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Our experience involved a stable system of differential equations, but the

use of frequency analysis is justified in most cases, including unstable cases

in which a scale change occurs.
F. J. M.

■Harvard University, Computation Laboratory, Annals, v. 16, p. 176-187. {MTAC,
v. 3, p. 437.]

1 Shih-Nge Lin, "Numerical solution of complex roots of quartic equations," Jn. Math.
Phys., v. 26, 1947, p. 279-283.

' This formula assumes that the computed and hence available / is the function to be
integrated. If one wishes to make an allowance for the distinction between this/ and the
correct / associated with the true solution, a difference equation must be solved. In case X
is a characteristic root of H, the corrected value To is obtained by dividing the above formula
(24) by

1 + .5000m + .1667m* + .0417m» - .0972m« - .1424m6- • -.

This correction is significant.

RECENT MATHEMATICAL TABLES

761[A].—R. Coustal, "Calcul de \2, et réflexion sur une espérance mathé-

matique," Acad. Sei. Paris, Comptes Rendus, v. 230, 1950, p. 431-432.

The first four terms of the binomial expansion of

V2 = o(l - 2x)-*
where

a2 = 2 - 4x

and a is an approximation to \2, good to 333D, were used to obtain \2 to

1032D. Besides this value the author gives the distribution of digits in the

1033S values of V2 and 1/V2. In the first 1000D in the V2, the digits 0-9
have the following frequencies

108, 98, 109, 82, 100, 104, 90, 104, 113, 92.

Such a distribution has a chi-square of 8.38. The probability of such a value

from a normal distribution is almost exactly 1/2. For I/a/2 the probability

is merely .05. [Compare MTAC, v. 4, p. 109-111].
The author "reflects" on the paradox that if one takes the product of

the first 1033 digits of the decimal expansion of a real number x in the

interval 0 < x < 1, the expected value of the product is (9/2)1033 > 10674,

whereas the probability that it is exactly zero is 1 — (9/10)1033 > 1 — 10-47.
D. H. L.

762[C].—H. S. Uhler, "A mathematician's tribute to the state of Israel,"

Scripta Mathematica, v. 14, 1949, p. 281-283.

The author gives In 173 and In 5709 to 290D.

763[D, H, L].—C. N. Davies, "The sedimentation and diffusion of small
particles," R. Soc. London, Proc, v. 200, 1949, p. 100-113.

This paper contains a table of the first 16 positive roots of the equation

2ax + tan x = 0
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for a = 2, 1/2, 1/3, 1/6, 1/30. Values are to 5S, 6S and 7S. For a = 1/2 the
equation is tan x = — x and the first 11 roots given in this case agree with

those of Pooler, MTAC, v. 3, p. 496.

764[D].—Toshizo Matsumoto, "On Hayami's turbulent tensor," Kyoto,

Imperial University, College of Science, Memoirs, v. 24A, no. 2, 1944,

p. 63-72.

On p. 66-69, is a table, computed by Hirosi Nakaheta, of the functions:

z* cos \tz, to 4D, 8; z4 to 8D; cos \tz to 7D, for z = 0(.01)2.
R. C. A.

765[E].—H. G. Hopkins, "Elastic deformations of infinite strips," Cam-

bridge Phil. Soc, Proc, v. 46, 1950, p. 164-181.

The appendix (p. 181) is a 6D table of

gi = (16 cosh2 x)/(55 cosh2 x + 25x2 + 9)
and

g3 = (16 cosh2 x)/(39 cosh2 x + 9x2 + 25)

for x = 0(.1)6. At x = 6 the functions are already near their limiting values

16/55 and 16/39.

766[F].—D. Tarden & A. Katz, "Additional page (477) to D. N. Lehmer's
Factor Table," Riveon Lematematika, v. 3, 1949, p. 49 [English sum-

mary p. 52].

This is the same as UMT 85[F], MTAC, v. 4, p. 29.

767[F].—A. Katz, "Some more new factors of Fibonacci-numbers," Riveon

Lematematika, v. 3, 1949, p. 14 [English summary, p. 54].

The author continues the factorization of the terms of the Fibonacci

sequences U„ and V„ [see MTAC, v. 3, p. 299] giving the complete factoriza-

tion of Um = 2-233-29717-135721 -673024656781, Vn = 151549-11899937029
and T/108 = 2-7-23-6263-103681-177962167367. The factors 128621 and
119809 are given for Vi0o and Vi2% respectively. No further factors of the two

series exist below 2-106 up to « = 128.
D. h! l.

768[F].—G. Palamà, "Tabella delle posizioni iniziali relative al 'Neocribrum'

di L. Poletti," Parma, Univ., Rivista Mat., v. 1, 1950, p. 85-98.

The "Neocribrum" is a form of factor table devised by L. Poletti

[MTAC, v. 3, p. 532] and has for column headings the set of 6 numbers

(S) 1, 7, 11, 13, 17, 19, 23, 29

which are those prime to 30. Two cells of the table in the same column and

adjacent lines correspond to numbers differing by 30. Once a prime p > 5

appears as a factor of a number in any one column it reappears p lines farther

down and continues to appear periodically. Hence to construct the factor

table it is necessary to know the line number at which a given prime factor
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will first appear. The purpose of the paper is to supply this information for

all primes p for which 17 < p < 3547 (the primes 7, 11 and 13 are already
printed into the otherwise blank forms of the sieve). Hence the table gives

for each of the 491 primes the solutions x¿ of the congruences

30(x< - 1) +Mi m 0 (mod p)        (i = 1(1)6)

where m¡ are the numbers of (S). The awkward x — 1 is due to the fact that

Poletti numbers his lines beginning with 1 rather than 0. The table gives

also the least positive A for which A + 1001 is divisible by p. This is to enable

the application of the results to successive "cycles" of the table.

It is a little hard to see the need for publishing such a table. If one is

going to construct a factor table of just this kind it is clearly indispensable.

However, the table has other uses. The column headed 29 gives directly the

value of 1/30 modulo p and the first column is a convenient list of primes.

D. H. L.

769[G].—F. N. David & M. G. Kendall, "Tables of symmetric functions—
part I," Biometrika, v. 36, 1949, p. 431^449.

The authors present tables of coefficients in the linear representation of

the monomial symmetric function in terms of products of sums of like

powers, and conversely the coefficients in the expansion of the latter in terms

of the former. The tables extend to symmetric functions of weights <12.

Thus from the two tables of weight 4 we read, for example, that

2 E «2ßy = 2 E «4 - 2(L «8)(E a) - (E «2)2 + (E «2)(E «)2

and that

(23 «2)(E «)! = E«*+2E^ + 2I a2ß2 + 2 E <*ßy.

In order to avoid fractions the monomial symmetric functions are multi-

plied by the product of factorials of the exponents in the partition of the

weight represented by the monomial. The resulting functions are called

"augmented." Thus E a2ß2y28e is multiplied by 3! 2!

The authors appear to be unaware of the tables of Sukhatme, Ziaud-

Din, Kerawala and Kerawala & Hanafi [MTAC, v. 3, p. 24]. The first
of these gives the same information for weights <8. The others give only

half as much information (i.e., the coefficients in the expression of the

monomials in terms of sums of like powers) for weights 9, 10 and 11. The

table of weight 12 under review is completely new.

The various checking procedures used by the authors should be sufficient

to produce a set of tables completely free from error. Nevertheless it would

have been wise to collate the tables with those previously given which are

known to contain errata [MTAC, v. 3, p. 24]. The application of the tables

to problems in statistics is treated briefly.

The tables are arranged beautifully in lexicographical order, the two

triangular halves fitting into a perfect rectangular layout. The type, though

rather small, is quite clear.

D. H. L.
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770[G].—J. A. Todd, "The characters of a collineation group in five dimen-

sions," R. Soc. London, Proc, v. 200, 1949, p. 320-336, insert between

p. 336-337.
The paper gives a table of characters of a primitive group of collineations

of order 6531840 = 28-3'-5-7 in five space and a table of characters of a

subgroup of index 2. The group is described in another paper.1

1 J. A. Todd, "The invariants of a finite collineation group in five dimensions," Cam-
bridge Phil. Soc., Proc, v. 46, 1950, p. 73-90.

771[I].—Anders Reiz, "On quadrature formulae," Cambridge Phil. Soc,

Proc, v. 46, 1950, p. 119-126.

The author considers the usual quadrature formula for an integral with

weight function w(x) :

I      w(X)S(x)dx   =   Ê  PiS(Xi)   + Rn-
Ja i—i

As is well known, the best choice of x, is the set given by the Gauss' method

corresponding to w(x). However, these values are not rational and the com-

puter is faced with the task of interpolating to find /(xí). If we choose for x<

the Gaussian values rounded off to 2D and modify the pi accordingly we

obtain a formula which is theoretically easier to use and which retains

nearly the full force of the Gauss approximation.

Six tables of the x,-, pi are given for the six weight functions

1,        tt-KI - x2)-\        r-*(l - *2)1,        t-1(1 - *)*(! + x)~i,
e~x       and        ir~*exp (—x2).

The order n extends as far as 10, 8, 8, 5, 5, and 8 in these respective cases.

For the first four weight functions the interval (a, b) of integration is

either (0, 1) or ( — 1, 1) while in the last two cases it is (0, <») and (—<*>, °°)

respectively.

The Xi are given to 2D, as mentioned above, and the coefficients pi to 7D.

Five examples are given comparing the present method with the strict

Gauss formula and Weddle's rule. As might be expected, the modified

Gauss method is only slightly inferior and considerably easier to use. It is

much superior to Weddle's rule.

In "actual practice" the above avoidance of interpolation difficulties may

be, in some cases, only apparent. In fact if the function to be integrated is

observed or tabulated on an interval (a, b) different from (0, 1) or ( — 1, 1),

such as (0, 27r), then a transformation of variable is required which may

introduce interpolation after all.

D. H. L.

772[I].—Herbert E. Salzer, "Formulas for complex cartesian interpolation
of higher degree," Jn. Math. Phys., v. 28, 1949, p. 200-203.

The purpose of the present table is to provide the coefficients for a

Lagrangean interpolation polynomial adaptable to interpolation over a

square grid in the complex plane. The polynomial assumes the form

E|^)i
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where z* = k are the points of grid-configuration, a* = Ak/(P — K), and

P = p + qi is the variable point. For example, in the case of three-point

interpolation the configuration consists of the three points 0, 1, * and "the

values of .4* are correspondingly A0 = —i,Ai = §(1 + i),Ai = ?( —1 + *).

From this we find that E o* reduces to 1/[P(P — 1)(P — ¿)] and the
interpolation polynomial becomes

S(P) = -i(P - i)(P - i)So + Id + i)P(P - i)Si + i(-i + i)P(P - D/i-

Beginning with five-point interpolation, the author gives alternative

configurations "which have the property of making the location of P (or z)

considerably more central with regard to the points k (or zk), and hence

would be expected to yield greater accuracy. The number of these more

central configurations which are given are: for five-point—one, for six- and

seven-point—two, for eight- and nine-point—three. Thus, the user has a

great latitude of choice in available formulas for complex interpolation, for

checking that interpolation, and for central choice of the argument P."

This paper is a continuation of the original work of A. N. Lowan and

the author1 [MTA C, v. 1, p. 358-359] and a paper by the author.2 The work
makes use of a simplification introduced by W. J. Taylor3 for real Lagran-

gean interpolation.

H. T. Davis
Northwestern University

Evanston, Illinois

1 A. N. Lowan & H. E. Salzer, "Coefficients for interpolation within a square grid in
the complex plane," Jn. Math. Phys., v. 23, 1944, p. 156-166.

* H. E. Salzer, "Coefficients for complex quartic, quintic and sextic interpolation
within a square grid," Jn. Math. Phys., v. 27, 1948, p. 136-156.

» W. J. Taylor, "Method of Lagrangian curvilinear interpolation," NBS, Jn. Res., v.
35, 1945, p. 151-155.

773[K].—D. J. Greb & J. N. Berrettoni, "AOQL single sampling plans
from a single chart and table," Amer. Stat. Assn., Jn. v. 44, 1949,

p. 62-76.

As the title states, a single chart and table are given in the paper to find

the AOQL (Average Outgoing Quality Limit) single sampling inspection

plan which will yield a "practical" minimum amount of total inspection.

Total inspection is used here to mean the combined amount resulting from the

single sample inspected from each and every lot and the 100% screening in-

spection of lots rejected under the single sampling plan. Given an AOQL value

in % it is desired to maintain and the lot size, N, Chart I of the paper (p. 66)

is entered to find the acceptance number, c. Table II of the paper (p. 65)

is then entered along with the AOQL value to find the sample size n for the

single sampling plan (c, n) with c = 0(1)12, AOQL = .1,.25(.25)1(.5)5(1)10.
The present paper and associated tables appear to eliminate the necessity

of knowing the process average accurately, at least for many practical

situations.
F. E. Grubbs

Ballistic Research Laboratories

Aberdeen Proving Ground, Md.
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774[K].—D. J. Finney, "The truncated binomial distribution," Annals öS

Eugenics, v. 14, 1949, p. 319-328.

A number s of observations of binomial random variables, all with the

same probability p of success, are obtained under circumstances which make

it possible to observe only values greater than zero. The problem is to obtain

the maximum likelihood estimate of p. Referring to his earlier paper1 for

derivations, the author presents an iterative technique for solving the likeli-

hood equation which is made simple by giving a 3D table of the weights of

single observations and of the bias in weighted scores for 5 = 2(1)20 and

p = .01(.01).05(.05).95. A similar technique is described for the case of
doubly truncated binomial distributions in which neither the number

of "no successes" nor the number of "no failures" can be observed, and

a similar table of weights and biases, both to 3D, for s = 3(1)20 and

p - .01(.Ol).O5(.05).5O is given. z   w   Birnbaum

University of Washington

Seattle, Washington

1 D. J. Finney, "The estimation of the frequency of recombinations. I. Matings of
known phase," Jn. Genetics, v. 49, 1949, p. 159-175.

775[K].—N.  L.  Johnson,   "Systems of frequency curves generated  by

methods of translation," Biometrika, v. 36, 1949, p. 149-176.

The author investigates the properties of probability functions, p„ where

z = y + 5 In S(y) is distributed normally with unit variance, /(y) S 0. If

S(y) =y we obtain the well-known log-normal system, Sl\ if /(y) = y/(l — y),

0 < y < 1, a new system Sb; and if /(y) = y + Vy2 + 1, — oo < y < oo,

the new system Su- On page 157 is a chart in terms of the Pearson measures

of skewness and kurtosis, ßi and ß2, showing the regions of Sl, Sb, and Su-

On page 164 is a nomogram which gives S and y/8 in terms of ßi and ß2,

0 < ßi < 1.3, 3 < ß2 < 5 for the system Su- Table 8, page 174, gives the
values of ui , a, ßi, ß2 for 8 = .5, 1, 2, and y = 0(.5)2.5 for Sb- The author
applies his results to the graduation of observed frequency distributions and

to the normalization of skewed distributions. T     .     .
L. A. Aroian

Hughes Aircraft Company

Culver City, California

776[K].—K. R. Nair, "A further note on the mean deviation from the

median," Biometrika, v. 36, 1949, p. 234-235.

Values of the coefficient of variation (2S) are given for the mean devia-

tion from the mean and the mean deviation from the median for samples of

size 2(1)10 from a normal population. They are the same within 1 figure in

the second place. This implies that the mean deviation from the median is

just as precise an estimate of dispersion as the mean deviation from the

mean for samples from a normal distribution.

Actually there are more precise linear estimates of dispersion than either

of these. Some examples are given in a text by Dixon and the reviewer.1

TT .     .     r„ F. J. Massey
University of Oregon

Eugene, Oregon

*W. J. Dixon & F. J. Massey, Introduction to Statistical Analysis, lithograph ed.
Eugene, 1949.
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777[K].—E. G. Olds, "The 5% significance levels for sums of squares of

rank differences and a correction," Annals Math. Stat., v. 20, 1949,

p. 117-118.

In 1938 the author published1 a series of tables having to do with the

distribution of the rank correlation coefficient. Table V gave pairs of

values between which E ^¿2 (^»' being the rank difference for the ith indi-

vidual) has a probability, P, of being included under the hypothesis that

E d2 = («' — n)/6. This hypothesis is equivalent to the null hypothesis that

the rank correlation coefficient is zero. The table gave pairs of values for

n = 11 to n = 30 inclusive and for P = .99, .98, .96, .90 and .80. The table
in the present paper extends the original table by giving pairs of ID values

corresponding to P = .95.

The correction is for the formula printed in the earlier publication for

the variance of the normal deviate, x, used in calculating the values of the

table.
Carl F. Kossack

Purdue University

Lafayette, Indiana

1 E. G. Olds, "Distribution of the sums of squares of rank differences for small num-
bers of individuals," Annáls Math. Stat., v. 9, 1938, p. 133-148.

778[K].—Frances Swineford, "Further notes on differences between per-

centages," Psychometrika, v. 14, 1949, p. 183-187.

The two tables are designed to determine the least common size, N, for

each of two samples for testing the hypothesis that the difference in the

two population proportions, pi — p2, is at least dt- It is assumed that the

sample proportions, pi and p2, are distributed normally and, therefore, that

the appropriate test is a one-tailed test of the hypothesis that pi — p2 = dt.

Then N = 5.4119(j>i2i + p2q-¡)/(do — dt)2 at the 1% point and approxi-
mately half as much (1/2.0003) at the 5% point, where d0 = pi - p2'. The
tables give N for the 1% points only.

Table 1 gives N' =. 10.8238pq/(d0 - dt)2, where p = \(px' + p2'), to
0D for p = .10(.05).90 and \d0 - dt\ = .O50(.O02).O8O(.OO5).135. Table 2
gives the correction terms (piqi + piq.i)/2pq to 3D(3S) for p = .10(.05).90

and dt = .10(.05).50.
Leo Katz

Michigan State College

Lansing, Michigan

779[K].—J. E. Walsh, "On the power function of the 'best' ¿-test solution

of the Behrens-Fisher problem," Annals Math. Stat., v. 20, 1949, p.
616-618.

Let m sample values be drawn from N(ai, oV) and n sample values from

N(a2, o-22), m < n, (where N(a, a2) represents a normal probability function

with mean a and variance a2), then Scheffé has shown that a "t" test solu-

tion of the Behrens-Fisher problem, ai2/<r22 not known, using in the numer-

ator the difference of sample means, and the denominator based on the

square root of a function of the sample values which has a x2-distribution

with m — 1 degrees of freedom has certain optimum properties. The purpose
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of the note is to compare the power function of this t test with the power

function of the correspondingly most powerful test for the case in which the

ratio <ti2/o-22 is known, for one-sided and two-sided symmetrical tests. This is

done by finding the power efficiency. Two 3D tables are given for the power

efficiency of Scheffé's test, a-^/ai2 not known, against the test <ri2/o-22 known,

on page 617 where a = significance level, for a = .05, m = 4, 6, 10, 15, 20,
30, 50, 100, » and the same range for n; also a = .01, wi = 6, 8, 10, 15, 20,

30, 50, 100, oo, same range for n. L   A   Aroian

Hughes Aircraft Company

Culver City, California

780[K].—J. E. Walsh, "On the 'information' lost by using a i-test when the

population variance is known," Amer. Stat. Assn., Jn., v. 44, 1949,

p. 122-125.

Table 1 gives the approximate number of sample values "wasted" if,

when the population variance is known, one uses a i-test (estimating variance

from sample) in place of the appropriate normal deviate test, when one is

testing whether the population mean differs from a given constant value.

5%, 2.5%, 1% and .5% significance levels are tabulated to 2S for both the

one-sided and symmetrical test. Sample values wasted is defined in terms

of equal power functions. Carl p   KossACK

Purdue University

Lafayette, Indiana

781[K].—J. E. Walsh, "Applications of some significance tests for the

median which are valid under very general conditions," Amer. Stat.

Assn., Jn., v. 44, 1949, p. 342-355.

The tests considered are valid for samples of » from one or more uni-

verses with a common median, which are symmetric and have continuous

cumulative distributions. Table I lists one to five such tests for each

n = 4(1)15 with their approximate one-sided and symmetric significance

levels to 3D and their efficiencies to nearest .5 on the assumption that the

universes sampled are normal. Table II lists further tests for n = 4(1)9 for

which the bounds of these significance levels are given, as well as their sig-

nificance levels and efficiencies to same precision as Table I for samples

from normal. Table I was also published elsewhere.1

TT .     .     c »„.  .  .   . T. A. Bickerstaff
University of Mississippi

University, Miss.

1 J. E. Walsh, "Some significance tests for the median which are valid under very
general conditions," Annals Math. Stat., v. 20, 1949, p. 64-81.

782[L].—S. Chandrasekhar, "On Heisenberg's elementary theory of turbu-

lence," R. Soc. London, Proc, v. 200A, 1949, p. 20-23.

The function /(x) satisfies a certain nonlinear differential equation.

Introducing the new variables

y=f S(t)t2dt       and        g = x3/(x),
Jo
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and denoting differentiation with respect to y by primes, the differential

equation becomes

gig" + 2y(4 + g') + 2gi(4 - g') - 8g = 0.
For small y,

g(y) = 4y + yi(a + (4/3) In y) + ■ ■ ■

where a is an arbitrary constant. Starting with this value, the differential

equation was integrated numerically for a = 1.8104739, 1.81, 1.75, 1.5, 1.0,
.5, 0. Four decimal tables of/(x) are given for various ranges of x and varying

intervals.
A. E.

783[L].—L. Howarth, "Rayleigh's problem for a semi-infinite plate," Cam-

bridge Phil. Soc, Proc, v. 46, 1950, p. 127-140.

The work leads to the expression

T       M!U¡+ (2t)íJrC KiW)v¡,

and the notation tr = (Tvfy^pW is used. Table 1 gives values to 3 decimal

places of (WH/v)^/(pW2) and of (ßW)~l f0T (t - rR)dr for R = (vt)~h = .01,
.05, .1, .2(.2)2(.5)4 and oo.

A. E.

784[L].—M. K. Krogdahl, "On broadening of hydrogen lines in stellar
spectra—I," Astrophys. Jn., v. 110, 1949, p. 355-374.

The function

1 /z\4  .   2       1 /z\3       2     29/z\2  .   2     1 z        2
-ÏSUJ  Smz + Ï5V2j COSz-3ÖV2j Sinz_62COSz

4zf°° dy      If".      dy     32/zVf2/2 dy
+ 32-LCOSyJ+6LSmyJ + T5{~2))o    COSyTy

is tabulated to 3D for z = 0(.1)1(.2)3(.5)5, and to 2D for z = 6(1)10. The
computations were apparently based on tables contained in Jahnke-Emde.

[1933 ed. p. 6-9, 34-35].
A. E.

785[L].—Merbt, "Untersuchung zur Arbeit von H. G. Küssner 'Lösungen

der klassischen Wellengleichung für bewegte Quellen' " Aerodynamische

Versuchsanstalt, Göttingen e. V., Abteilung J 06, Bericht B 44/J/31,
ZWB/AVA/Re/44/J/31, ZWB 10514, 1944. English translation "Wave
propagation from moving sources" by O. W. Leibiger Research Labora-

tories, Petersburg, N. Y., ATI No. 32413, 8-8-701, 1948. 14 p.

The function

1    Ç2'
hmn(a, 0-) = — (1 — 2a cos x)_i exp \imn[— x — <*(1 — 2<r cos x)ij\dx

¿T Jo
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occurs in an investigation1 of sound propagation from a source moving in a

circle. In the present paper the following notations are used:

ß = imna,       A = (1 — 2<r cos x)*,        y = e'5*008*,

F(y) = A-T-e-P*,       /(o-) = r**.

First the first 8 derivatives of F(y) are given in terms of ß and A, then the

values, in terms of ß, of these derivatives when y = 1. From these the first

7 coefficients in the asymptotic expansion

00

hmn(a, a) = imn E b,Jmn(vmnaa)
r—l

are computed. Next, the first 6 derivatives of /(o-) are given in terms of ß

and A, and the values of these derivatives for <r = 0 in terms of ß and x-

The Maclaurin series of /(<r) leads to an expansion of A in powers of a which

is said to show satisfactory convergence, at any rate for small m, lor all

values of a and <r which are of importance; in fact it is stated that a few

terms of the series suffice for numerical computation. Certain polynomials

which occur in the first 7 coefficients of the expansion of hmn in powers of fl-

are given explicitly. There are 14 such polynomials, 7 to be used for even m

and 7 for odd m. Table I of the appendix gives the coefficients of these

polynomials, and Table II certain auxiliary quantities which can be used for

a rapid computation of the coefficients.

A. E.

1 H. G. Küssner, "Lösungen der klassischen Wellengleichung für bewegte Quellen,"
Z. angew. Math. Mech., v. 24, 1944, p. 243-250.

786[L].—F. W. J. Olver, "Transformation of certain series occurring in

aerodynamic interference calculations," Quart. Jn. Mech. Appl. Math.,

v. 2, 1949, p. 452-157.

*. = 8ttM25 £ (-I^-^oOm«*) + 4ß £ (-I)""1 Kl{2TßSn)
n=-l n-1 n

is given in Table 1 (p. 456) to 6 decimal places for p. = .5, s = 1(1)6; p = 1,
s = 1, 2, 3; and p. = 2, s = 1, 2.

Table 2 (p. 457) is an auxiliary table giving values to various degrees of

accuracy of Kj(nv) and I¡(nT) for j = 0, 1 and « = 1(1)7.

787[L].—F. Riegels, "Formeln und Tabellen für ein in der räumlichen

Potentialtheorie auftretendes elliptisches Integral," Archiv d. Math., v.

2, 1949-50, p. 117-125.

The integral in question is

„ „«       ,      s     CÍT       cos2n9

and can be expressed in terms of complete elliptic integrals of the first and

second kinds in the form

(i - k2yik-2»[snE(k2) - gnK(k2n
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where /„ and gn are polynomials of degree n in k". The exact values of the

coefficients of these polynomials are given (as common fractions) for

n = 0(1)7.
(2/ir)G„(A2) can be expanded as a power series in A2, and 5 decimal values

of the coefficients of this power series up to the coefficient of A30 are given

for n = 0(1)7.
k"G„(k2) can also be expanded in the form: power series in kn + In (4/k')

times a power series in k'1. The coefficients occurring in this expansion up

to (and including) the terms in A'10 are tabulated to 5 or 6 significant places

for n = 0(1)7.
The principal tables are 4 decimal tables of kn and of k"Gn(k2) for

n = 0(1)3, A2 = .00(.01).99 and k2 = .900(.001).999.
The computations were carried out on the Hollerith equipment of the

Max Planck Gesellschaft of Göttingen. The original computations used the

interval .001 throughout and included also G« to Gy. The unpublished parts

of the tables are available through the author.
A. E.

788[L].—G. Schweikert, "Zur Theorie des Gasdrucks gegen eine bewegte

Wand," Zeit, angew. Math. Mech., v. 29, 1949, p. 289-300.

Let

exp(-t2)dt

and
G(x) = ir*x exp (x2)F(x).

The article contains tables to 5D of

F(x),       2x2F(x),        (2 - 70(1 + 2x2) + 2ir-*x exp (-x2)

and
[1 + 2x2(l - 62)]F(x) - 27r-ixexp (-x2)

for
0 = 0(.1).4, 1 and for x = 0(.1)1.5, 2, 2.5

and tables to 8D of log G(x), 1/G(x) and

1 + fx-2 - 1/G(x)
forx = .05, .1(.1)2(.5)4.5.

789[L].—Geoffrey Taylor, "The formation of a blast wave by a very

intense explosion. I. Theoretical discussion." R. Soc. London, Proc,

v. 201A, 1950, p. 159-174. "II. The atomic explosion of 1945," ibid,

p. 175-186.

In the course of this work there appear the functions /, <t>, $ of tj which

satisfy the system of nonlinear differential equations

yip \¡/ V — <t>

3/+r?/' + ^(-7, + 0)/-¿/' = O

in which 7 is a constant.
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Table 1 of Part I (p. 164) contains 3 decimal values of /, <f>, ̂ for

ij = 1( — .02).5. These values were computed by step-by-step numerical

integration of the differential equations with y — 1.4 and the initial values

/(l) = 1.167, <t>(l) = .833, ¿(1) = 6.000.
Approximate formulas for the functions in question are developed on

p. 165.
Table 2 of Part I (p. 166) contains 3 decimal values of /, <t> and 2 decimal

values of ^ for tj = 1, .95, .9, .8, .7, .5, 0. These values were computed from

the approximate formulas with 7 = 1.666, /(l) = 1.250, <f>(l) = .750,
iKl) = 4.000.

Table 2 of Part II (p. 178) contains 3 decimal values of /, <f>, \p for
■n = 1( — .02).9( — .05).4 obtained by approximate calculation for 7 = 1.30,

/(l) = 1.130, 0(1) = .869, ^(1) = 7.667. Some values of the temperature

are added.

There are also other tables.
A. E.

790[L].—A. van Wijngaarden & W. L. Scheen, "Table of Fresnel inte-

grals," Akademie van Wetenschappen, Amsterdam, ASd. Natuurkunde,

Verhandelingen, eerste sectie, v. 19, no. 4, 1949, 26 p. (Report R49 of

the Computation Department of the Mathematical Centre at Amster-

dam.) Price 2.50 guilders.

This is a table of

cos %Tt2dt       and        S(u) =  I    sin %Tt2dt

for « = [0(.01)20; 5D] with modified second differences.

(1) C(u) = £ C<k+iu«+\        Cik+i = (-1)*(Ít)27[(2A)!(4A + 1)]

(2) S(u) = E Sik+3u"+\        S4k+3 = (-im*)2M/[(2k + 1)!(4A + 3)].
Ic-O

Tables are given for A = 0(1)22 or 21, of C4*+i[Ci = 1, C6 = - 2.467401-
100272340-10-1, • • -, C89 = 2-10-49], and of Sik+3[S3 = 5.235987755982989
•10-1, •••,5M= -5 X 10-«].

Asymptotic expansions are

(3) C(u) ~ i + sin \tu2 Ê 74*+iM-(4*+1> - cos ¿ttm2 £ <r4*+3tt-(4*+3)

(4) S(u) ~ \ - cos \tu2 £ 7«+iM-(U+1> - sin \tu2 E cik+3u-^+^

where

(5) 74*+i = ( - 1)*2(4A) !(27r)-^+1»/(2A) !

(6) <r4t+3 = (-1)*2(4* + 2) !(2,r)-(2*+2>/(2A + 1) !

C(u) = J
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There are tables of the coefficients (5) and (6) for k = 0(1)14 and

A = 0(1)13 respectively.
In computing the main table 9D values were calculated by means of (1)

and (2) for u = 0(.5)2.5 and the same from (3), (4) for u = 2.5(.5)12. In
order to get this accuracy by means of asymptotic series for values of u as

low as 2.5, the technique described by Goodwin & Staton1 was employed.

The next step was to prepare preliminary 7D tables of C(u) and S(u) for

u = 0(.01)12 by numerical integration of 5D values of cos 57r/2 and sin §7rf2

with an interval A = .01. After most elaborate treatments and testings, the

authors were led to their rounded-off 5D values, which are "guaranteed."

The values of the table for u = 12(.01)20 were calculated by means of

the asymptotic series and checked by complete duplication of the computa-

tion. Modified second differences, 82* = 82 — 0.18454 were computed from

the 7D tables, then rounded off to 5 D and checked by differencing.
Linear interpolation will yield no larger error than 4 X 10-6 X u. Full

profit of the accuracy of the table is obtained by the use of Everett's

formula up to second modified differences:

S(xo + ph) = (1 - p)So + PS i + Eo2So2* + Ei28i2*.

A small table of the interpolation polynomials E02 and Ei2 is given.

Extracts Srom text.

We have recently referred in M TA C to several other tables of C(u) and

S(u): C. M. Sparrow (v. 3, p. 479), for u = 0(.005)8; 4D; D. L. Arenburg
& D. Levin (v. 3, p. 479), for u = 0(.1)20, and u = 8(.02)16; U. S. Navy,
Res. Lab., Boston (v. 3, p. 417), for u = 0(.1)20; 4D or 4S; R. T. Birge
(v. 4, p. 30), for u = 0(.05)12.05; 4D.

A comparison of the first 100 values of C(u) and S(u) of tables under

review with the corresponding entries in the Sparrow tables indicated the

following 29 apparent unit-errors in the fourth places of Sparrow: £(.15),

C(.23), S(.31), C(.33), S(.33), C(A5), C(A7), C(A9), S(.57), S(.59), S(.63),
S(.65), S(.69), C(.72), C(.73), C(.74), C(.75), C(.76), S(.77), C(.79), S(.79),
C(.84), S(.85), C(.9l), C(.93), S(.93), S(.94), C(.95), C(.98). There are also
6 2-unit errors at C(.77), C(.78), C(.80), C(.81), C(.82), C(.83). These results
suggest that tables based on Sparrow are likely to be not without error.

Wijngaarden & Scheen make no reference to any earlier table of Fresnel

integrals. A misprint for C(4.95), 0.45404 has been corrected by hand to

0.54504.
R. C. A.

1 E. T. Goodwin & J. Staton, "Table of S<T e~"*du/(u + x)," Quart. Jn. Mech. Appl.
Math., Oxford, v. 1, 1948, p. 319-326. See MTAC, v. 3, p. 483.

791[L].—D. V. Zagrebin, "K voprosu o tochnosti formuly Stoksa" [Con-

cerning the accuracy of Stokes' formula], Akad. Nauk. SSSR, Inst.

Teoret. Astr., Bull, v. 4, no. 3 (56), 1949, p. 134-141.

Table 1, p. 137, is a 3D table of six very special functions which are

combinations of trigonometric and logarithmic functions with complete

elliptic integrals. There are also tables to 3,4D of 15 definite integrals of

products of these functions by even powers of the sine and cosine.
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792[M].—Roy C. Spencer, Pauline Austin, Elizabeth Chisholm, Ellen
Fine, & Jeane Schwartz, Tables öS Fourier TransSorms öS Fourier Series,

Power Series, and Polynomials. Report S-58, July 10, 1945. Radiation
Laboratory, Massachusetts Institute of Technology, Cambridge, Mass.,

ii, 29 p. 21.4 X 27.9 cm.

The tables, occupying p. 6-27, are as follows:

T. I, p. 6-11, Fourier transform of a constant, go(4>) = <t>~1 sin 4>, go2, its

derivative Dga, (Dg0)2, <f> = [0(5°) 1080°; 8D].
T. II, p. 12-13, 7>go for » = 1(1)8, <t> = [0(30°)1080°; 8D].
T. Ill, p. 14, Fourier transforms T of cos nTX and sin wxx for n — 1(1)3.

Tables of T cos htx, iTsin mttx, n = 1(1)3, <p = [0(30°)720°; 7D].
T. IV, p. 15, Fourier transforms of cos \nTX, sin \nTX, n = 1,3. Tables of

T cos 5«7tx, iT sin \nTX, n = 1, 3, <f> = [0(30°)720°; 7D].
T. V, p. 16, T(l - x2)", n - 1(1)3, 4> = [0(30°)720°; 7D].
T. VI, p. 17, Fourier transforms, TP„(x) = injn(4>), n = 2(1)4. Tables of

jn(4>), n = 2(1)4, <p = [0(30°)720°; 7D].
T.   VII,   p.   18-25,   Fourier   transforms   of   inxn,   g0,   Dng0,   n = 1(1)8,

<j> = [0(.1)20; 8D].
T. VIII, p. 26-27, Fourier transforms of (1 - x2)", (1 + D2)"g0, n = 1(1)4,

<t> = [0(.1)10; 8D].
There are a number of disagreements with values given in the tables of

RMT 726 [MTAC, v. 4, p. 80-81].
R. C. A.

793[U].—Pierre Hugon, Nouvelles Tables pour le calcul de la droite de hauteur

à partir du point estime, Paris, Girard, Barreré and Thomais, 1947, xiv,

92 p. 15.0 X 21.2 cm. + 1 chart 25 X 42.4 cm.

The tables are two in number; the principal table was designed for use

on shipboard in calculating the altitude for the dead reckoning position by

logarithms and haversines. It consists of 90 pages of five-place values of the

natural haversine, log haversine, and log cohaversine, with argument

1°(1')179°; each page contains an interpolation table for each of the three

functions for tenths of a minute of arc. Preceding the principal table are two

pages of corrections for refraction, height of eye and semidiameter to be

applied to observed altitudes of the lower limb of the sun and of stars. The
arguments are observed altitude 6o(lo)16o(2o)20o(5°)50o(10o)90o and height

of eye 3(1)10(2)26 meters.
The foreword and explanation are presented first in French and again in

English. The formulas used are:

hav (90° - A) = A + B
log A = log cohav t -+- log hav (d — L)
log B = log hav t + log cohav (d + L)

where t, d, and A are the local hour angle, declination and altitude of the

celestial body and L is the dead reckoning latitude. Since the haversine and

the cohaversine are always positive and between zero and one, the rule of

signs is no longer needed. Also since corresponding values of the natural

haversine and log haversine are given side by side, no separate table of

logarithms of numbers is given.
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The azimuth is determined by the use of a nomogram folded inside the

back cover; it is based on the formula:

cos A cos Z = sin (d — L) cohav / + sin (d + L) hav /

where Z is the azimuth angle of the celestial body. It is intended that the

azimuth shall be determined only to the nearest degree which is generally

adequate for ordinary navigational purposes.

The author suggests that the accuracy of his method as compared to the

classical Friocourt method is as follows:

h = 60° A = 75° A = 84°
Friocourt +0^5 +0:9 +2:2
Hugon +0Í4 +0:7 +1Í7

and hence the claim is for greater speed and ease of use rather than greater

accuracy with the same number of decimals.

The printing of the tables is rather poor on the whole, but a part of the

trouble may be blamed on the quality of the paper which is mediocre. It is

to be hoped that the proofreading of the tables has been done with greater

care than that of the foreword and explanation. In the English explanation,

X — Y = 1 should obviously be X + Y = 1, and in the expression for X

in both the French and English explanations, cohaversine (D -f- <t>) should

be cohaversine P.

Charles H. Smiley
Brown University

Providence, R. I.

MATHEMATICAL TABLES—ERRATA

In this issue references have been made to errata in RMT 790 (Wijn-

gaarden & Scheen), 792 (Spencer et al.), 793 (Hugon), and Note 118.

173.—Polnoe Sobranie Sochinenii P. L. Chebysheva [Complete Collection

of Works by P. L. Chebyshev]. Volume 1, Teoriiä Chisel [Theory of
Numbers], Moscow and Leningrad, Academy of Sciences, 1946. 342

p. + portrait frontispiece. 15 X 23 cm. 20 roubles paper; 23 roubles

bound. Edition (Second, stereotyped) of 3,000 copies.

Previous editions of this volume have been reviewed in MTAC, v. 1,

p. 440-441. The present volume not only reproduces the errata of the 1944

edition but adds many new misprints both in the text and in the tables,

p. 311-339. These latter are as follows:

page

311 line -20   for   2372    read   2237
314, p = 13, N = 12    read    1 = 6

p = 19, insert N = 1

p = 23, insert 4 between 17 and 5

317, p = 61, N table, for line 1 read 1 10 39 24 57 21 27 26 16 38
p _ 67, I = 47     for    N = 38     read   N = 18

318, p = 71, N = 16     for     7=15     read     I = 22
N = 26     for     I = 22     read     7=15

319, p = 89,   insert the primitive root 35


