-,. a = — 2/(Z,o + Lm)

K   ' K* = 1 - aLo = 1 - 2ij,

where r¡ denotes the ratio,

(18) i, = L0/(Lo + Lm).

Here again the Richardson method is formally equivalent to the solution

of a partial differential equation in one more variable,

d-±-Td>
at - L*'

the solution being carried to a sufficiently great t to make the rate of change

with / negligible, hence also
Ltp^O.

4. The Liebmann Method. In the Liebmann method8 a correction

process like that of the Richardson method is applied to each of the lattice

points in succession in a regular pattern. The <£-value so corrected is used in

all subsequent operations in that iteration step. It may thus be termed a

"continuous substitution method." In its simplest form the lattice is scanned

in the same direction along successive rows. Thus, as applied to the Laplace

equation and boundary conditions described above, the Liebmann iteration

process may be written,

Ä«   = 4>l.t + a[4>}_i.t + </>"+i,i + 4>".t-i + <kl.i+i — 4#" t]
(19) (interior points)

= bj,k (boundary points).

If a is again given the value | this expression becomes

(20) «¿ft1 = l[<p]±\,k + <#»"+,.* + <t>ï\l-i +4>lk+i ],

thus L<t>j,k is brought to zero (momentarily) at each of the lattice points in

succession. In this form the Liebmann procedure may be regarded as a very

mechanical application of the relaxation method.

The iteration equation for the error

«".* — 4>!k — <l>j,k

is obtained by substitution in (19),

n+l n        i        r n+1        i      n I      n-fl        in a n    -|
«/7t   = tj.t + alej-i.t + «J+i.t + ejik-i + e/.i-H — ^J.tJ

(21) (interior points)

= '0 (boundary points).
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This error interation process can be written briefly as

(22) e"+1 = K(a)e",

where K(a) is a linear operator depending on the parameter a, but now

not simply related to the Laplace (difference) operator, L. We again examine

the spectrum of eigenvalues of K(a) and regard the greatest magnitude of

these eigenvalues as a measure of convergence rate. If K is an eigenvalue of

(22) then its eigenfunction f/,j (we suppress indexing of the eigenfunctions

and eigenvalues) must satisfy the following equation, obtained by substi-

tuting (22) in (21)

/„,x       Kijik = tj.k + a[Ktj-i,k + tj+i,k + Ktj,k-i + fj.k+i — 4ijri],

<0, k   —   (p,k   —   «j, 0   =   «V, q  =   0.

We seek solutions of the form

(24) ey, k = A' sin (irrj/p) ■ Bk sin (irsk/q)        !~,V'„1
s — i, ¿, • • •, q      i.

Substituting in (23) gives,

(25) (K - 1 + ia)A'Bk sin (irrj/p) sin (irsk/q)

= Bk sin (irsk/q)[KA'-x sin (irr(j - i)/p)

-f Ai+l sin (irr(j + 1)/»] + aA> sin (irrj/p)

X [KB"'1 sin (irs(k - l)/q) + £*+1 sin (irs(k + l)/g)].

To prevent the appearance of terms in cos (irrj/p) and cos (irsk/q) in the

right member of (25) we must require

(26) A2 = B2 = K.

Since multiplication of A (or B) by — 1 is equivalent to the replacement of r

by p — r (or 5 by q — s) we may, without loss of generality, take A = B.

Equation (25) then becomes

G42 - 1 + 4a) = 2a^[cos (irrIp) + cos (irslq)~\

or

(27) A2 - 2atA + (4a - 1) = 0;    / = [cos (irr/p) + cos (irs/q)J

The appearance of two values (in general) of A for each (r, s) would seem

to give more than the (p — l)(q — 1) possible linearly independent error

eigenfunctions; however, the replacement of (r, s) by (p — r, q — s) merely

changes the sign of /, hence multiplies the two .4-roots by —1. Thus (24),

(26), and (27) define just the (p — l)(q — 1) linearly independent eigen-

functions required to form a complete set.

If we again take a = \ the roots of (27) are

The value .4=0 corresponds to the complete removal of an isolated

error occurring at j = 1 or k = 1. The other root gives

(28) K = A2 = It2 = i[cos (irrIp) + cos Wç)]2.
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The greatest eigenvalue occurs both for (r = s = 1) and for (r = p — 1,

s = q — 1), and is,

K* = J[cos (irlp) + cos (ir/q)J*á [1 - ir2(p~2 + iT2)/4]2.

Thus in each iteration cycle the most resistant errors are reduced as much

as in two cycles in the Richardson procedure. (This doubling of efficiency is

qualitatively plausible since the numbers from which each 4>"%l is com-

pounded are in the mean half as "old" in the Liebmann as in the Richardson

procedure.)

5. The Extrapolated Liebmann Method. Since the eigenvalues, K, are

all positive it seems plausible that increasing a should improve the efficiency

of this process. The procedure so obtained we may term the "extrapolated

Liebmann method." Examination of equation (26) shows that an improve-

ment in convergence rate can be so obtained. For a > J the constant term

is positive. We may therefore distinguish two ranges of a, hence of the

middle term. Where

(30) a2t2 ^ 4a - 1 ;    t2 ^ (4a - l)/a2

the two roots of (26) are complex conjugates having the magnitude

(31) |4|= (4a- 1)»;     \K\ = 4a - 1,

which increases with increasing a. For

(32) (4a - l)/a2 < t2 < 4;    a < §

the two roots for A are real, one of greater magnitude than (4a — l)1

(but <1), the other less. Differentiating (27) gives

a a      At — 2
(33) -i- = -.- ;   At - 2 < 0;    A - ta = ± [a2t2 - (4a - 1)]*,

da       A — ta

thus in the range (32) the greater of the magnitudes of the roots decreases

with increasing a. The optimum value of a is therefore that for which the

range (30) of complex roots just covers the spectrum of /-values. For the

largest and smallest /-values

(34) / = ± [cos(ir/p) + cos (ir/q)~\ = ± /max,

thus for a we use the smaller root of

(35) a2/2max - 4a + 1 = 0.

Then for all of the error eigenfunctions

(36) \K\- K* = 4a - 1.

For large p and q this may be approximated by

(37) K* S 1 - -J2ir(p-2 + íT2)§-

With this procedure and with the optimum values of a the number of

iterations required to produce a substantial improvement in a trial solution

increases about linearly with p and q rather than quadratically as it does for

the Richardson method or the Liebmann method using a = \.
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The usefulness of the extrapolated Liebmann method is limited by the

difficulty of determining the optimum a-value for more complex problems

than the example considered here. It seems likely, however, that in many

similar problems a considerable improvement in convergence rate can be

achieved by a suitable choice of a and that an approximate optimum a-value

can be found empirically without great difficulty.

The Liebmann and extrapolated Liebmann methods have an advantage

—for some types of machine applications—over the Richardson and similar

methods in that they require carrying as machine "memory" no more than

one complete set of <bj, ¿-values. However, for use with punched card machines

or other calculating machines with severely limited internal (rapid-access)

memory this advantage is offset by the difficulty of retaining the newly

calculated values for use in the succeeding point and (more particularly) for

the adjacent point in the succeeding row (or column). For such machines

it is more convenient to use procedures in which a 0-value when calculated

may be stored in the "external memory" until needed in the next iteration

cycle.

6. The Second-Order Richardson Method. An improvement in the con-

vergence rate of the Richardson method comparable to that achieved for

the Liebmann method by extrapolation may be gained by retaining for use

in the calculation of 0"^x not only </>",, k, (j', k' running over points neighboring

j, k) but also 4>¡~t. This modification is suggested by the formal equivalence

between the Richardson method and the solution of the time-dependent

d(j>
equation, — = Lé. The modified iteration method is equivalent to the

at

solution of an equation of second order in /,

d2d> dé-g + A-g-U-Q.

and may therefore be termed the "second-order Richardson method." The

iteration process may then be written as

(38)       ^ = 0" l + aLó"-* + ^to"-* - ***)    (interior Points)

= b,-,k (boundary points).

We again denoted by éj¡k the solution of the equation Léj,k = 0 satisfying

the boundary condition incorporated in (38) and by e",t the difference,

4>i.k — <t>i,k- The error then satisfies the induction equation (38) with a zero

boundary condition. An error-eigenfunction, t"jlt, of L belonging to the eigen-

value, Z(„),

.    . Le), t = Lre"Jft    (interior points)

«î.ï = 0 (boundary points),

is then multiplied in each iteration cycle by a factor, K, such that,

Krn+itM = 2rFV-) + aLyKyn(M + ß(Krn - .KV»-1)««

or (dropping the subscript, v)

(40) K2 - (1 + aL + ß)K + ß = 0.
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If all of the eigenvalues, L„ are of the same sign (which for definiteness we

take as negative) and are in the range

(41) 0> Loï LÏ Lm,

then a and ß can be chosen to minimize

(42) K* = max\K„\<l.

(Since we are here using a second-order recurrence relation for <bn the two

roots of (40) correspond to two separate modes of decay for each eigen-

function. Both decay rates must be considered in (42).) For positive ß we

again have a range of values of aL within which the roots of (40) are complex

and of magnitude /3l. It may be shown, as before, that outside this range the

greater [ K [ decreases with increasing ß. Thus a and ß should be chosen to

make the range of complex roots just fit the range (41). This requires

l + aL0 + ß = 2/3*

1 + aLm + ß = - 20»,

hence
a(La + Lm) = - 2(1 + ß)

aLo =   - (1 - ßi)2,

or

,, . V = W(Lo + Lm) = |(1 - ß*)2/(l + ß) ;

{    ' ß - 2/3*(l - 2t,)-1 +1=0.

Choosing the smaller root gives for the decay factor,

(44) K* = 0i = 1 - 2(1 - 2i?)-1(rj - Tj2)* Si 1 - 2»f*.

For the rectangular Laplace problem

V SÈ ir2(P~2 + q~2)/S,

hence

(45) K* - 1 - ir(p~2 + r2)/^2-

Thus a comparison of the convergence rate of the second-order Richardson

method (45) with the extrapolated Liebmann method (37) again shows a

factor of two advantage over the latter.

It is not in general possible, to the writer's present knowledge, to effect

a comparable further improvement in the Richardson method by using a

third or higher order induction process.

7. Applications to Eigenvalue Problems. The methods here described

may be used to determine the fundamental eigenfunction of an equation of

the form
(L + \2)é = 0

with homogeneous boundary conditions if the smallest value of X2 is approxi-

mately known. The operator, L, is replaced throughout by L + Xo,approi. and

an initial trial solution chosen to approximate the fundamental eigenfunction.

Then the higher eigenfunction components of the trial solution will decay

during the iteration process while the fundamental remains approximately

unchanged  (depending on the accuracy of  Xo,approx.).   Similarly a higher
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eigenfunction can be calculated by replacing L by (L + X2iapprox)2. It is to

be expected that the iteration method so obtained would be very slowly

convergent since 17 is the square of the ratio of the largest to the smallest

value of \L + X2,approx.| (i j± 0).

8. Time Estimates. In order to indicate the order of difficulty of typical
problems to which these methods are applicable we consider two problems;

the solution of the Laplace equation and of the biharmonic equation in a

square region,

p = q = N.

The possibility, for some forms of the boundary conditions, of treating the

biharmonic equation by factoring into a Laplace and a Poisson equation,

will not be considered.

We assume, for definiteness, that the iteration process is to be continued

until all errors are reduced by a factor of 10~6. The number of cycles of

iteration required will then be approximately,

ÍJmas=6/|   logiC I

while the number of $-values to be corrected in each iteration is (N — l)2.

We denote by r the mean time required for each arithmetic operation.

Then the time required for the evaluation of one #".* is T where

Method T

Laplace-Richardson 4r
Laplace-Liebmann (a = J) 4r
Laplace-Liebmann (optimum a) 7t

Laplace-2nd order Richardson 9t

Biharmonic-Richardson 12t

Biharmonic-Liebmann (with extrapolation) 15t

Biharmonic-Liebmann (no extrapolation) 12t

Second-Order Richardson 17r

The total calculating time is given in the following table for a 10 X 10 and

for a 20 X 20 lattice, and the asymptotic form for large N

Approximate Total Calculating Time

JV = 10 N = 20 N Large

Laplace-Richardson 9-10V 1.6 -lOV 11 N't
Laplace-Liebmann (a = |) 5-10V 8-10V 5.6 N't
Laplace-Liebmann (optimum a) 1.2 -10V Ll-Wr 15 N't
Laplace-Second-Order Richardson 3-10V 3-10V 40 N't
Biharmonic-Richardson 1.1  10V 8-108r 14 N't
Biharmonic-Second-Order Richardson 4-106r 7-10V 48 N't
Biharmonic-Liebmann ? ?                      ?

For the biharmonic equation the ratio, 77 = L0/(Lo + Lm), has been approxi-

mated by the square of the corresponding value for the Laplace equation.

To convert these values to true time estimates we may, quite crudely,

•approximate r by 10~6 days for electromechanical computers (e.g., punched

card machines) and by 10-8 days for entirely electronic computers. It is thus

seen that with a fairly fine mesh the calculating time required with the

slower machines is uncomfortably large for the Laplace equation and pro-

hibitive for the biharmonic equation if the normal Richardson method is
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used. Even with the faster machines the time required for the solution of a

biharmonic equation by the methods considered here is uncomfortably large

unless the second order Richardson (or probably also the extrapolated

Liebmann) method is used. It is clear that for many problems of interest the

simplest iterative procedures will prove impossibly tedious even with the

fastest automatic computers.

The apparent likelihood that the extrapolated Liebmann procedure

would prove more rapidly convergent and more convenient for electronic

computers than the second-order Richardson method would seem to justify

an experimental study with such a computer.

The writer is indebted to R. H. MacNeal and W. E. Milne for en-

couragement and helpful discussion.

Stanley P. Frankel
California Institute of Technology

Pasadena, California
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On a Definite Integral
The function

/•or}

f(x) =   I     (u + x)_1 exp (— u2)du

is tabulated by E. T. Goodwin and J. Staton1 [MTAC, v. 3, p. 483] from
series expansions and by numerical integration of the differential equation

satisfied by the function.
The integral can be evaluated explicitly in terms of two simple tabulated

functions. The writer used the Laplace transform2 to evaluate the integral.

This method will now be given.
We may write

(1)    I(t) = (u + Z*)-1 exp (- u2)du =   I     (1 + v)-1 exp (- tv2)dv
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