The azimuth is determined by the use of a nomogram folded inside the back cover; it is based on the formula:

$$
\cos h \cos Z=\sin (d-L) \operatorname{cohav} t+\sin (d+L) \text { hav } t
$$

where Z is the azimuth angle of the celestial body. It is intended that the azimuth shall be determined only to the nearest degree which is generally adequate for ordinary navigational purposes.

The author suggests that the accuracy of his method as compared to the classical Friocourt method is as follows:

	$h=60^{\circ}$	$h=75^{\circ}$	$h=84^{\circ}$
Friocourt	$+0!5$	$+0!9$	$+2!2$
Hugon	+0.4	+0.7	+1.7

and hence the claim is for greater speed and ease of use rather than greater accuracy with the same number of decimals.

The printing of the tables is rather poor on the whole, but a part of the trouble may be blamed on the quality of the paper which is mediocre. It is to be hoped that the proofreading of the tables has been done with greater care than that of the foreword and explanation. In the English explanation, $X-Y=1$ should obviously be $X+Y=1$, and in the expression for X in both the French and English explanations, cohaversine ($D+\phi$) should be cohaversine P.

Charles H. Smiley
Brown University
Providence, R. I.

MATHEMATICAL TABLES-ERRATA

In this issue references have been made to errata in RMT 790 (Wijngaarden \& Scheen), 792 (Spencer et al.), 793 (Hugon), and Note 118.
173.-Polnoe Sobranie Sochinenir P. L. Chebysheva [Complete Collection of Works by P. L. Chebyshev]. Volume 1, Teorîa Chisel [Theory of Numbers], Moscow and Leningrad, Academy of Sciences, 1946. 342 p. + portrait frontispiece. $15 \times 23 \mathrm{~cm} .20$ roubles paper; 23 roubles bound. Edition (Second, stereotyped) of 3,000 copies.
Previous editions of this volume have been reviewed in MTAC, v. 1, p. 440-441. The present volume not only reproduces the errata of the 1944 edition but adds many new misprints both in the text and in the tables, p. 311-339. These latter are as follows:

```
page
311 line-20 for 2372 read 2237
314, p=13, N=12 read I=6
    p=19, insert N=1
    p=23, insert 4 between }17\mathrm{ and }
317, p=61, N table, for line 1 read 1103924 57 21 27 2616 }3
    p=67, I=47 for N=38 read N=18
318, p=71, N=16 for I=15 read I=22
    N=26 for I=22 read I=15
319,p=89, insert the primitive root 35
```

320, $p=103, I=99$		$N=31$		
322, $p=127, I=116$	for	$N=31$	read	$N=71$
323, $p=131, I=35$	for	$N=76$	read	$N=79$
324, $p=139, N=50$	for	$I=26$	read	$I=25$
$I=132$	for	$N=47$	read	$N=57$
325, $p=151, N=12$	for	$I=121$	read	$I=131$
$I=138$	for	$N=81$	read	$N=91$
$p=157, N=36$	for	$I=80$	read	$I=70$
326, $p=163, N=143$	for	$I=134$	read	$I=154$
$p=167, N=109$	for	$I=36$	read	$I=35$
$N=113$	for	$I=193$	read	$I=103$
$N=161$	for	$I=144$	rea	$I=147$
$I=147$	for	$N=61$	rea	$N=161$
$I=162$	for	$N=21$	read	$N=25$
327, $p=173, N=21$	for	$I=138$	read	$I=38$
$N=49$	for	61	read	62
57	for	$I=72$	read	92
328, $p=179, I=79$	for	$N=36$	read	N
$p=181, N=16$	for	$I=175$	read	$I=172$
$N=99$	for	$I=192$	read	$I=102$
$N=102$	for	$I=79$	read	$I=76$
329, $p=191, N=91$	for	$I=$	read	$I=99$
$I=0$	for	$N=0$	read	$N=$
$I=172$	for	$N=18$	read	$N=138$
$p=193, N=42$	for	$I=133$	read	$I=138$
330, $p=193, I=115$	for	$N=182$	read	82
331, $p=199, N=11$	for	$I=89$	read	$I=189$
$N=56$	for	$I=10$	read	$I=20$
$I=32$	for	$N=12$	read	$N=$

All the errata in the table of linear divisors of quadratic forms listed in MTAC, v. 1, p. 441 as appearing in the 1944 edition are present in this new edition with the addition of the following new errata:

page					
336	$x^{2}-51 y^{2}$	insert 175			
	$x^{2}-53 y^{2}$	for	11	read	131
	$x^{2}-55 y^{2}$			and 201	
	$x^{2}-58 y^{2}$	for	67	read	65
337	$x^{2}-74 y^{2}$		ins		
338	$x^{2}-85 y^{2}$	for	73	read	173
339	$x^{2}-101 y^{2}$	for	378	read	373

515 West 110th St. New York 25

UNPUBLISHED MATHEMATICAL TABLES

Editorial Note: The UMT File [see MTAC, v. 4, p. 101] now contains the following manuscript table: UMT 77[D].-E. C. Bower, Natural Circular Functions for decimals of a circle [MTAC, v. 3, p. 425]. For an unpublished table concerning elliptic integrals see RMT 787.

95[A].-Institut für angewandte Mathematik, Eidg. Tech. Hochschule, Zürich, Table of Binomial Coefficients. Manuscript in the possession of the Institute.
This is a table of the exact values of the binomial coefficients, extending as far as

$$
\binom{100}{50}=100891344545564193334812497256
$$

H. Rutishauser

Zürich, Switzerland
96[A].-J. W. Wrench, Jr., \& L. B. Smith, Values of the terms of the Gregory series for arccot 5 and arccot 239 to 1120 and 1150 decimal places, respectively. Mss. in possession of the authors.
The table of individual terms of the Gregory series for arccot 5 gives, in the range 501 D to 1150 D inclusive, the first 820 terms of that series. Exclusive of zeros following terminating decimals, the total number of significant figures involved is 379,290 . The companion table of terms of the series for arccot 239 consists of 1120D values of the first 235 terms. The total number of significant figures in this table is 131442.

The sums of the positive and negative terms of each series are given to the corresponding degree of approximation. From these data approximations to arccot 5 and arccot 239 have been obtained correct to 1148D and 1119D, respectively, as confirmed by the ENIAC calculation of these numbers [MTAC, v. 4, pp. 11-15].

For the sake of chronological accuracy it should be mentioned that the final checking of the 1120D approximation to arccot 239 was completed by Mr. Smith on 24 July 1949, and the calculation of arccot 5 had been completed by the writer the previous month except for checking the data beyond

