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33 J. Henderson, Bibliotheca Tabularum Mathematicarum. Part I. Cambridge, 1926; p.
138, 178, three inaccurate statements: (i) about Wolfram's table; (ii) that Gray noted the
error discovered by Gudermann (see note 13); (iii) that Wolfram calculated the common
logarithm table, p. 259, only once (see note 8); p. 191 more than one misleading statement
about the Thiele table.

34 F. J. Duarte, Nouvelles Tables de Log n! à 33 Décimales depuis n**l jusqu'à n = 3000.
Geneva and Paris, 1927, p. iii; errors noted in Wolfram's table in connection with 829, 1087,
1409, 1900. On July 23, 1874, T. M. Simkiss reported the 829 case to J. W. L. Glaisher but
his result was unpublished before 1928; earlier recordings 1087 (Peters & Stein), 1409
(Gray), 1900 (Wolfram and Kulik).

33 F. J. Duarte, Nouvelles Tables Logarithmiques. Paris, 1933, p. xxii; eleven Wolfram
(1794 table) errors, including 3 of these listed in no. 24—the other 8 being in connection with
3571, 3967, 6343, 7247, 7853, 8837, 8963, 9623—earlier recordings being 3571 (Peters &
Stein), 6343 (Steinhauser), 7247 and 8963 (Wolfram), 7853 (Kulik).

»NYMTP, Table of Natural Logarithms. V. 1-4, Washington, 1941, p. xi, xi, xi, xiii,
respectively. W. errors are noted in 829, 1099, 1409, 1937, 1938, 2093, 3571, 4757, 6343,
7853, 8023, 8837, 9623, but the first announcement was made only in connection with 2093
and 8023.

37 FMR, Index. 1946, p. 176-177, 432, 437, 440, 443; inaccurate contents descriptions
for Thiele and Wolfram.

38 J. H. Lambert, Opera Mathematica, ed. by A. Speiser. Zürich, v. 1, 1946, p. xiv, xx,
123, 205; v. 2, 1948, p. ix, 70-71. We find in these v. various parts of Beytrdge,' v. 1-3, and
the essential parts of the Zusätze.'

" This information was furnished to us through the courtesy of Mr. Eugene Epperson,
of Miami University, Oxford, Ohio.

30 In no bibliography except the British Museum Catalogue of Printed Books, and the
catalogue of the Royal Observatory Library, Edinburgh, could I find any reference to a
Sarganeck: J. J. Schmidt, Biblischer Mathematicus, Oder Erläuterung der Heil. Schrift aus
den Mathematischen Wissenschaften . . .Als ein Anhang ist bey gefüget Herrn Georg Sarga-
neck's Versuch einer Anwendung der Mathematic in dem Articul von der Grosse der Sünden-
Schulden. Zullichau, 1736, 27 plates, 11 ff + 672 p. + 16 ff.

31 A. G. Kästner published 10 volumes beginning with this word, hence it is not easy
to determine which one refers to the Leibniz series; perhaps it was Anfangsgründe der
Analysis des Unendlichen. Leipzig, 1760.

33 Henderson's statement23 concerning Sherwin may be recalled here: "No edition of
Sherwin was stereotyped and so some of the later editions are less accurate than the earlier.
The third edition in 1742, revised by Gardiner, is probably the most correct, although Hutton
[Introduction to his Tables, p. 40] says it contains many thousands of errors in final figures.
With regard to the fifth edition [1770] Hutton remarks, 'It is so erroneously printed that no
dependence can be placed in it, being the most inaccurate book of tables I ever knew.' "

33 The number 200 was undoubtedly suggested to Wolfram by the fact that in his 1726
edition of Sherwin's Tables, log 199 was the last entry in Sharp's table as given there.

34 What I have written here is not very illuminating. Wolfram's complete statement in
this regard, however, is as follows (p. 459): "Auf gleichem Grunde habe ich die Cubic-
wurzeln von Eins bis auf 125, die man in der Artillerie zum Caliberstabe nöthig hat, ohne
wirkliche Ausziehung berechnet."

36 The German passage on which the first of these statements is based is as follows
(v. 5, p. 463): "Ich war schon 1776 auf den Einfall gekommen, durch die Perioden der
Dezimalzahlen zu beweisen, dass die Quadratur des Zirkels durch keinen endlichen Werth,
weder in Rational- noch Irrationalzahlen ausgedrukt werden könne." The second passage
is of very similar construction.
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794[B, F].—H. E. Salzer, Table o/ Powers oS Complex Numbers. NBS,
Applied Math. Series, no. 8, Govt. Printing Office, Washington, 1950,
iv, 44 p. 18 X 26 cm. For sale by Superintendent of Documents, Wash-

ington, price 25 cents.

This short table gives the exact real and imaginary parts of (x + iy)n

iorx = l(l)10,y = 1(1)10, n = 1(1)25. The last page gives xn for x = 2(1)9

and re = 1(1)25.
The table is unnecessarily repetitive in that it gives powers of both x + iy

and y + ix. The essential information of the table can be drawn from that
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portion which treats (x + iy)n with y ^ x. If we write (x + iy)a = xn + t'y»

then the relations

Xn+i = xxn — yyn

yn+i = x yn +yxn

were used to construct the table. Perhaps a simpler method would have been

to use the fact that x and y are second order linear recurring series,

xn+i = 2xx„ — (x2 + y2)x»_i

y»+l = 2x y„ - (x2 + y2)y»_i.

The table will be of use for checking formulas involving powers of com-

plex numbers. The numbers xn, and y„ are examples of Lucas' functions in

the theory of numbers and possess a number of remarkable properties. The

table serves the useful purpose of illustrating these properties.

D. H. L.

795[B].—H. S. Uhler, "Table of exact values of high powers of 2," Scripta
Math., v. 15, 1949, p. 247-251.

The author has computed, since 1947, a number of isolated powers

of 2 of which nine are presented in this note. These are 2" for « = 778,

889,971,1000,2000,2222,3000,3889,4001. The first, third and sixth of these
numbers were also calculated by J. W. Wrench, Jr., and the agreement was

exact. Fermat's theorem, 2" — 2 is divisible by the prime p, was used to

check all nine values, although for composite re this required the derivation

of "near by" values of 2»\ A simpler and more searching test could have been
applied without regard to the character of the exponent re. In fact, if we

choose some 10-digit number, quite at random, say 68584 07347 = N, we can

find by successive squaring and reduction modulo N that 24Ml = 47697 23697
(mod N). This requires less than six minutes with any standard desk calcu-

lator. This means that if the author's value of 24001 be divided by 68584 07347
the remainder should be exactly 47697 23697. No doubt it is!

The factors 32009, 224057 of 24001 + 1 and the factor 24007 of 24001 - 1,
recent results of Alan L. Brown, are noted also. The first and last of these

factors were used as additional verifications of 24001.
D. Hr L.

796[C].—A. Opler, "Spectrophotometry in the presence of stra / radiation :

A table of log [(100 - k)/(T - £)]," Optical Soc. Amer., ' Jn., v. 40,
1950, p. 401-403.

The table mentioned in the title is a 4D table for T = 2(1)99, k = 0(§)-
5(1)14(2)20 with the obvious restriction that T > k. The quantities T and k
are "percentages" so that the table is in reality a table of log [(1 — x)/

(y — x)J for x < y < 1. The table was calculated with IBM tabulator and

summary punch. For a slightly larger table see UMT 105.

797[C, O].—C. O. Segerdahl, "A table of the interest intensity function
for interest intervals of 0.01% from 0% to 7%," Skand. Aktuarietidskrift,
1949, p. 15-20.
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The table gives in 4 pages 9D values of S = In (1 + i) for lOOi = 0(.01)7.
The table is principally to 8 significant figures and is designed for use in

IBM 600 type machines. Great pains were taken to insure the correct last

decimal.

The author refers to a previous table of Steffensen1 which gives 8 for

lOOt = [0(.05)10; 7D].
D. H. L.

1 J. F. Steffensen, "A table of the function G{x) = x/(l — e~') and its applications
to problems in compound interest," Skand. Aktuarietidskrift, 1938, p. 47-71.

798[F].—J. W. S. Cassels, "The rational solutions of the diophantine equa-

tion Y2 = X3 - D," Ada Math., v. 82, 1950, p. 243-273.

If the cubic curve V: Y2 = X3 — CX — D, (C, D given integers) is of

genus one, the elliptic arguments of its rational points form an additive

group U with a finite number of generators, so that all rational points on V

may be obtained from a finite number of fundamental points by rational

operations (Mordell, Weil). Upper limits for W, the number of infinite

generators of the group U, have been obtained by Billing1 using classical

algebraic number theory.

The present author confines himself largely to the equiharmonic case

when C = 0, but by using deeper results of class-field theory, he is able to

delimit more closely the dependence of W on D and the associated real cubic

field R(8), 83 = D.
At the close of the paper, both the fundamental rational points on

Y2 = X' — D are tabulated for | D | Si 50. The class number and fundamen-

tal unit of R(8) are tabulated for D = 2(1)50. In this connection the paper

of C Wolfe2 cited by Cassels does not tabulate the fundamental unit of

R(8), but merely a unit x + y8 + z82 of the ring i?[5] for D = 1(1)100 with

x, y, z non-negative.
Morgan Ward

Calif. Inst. of Tech.
Pasadena, Calif.

1 G. Billing, "Beiträge zur arithmetischen Theorie der ebenen kubischen Kurven vom
Geschlecht eins," K. Vetenskaps Soc, Upsala, Nova Acta, s. 4, v. 11, no. 1, 1938.

3 C. Wolfe, "On the indeterminate equation x* + Dy> + D*z> — 3Dxyz = 1," Univ.
of Calif., Publ. in Math. v. I, no. 16, 1923, p. 359-369.

799[F].—J. Lehner, "Proof of Ramanujan's partition congruence for the

modulus 11'," Amer. Math. Soc, Proc, v. 1, 1950, p. 172-181.

The congruence referred to in the title is

p(1331k 4 721) m 0(mod ll8)

where p(n) denotes as usual the number of unrestricted partitions of re. The

proof is made to depend upon certain modular functions whose Fourier

series coefficients are tabulated. The various functions may be described as

follows, in which a few liberties are taken with the author's notation :
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Let F = n (1 - *")
m-l

Q = 1 + 240   ¿   re3*""1
m,n=l

m,n-«—oo

* = */?(x)F(a;u)

G = (121Q(x") - Q(*))/120

* = x6F(x12l)/F(x)

A = ^e2

5 = $-2G

C = (A2 - 10A - B - 22)/242.

The first 23 coefficients in the expansions of

r\v,A,A2,r2,G,B

are given, reduced modulo 2 114. The next 5 or 6 coefficients are given

modulo 2-11*. The first 23 coefficients of C are given modulo ll2. The next

5 coefficients of C are given modulo 11. The first 30 coefficients of <äE> are

given modulo 11. The tables may be of use in investigations of the general

conjecture of Ramanujan

p(n) m 0(mod 11°),

where 24re — 1 m 0(mod 11°).
D. H. L.

800[F].—H. S. Uhler, "A colossal primitive pythagorean triangle," Amer.

Math. Monthly, v. 57, 1950, p. 331-332.

Exact values are given of

a - 24M0 4 22m,    b = 3-23998 - 22000 - 1,

c = 5-23998 4 22000 4 1.

As may be verified, a2 + b2 = c2. This pythagorean triangle has almost

exactly the same shape as the traditional 3, 4, 5 triangle, the tangent of half

the angle A being $(1 4 2-1999) instead of \.

D. H. L.

801[G].—Paul Levy, "Sur quelques classes de permutations," Compositio
Mathematica, v. 8, 1950, p. 1-48.

The principal results of this work were announced in two notes.1 The au-

thor examines the permutation Pn, among the first re positive integers, defin-

able by (a) Pn(x) = 2x - 1 (2x - 1 < re), and (b) Pn(x) = 2(re 4 1 - *),
(2* — 1 > re). The author observes that 1 is invariant, as is 2(w 4 l)/3, if

this latter represents an integer. The least common multiple of the order of

the cycles of P„, is the order of the cycle which contains 2. The type of a
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cycle is an expression such as aaibflaatbfi ■ • • aa»ôfl' which defines the succes-

sion of operations (a) and (b), which must be performed on x to reobtain

this initial element. The order a is the sum £«* 4 Z)0<. The class of values

of « (for which x is an integer) is designated, for given type and <r, by e,.

It is an arithmetic progression, identified by its least member, re0. Table I
indicates the decomposition of P„ into cycles for re = 2, 3, • • -, 45 and for

certain larger values, notably all those for re < 75 and such that 2re — 1 is

prime, and for those of the form 2* 4 8, (q < 11, 5 = 0 or 1). The previous

work is generalized : Consider a pack of n cards arranged initially in a certain

order, the first being the top of the pack. Place the first on the table, the

second under the pack, the next on the table, the next under the pack and

so forth alternately, until the pack is reduced to a single card which is

placed on the table following the others. The passage from the initial to the

final order is the operation Qn. Table II, (p. 48) gives the decomposition of

Qn into cycles for different values of re. The corresponding indicated order,

a = Í2(re), seems to bear a complicated relation to re, concerning which some

partial results are obtained. One notes that Í2(127) = 52 780, íí(128) = 420,
Í2(129) = 8. In particular if re = 2« 4 1, then Q(«) = q + 1.

Albert A. Bennett
Brown University

Providence, Rhode Island

1 P. Levy, "Étude d'une classe de permutations," Acad. Sei. Paris, Comptes Rendus,
v. 227, 1948, p. 422-423; "Étude d'une nouvelle classe de permutations," ibid., p. 578-579.

Editorial Note: The permutations considered abr>v° were introduced a decade ago
by Narasimha Murti, " On a problem of arrangements," Indian Math. Soc., Jn., new series,
v. 4, 1940, p. 39-43.

802[K].—F. J. Anscombe, "Tables of sequential inspection schemes to con-
trol fraction defective," R. Stat. Soc, Jn., v. 112A, 1949, p. 180-206.

For special conditions on certain parameters, discussion, examples, and

comparison with closely related tables,1 see Anscombe, above. For back-
ground in British work in sequential sampling see Barnard2 and Anscombe.'

Barnard's (and Anscombe's) scoring system is, count 41 for a good unit,

—b for a bad unit, starting score 0, sampling randomly one by one. Accept

the batch if score > + Hu reject if score < — Hi. Introduce b + 1 (= Wald4

lA); Ri = y^-r f> Wald - *,), Ri = y^-r (s Wald hi), p the batch

fraction defective, Pr the probability of accepting a batch of fraction defec-
tive p, Ap the average sample size for a batch of quality p. In Table I, upper:

p (though p(b 4 1) is tabled) is given to 5S for Pp = .99, .90, .50, .10 .01 for
R, = Ri(Ri = 1(1)4) ; R2 - 2Ri for Ri = \{\)\, 2, f ; R2 = 3Ri(Ri = |(l)f, 2)
and three odd pairs of Ru R2: (1, 4), (1, 7), (2, 3). In Table II, upper: for
each pair of 2?i, R2 above, ratios of p's to 4S for the following ratios of

PP(.99/.90, .99/.50, .99/.10, .99/.01, .90/.10) are given. Table III, upper,
givesi4pto3,4S(thoughi4,/(¿ 4 1) ¡stabled) for each pair of 2?l( R¡, for each

Pp of Table I upper; also maximum A, I though maximum ,    *. is tabled I

for each pair of Rit R2 above. Tables I, II, III, lower, give values as above

for 19 combinations of Rit R2, K(2 < K < 12) with a truncating condition
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(if no decision is reached on inspecting K(b 4 1) units, accept the batch if

the score > 0, reject if the score < 0). "Rectifying inspection" is defined by.
With defective units removed or replaced by good, let N be the batch size,

aN the size of first sample, ßN the size of each further sample, Y the initial

number of defectives in the batch, Z the number of defectives in batch after

inspection, £ the proportion of batch inspected at any stage (0 < £ < 1),

and y the number of defectives so far found (0 < y < Y) ; then inspection

ceases after first sample if 0 defectives are found, after second sample if one

defective is found, after (r 4 1)" sample if r defectives are found. Required,

the maximum probability t that the number of defectives left in the batch

be >Z (small compared to N).
Table IV: For t = .1, Z = 5(5)30, 40, 50, 60, 80, 100 the average sample

size A/N is given to 3S for ten values of Y (varying) and for 10 combinations

of a and ß (varying, each to 4S). Also the AOQL to 2S for each pair (a, ß)

and the value of Y for which the AOQL is attained.
Table V: is the same as Table IV, for « = .01.

H. A. Freeman
Mass. Inst. of Tech.

Cambridge, Mass.

1 H. A. Freeman, M. Freedman, F. Mosteller, & W. A. Wallis, Sampling Inspection,
New York, 1948.

1 G. A. Barnard, "Sequential tests in industrial statistics," R. Stat. Soc, Jn., Supple-
ment, v. 8, 1946, p. 1-26.

3F. J. Anscombe, "Linear sequential rectifying inspection for controlling fraction
defective," ibid., p. 216-222.

4 A. Wald, Sequential Analysis, New York, 1947.

803[K].—Alice A. Aspin, "Tables for use in comparisons whose accuracy
involves two variances, separately estimated," Biometrika, v. 36, 1949,

p. 290-296.

The tables are designed for use when the precision of a normally dis-

tributed estimate, y, of a population parameter, 17, depends linearly on two

population variances, <ri2 and <r22, the sampling variance of y being therefore

of the form (XrW 4 X2o-22) where Xi and X2 are known positive constants. If

Si2 and s22 are independent estimates of cr2 and <r22, based on S\ and /2 degrees

of freedom, respectively, then the tables give, for the 5% and 1% probability

levels, critical values of the ratio

f = (y - v)[*isi2 4 x2j22]-*

to 2D for/i and/2 = 6, 8, 10, 15, 20, 00. These tables can be used in testing
the difference between two means of samples from two normal populations

whose standard deviations cannot be assumed equal.

Carl F. Kossack
Purdue Univ.

Lafayette, Indiana

804[K].—P. K. Bose, "Incomplete probability integral tables connected
with Studentised D2-statistic," Calcutta Stat. Assn. Bull., v. 2, 1949,

p. 131-137.

The Z>2-statistic is employed as a measure of the distance between two
/»-varíate normal populations. It is a function of the values in samples of
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sizes re and re' from the populations, its distribution depending on p, re, n',

and the true distance A2 between the populations. The author tables to 3D

the upper 5% point of the statistic C2D2/(N 4 C2D2) for ß = 0, p = 1(1)6,
N = 1(1)50(10)90 (Table 1), and for 0 = 5, 20, 50, 100, p = 2, 4, 6,
AT = 3(2)49 (Tables 2-5). Here 0 = èC2A2, AT = re 4 re', WC2 = tin'p. The
computations employ recursion formulae previously found by the author.

It is well known that a close relation exists between D2 and F. In fact,

(^(N — 1 — p)D2/Np has the distribution of F with £ and N — 1 — p
degrees of freedom and parameter X = C2A2. Using this fact, the entries in

Table 1 may be obtained at once from readily available tables. The reviewer

has checked most of the entries in Table 1 without finding any error. Tables

2-5 seem to be new, adding, for fixed numbers of degrees of freedom, 4 new

percentage points to the 8 to 16 points previously given by Tang1 and the

4 points previously given by Emma Lehmer.2
J. L. Hodges, Jr.

Univ. of Calif.
Berkeley, Calif.

1 P. C. Tang, "The power function of the analysis of variance tests with tables and
illustrations of their use," Stat. Res. Mem., v. 2, 1938, p. 126-149.

3 Emma Lehmer, " Inverse tables of probabilities of errors of the second kind," Annals
Math. Stat., v. 15, 1944, p. 388-398.

805[K].—D. J. Finney, "The estimation of the parameters of tolerance

distributions," Biometrika, v. 36, 1949, p. 239-256.

On page 252 there is a table of weights useful in certain estimation

problems. The function tabulated is Z2/Q, where Z is the ordinate of the

normal distribution and Q is the area of the distribution to the right of Z.

The table gives IS or 5D, whichever is greater, for x = 1.1(.1)9, x being 5

greater than the argument of the normal distribution. The reviewer recalcu-

lated the table, and found no error.

H. W. Norton
Oak Ridge National Laboratory

Oak Ridge, Tennessee

806[K].—Evelyn Fix, "Tables of noncentral x2," Univ. of Calif., Publ. in
Stat., v. 1, no. 2, 1949, p. 15-19.

These tables are for the power of certain "chi-square tests" at the 1%
and 5% levels of significance. Let xu ■ ■ ■, x¡ denote independent standard

normal deviates. For any real au ■ ■ ■ ,a¡ the distribution of the non-central

chi-square variable

Xs\ = ¿ (*< 4 a,)2
i-l

depends only on / and

X = £ a?.
¿-i

If xKa) is the upper a-point of a central chi-square variable with / degrees

of freedom, that is, if

Pr{x?.o > Xr(a)\ - «,
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then the power of these tests against alternatives characterized by X is

0(X) =Pr{x'A>xX«)\.

The tables give X as a function of a, 0, and / to 3D or 4S for a = .01, .05;

0 = .1(.1).9, and / - 1(1)20(2)40(5)60(10)100. In the table heading on
p. 17, a = .01 should be changed to a = .05, and the opposite change should

be made on p. 19.
Henry Scheffé

Columbia Univ.
New York

807[K].—A. K. Gayen, "The distribution of Student's / in random samples

of any size drawn from non-normal universes," Biometrika, v. 36, 1949,

p. 353-369.

Unity minus the cumulative density function of t is expressed in the

Edgeworth series form P0(t) 4 XsPx,(/) - \iP\t(t) 4 X32Px,s(i), where X's
are cumulants of population sampled. Values of the P's are listed on p. 361

(Table 1) for t = [0(.5)4; 4D] and 1(1)6, 8, 12, 24, oo degrees of freedom.
Four graphs of corresponding probability density function terms appear on

p. 362-63.
J. E. Walsh

The Rand Corporation

Santa Monica, Calif.

808[K].—J. M. Howell, "Control chart for largest and smallest values,"

Annals Math. Stat., v. 20, 1949, p. 305-309.

Given L and 5 the largest and smallest values in a sample of size re from

a normal universe; L and S their respective means for k such samples;

R = L — S, R = L — S, and M = %(L 4 5). Constants are provided for
so-called upper 3-sigma control limits for L above M in the form: U.C.L.

= M 4 Ask = M 4 (0.5Ä 4 3<r¿) = L + 3<rL; and in the form: a 4 AtaL
in which A3 = 0.5 4 3dK/d2, where dt = <n, = as, d2 = E(R) for samples of
size re from a standard normal universe, At = d2/2 4 3d4, and a is the mean

of the normal universe sampled. Because of symmetry the constants apply

to the lower 3-sigma control limit for S in the forms, L.C.L. = M *- A%R

and a — A&s. In Table I values of d2, dit A2, As, At are given for re = 2(1)10.

(d2 and A2 = 3/(d2Sn) are available elsewhere.1 ¿4 for re = 2, 5,10 was given

first by Tippett,2 and also, for re = 2(1)10 by Godwin,3 to 7S.) Howell's
values, given to 3S, are in error in the third figure for re = 2, 4, 5, 6, 7, 8,

10. A 3 and A a are given to 3S.

In Table II are given values of Pi and P2, the power of the conventional

3-sigma control charts for sample range R, and sample mean x, respectively,

for a standard normal universe. Entries are given for re = 3, 5, universe

mean a = 0.5, 1.0, 2.0, and universe standard deviation <r — 1.2, 1.5, 2.0,

where the sizes of the respective 3-sigma regions are determined for a = 0,

a = 1. The power P% of the so-called largest and smallest value charts is

calculated from P3 = Pr(— c < S, L < c) where c is determined so that

PiP% — Pa for a = 0, a — 1. Besides PiP2, values are also given for JVj,
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the smallest integer for which (PiP^1*1 < .01 and for N2, the smallest
integer for which (Pi)"' < .01.

S.  B.  LlTTAUER

Columbia Univ.
New York

1 E.g., in Control Chart Method for Controlling Quality During Production. Zl-3, Amer.
Standards Assn., New York, 1942.

* L. H. C. Tippett, "On the extreme individuals and the range of samples taken from
a normal population," Biometrika, v. 17, 1925, p. 364-387.

3H. J. Godwin, "Some low moments of order statistics," Annals Math. Stat., v. 20,
1949, p. 279-285. [See MTAC, v. 4, p. 20.]

809[K].—NBS, Tables oS the Binomial Probability Distribution. NBS Applied
Math. Series, no. 6. x 4 388. Washington, Govt. Printing Office, 1950.
21.3 X 26.9 cm. Price $2.50.

One of the fundamental distributions in mathematical statistics is the

Bernoulli probability function. Let p be the probability of success in a
single trial, q the probability of failure, then the probability Px of exactly x

successes in re independent trials, the probability of success being constant
from trial to trial, is (x)pxq"~x, and the probability of m or fewer successes is

£ Oír*-
1-0

The volume consists of a foreword by Churchill Eisenhart, an intro-

duction (p. v-x) explaining the distribution, scope of the tables, method of

preparation, interpolation, applications, and a listing of other tables, mostly

unpublished, of the same function. This is followed by two tables, Table 1,

(p. 1-195) and Table 2, (p. 197-387). Table 1 gives G)p*4*- iorp = .01(.01).5,
q = 1 — p, n = 2(1)49, x = 0(1)» — 1, to seven decimal places, and Table 2,

E Q)Pxq"~x, P - .01(.01).50, q = 1 - p, re - 2(1)49, r = l(l)w, to seven
z**r

m

decimal places. It is a simple matter to find Px, p > .50, and £ (*)PX<T~X

from the results already tabulated. These tables were prepared from tables

of the incomplete beta function1 by Betty Elsen, Amy Norman, and
Bonnie Thomas of the personnel of the Department of the Army, and were
issued in mimeographed form for limited distribution at the close of World

War II. In present form, a photographic reproduction of the mimeographed
tables, the preparation of the tables for publication was principally carried
out by Lola S. Deming and Celia S. Martin of the Statistical Engineering
Laboratory of the NBS. Rarely will difficulties of reading the entries occur.

Two instances of such difficulty are the entries for » = 12, r = 6, p = .23,

(p. 209) and re = 30, r = 8, b = .41, (p. 272).
For Table 1 an accuracy of ± 1 in the seventh decimal place is claimed

and for Table 2 an accuracy of ±0.5 in the seventh decimal place. As a spot

check the values of « = 25, p = q — .5 were calculated. Pi should be
.0000007, P, = .0000685, P« - .0052780, P, - .0322334, all within the

it
claimed limits of accuracy. The results for  £ (a)Pxqn~x are  correct as

Jtmm

tabulated.
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The tables will have many uses. One may mention the operating charac-

teristic function in acceptance sampling and the power function in the testing

of hypotheses in statistics. The National Bureau of Standards should take

pride in this volume published at such nominal cost. It is desirable that the

other tables of the Bernoulli probability function, still unpublished, should

see the light of day and that the tables should be extended to high values of re,

where the normal curve is a poor approximation in the extreme tails of the

distribution.
L. A. Aroian

Hughes Aircraft Company

Culver City, Calif.

1 K. Pearson, Tables of the Incomplete Beta-Function, Cambridge, 1934.

810[K].—C. R. Rao, "On some problems arising out of discrimination with

multiple characters," Sankhya, v. 9, 1949, p. 343-366.

p
The statistic Dp2 = £ Y, s^didj, based on p characters, is used to esti-

i.j-1

mate the squared difference between two populations, Ap2 = X H a^Ofij.

Samples of Wi and w2 for each character are drawn from the two populations.

The variance-covariance matrix of the sample is Sy with inverse sif, and the

differences between the sample means are indicated by d,-. These are esti-

mates of the population parameters, an, aif and 0¿. An example is given

for p = 4.
The only table given in this article presents the power function for D2

to 2D when <t> = 1, 1.5 and 2, N = «i 4 re2 = 16(4)28, and p = 1(1)8,
where

<t>2 = nin2Ap2/N(p + 1).

Extensive tables are being prepared of (i) the probability integral of the

conditional distribution of R, the statistic used to compare D2 with p and

(p 4 q) characters

R = Mp/Mp+q, where MP = 1 4 N^ ^ ^ _ ^ D2,

and (ii) the percentage points of the null distribution of

1 4 M^q - Mp

It is proposed to compare the relative efficiencies of W and R.

R. L. Anderson
Univ. of North Carolina

Raleigh, North Carolina

811[K].—Marjorie Thomas, "A generalization of Poisson's binomial limit

for use in ecology," Biometrika, v. 36, 1949, p. 18-25.

The author introduces a "double Poisson distribution" as follows. Let

X\, ■ • •, XT be independent random variables depending on a Poisson dis-
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tribution with parameter X, and let r itself be a random variable depending on

a Poisson distribution with parameter m. Finally let Z = Xi 4 • • • 4 Xr 4 r

(for example, r may represent the number of clusters, X¡ 4 1 the number

of points in the jth cluster). The author studies the distribution

Pr[Z-k\ ^e^EÚ~^r.
r-i     r\      a  ,-i (a¡ — 1)1

where^ai 4 • • • 4 aT = k.

She calculates the mean and the variance and discusses various problems

of statistical estimation. These lead to certain elementary equations and a

few tables illustrate the practical procedure. Thus Table 5 gives the value

of 1 4 X for given «-"» = .05, .1(.1).9 and mer~-x = .05, .1, .2, .3 to 3D.
Other tables of roughly the same size pertain to more complicated functions.

Will Feller
Cornell Univ.

Ithaca, New York

812[K¡.—J. W. Whitfield, "Intra-class rank correlation," Biometrika, v. 36,

1949, p. 463-467.

In analogy with the definition of intra-class correlation for numerical

data, it is suggested that an appropriate measure when only ranks are

available is the mean of Kendall's t coefficient extended over all possible

arrangements within classes. In case the classes consist of pairs, the following

device affords a compact computation of the mean value. Arrange the pairs as

(flii bi), (a2, b2), • • •, (ttn/2, bn/2), so that each a< < ¿>, and ax < a2 < • ■ • < an/2.

Compute a "score," S, by accumulating the differences for each individual

of the numbers of values on his right greater than and less than his own

(making no comparisons within pairs). Then, taking Sp = 5 — «(re — 2)/4,

the mean value of Kendall's t is rp = 4Sp/(n2 — 2re). A table is given for

Pr(Sp > Sp') to 5D for re = 6(2)20 and Sp' = 0(2)90 for the case of an
uncorrelated universe. Sp is symmetrically distributed about 0 with variance

re(re — 2) (re 4 2)/18. Since 0S = 3 — 4.32«-1, a normal test of significance

is indicated for large samples.

Leo Katz
Michigan State College
East Lansing, Michigan

813[K].—John Wishart, "Cumulants of multivariate multinomial distribu-

tions," Biometrika, v. 36, 1949, p. 47-58.

The univariate Bernoulli and Pascal multinomial distributions are

first considered. Using cumulant distribution functions recurrence relations

are obtained from which cumulants to order four are recorded.

Bivariate cumulants to order four are found by recurrence formulae

paralleling the univariate case and are also recorded.

Extension to the multivariate case follows from the more simple uni-

variate and bivariate cases. Of importance is the fact that a notation is used

which makes the corresponding cumulants of the Bernoulli and the Pascal

distributions greatly resemble each other. A complete list of the auxiliary
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patterns and the cumulants to the fourth order is given for a particular
case (5 X 4 X 3 X 2) of the 4-variate multinomial Bernoulli distribution.

There are misprints on p. 52-3.

Joe J. Livers
Montana State College

Bozeman, Montana

814[K].—Herman Wold, Random Normal Deviates. Tracts for Computers,
No. XXV, Dept. of Statistics, Univ. College, Univ. of London. Cam-
bridge, Cambridge Univ. Press, xiii, 51 p. 16 X 23.2 cm., Price 5 s.

This table contains 25,000 random normal deviates with mean zero,

variance one, to 2D. The table was obtained by normalizing the Kendall-

Smith table of random numbers row by row. Four tests for normality and

randomness were applied to each of the 50 pages of the table, to each of the

five blocks of 10 pages, and to the entire table. The results showed agreement

with normality.
An introduction describes construction of the table and gives techniques

for the construction of samples from multivariate normal distributions hav-

ing prescribed parameters.

Frank J. Massey
Univ. of Oregon

Eugene, Oregon

815[L].—A. R. Curtis, "The velocity of sound in general relativity with a

discussion of the problem of the fluid sphere with constant velocity of

sound," R. Soc. London, Proc, v. 200A, 1950, p. 248-261.

The functions of Table 1 (p. 261) occur in a static and spherically sym-

metric metric of space-time. The coefficients e" and e* of this metric1 are

derived from a function V(z) where z is a radial coordinate in suitable units.

Denoting differentiation with respect to z by dots, V(z) satisfies the non-

linear differential equation

3(2 F - V - V)(l - V) 4 (2V 4 4V - 4e')(27 + V - e') = 0.

The pressure is

P = àe->(2V +V)-l

The table gives 5D values of V and of e", together with 4D values of ex and

P for x = eiz = 0(.02).38, and .38791, the last value corresponding to the

first zero of P.
A. E.

'A. S. Eddington, Mathematical Theory of Relativity. Cambridge University Press,
1923, p. 72.

816[L].—I. Feister, "Numerical evaluation of the Fermi beta-distribution

function," Physical Review, v. 78, 1950, p. 375-377.

The computation of the "Fermi distribution function"

S(Z,V) = v2'e*y\T(s 4ty)|2,

where s = (1 — 72)*, y = Z/137, and y = (7/17)(1 4 i?2)' is now in progress
at the Computation Laboratory of the NBS. The author gives here 3D
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values of / for Z = 0(10)90 and r) = .6, 1(1)5, and compares these values
with various approximations used in theoretical physics. Percentage errors

of the approximations are also given. The so-called non-relativistic approxi-

mation is rather poor, the Bethe-Bacher approximation much better, while

the Nordheim-Yost approximation rates between the two. The author

emphasizes that "The table of Fermi functions, when completed, will in

most cases make unnecessary the use of an approximation for the numerical

evaluation of /(Z, jj)."
A. E.

817[L].—R. B. Dingle, "The electrical conductivity of thin wires," R. Soc.

London, Proc, v. 201 A, 1950, p. 545-560.

The principal quantities occurring in the author's tabulation are

i(r)       3    /**"
4Ï J    de COs2 6 Sin 6

xr4--i-,si"'+!ivw'"}]
and

—     « I •      iu>r, k  —   x
uo      aVo    Jo X

Table 1, p. 553, gives approximate values for very large k of j(r)/j0 to var-

ious number of decimal places for k(l — r/a) = 0, .2, .5, 1, 2, 5, 10, ».
Table 2, p. 554, gives 3D values of j(r)/(kj0) for very small (positive) k

and r/a = 0(.25)1.
Table 3, p. 554, gives 3D values of j(r)/jo and of a/a0 for k = .5, 1, 2

and r/a = 0(.25)1.
Table 4 is more intimately connected with the physical problem in hand.

A. E.

818[L].—G. E. Forsythe, "Solution of the telegrapher's equation with

boundary conditions on only one characteristic," NBS Jn. oS Research,

v. 44, 1950, p. 89-102.

The boundary value problem alluded to in the title presents itself in

meteorological theory. Its solution is obtained by means of the Green's

function

G(x, z) = £ re-1 sin (nx 4 re-1z).

This function is tabulated in the paper to five decimal places for the follow-

ing 14 values of z: 0, 3.15012, 4.14543, 6.30024, 8.29086, 8.45505, 9.00000,
12.60048, 16.91010, 18.00000, 18.90072, 25.20096, 27.00000, and 36.00000;
in each case for x — — ir(ir/36)ir. Since there is a discontinuity at x = 0,

the table gives G(-0, z), G(0, z), and G(40, z).
The first 18 terms of the series were summed as they stand. The tail was

expanded in powers of z, and the first 11 coefficients of this expansion were

computed for all x (Bernoulli polynomials enter in this computation) : it is
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shown that the remainder then is less than 5 units of the 6th decimal place,

and another 5 units were set apart for rounding off errors.

A. E.

819[L].—F.  C.  Frank, "Radially symmetric phase growth controlled by
diffusion," R. Soc. London, Proc, v. 201A, 1950, p. 586-599.

Table I on p. 589 gives values to varying accuracy of

Fn(x) =   f   ti-"exp(- \t2)dt

and

fn(x) = |**F»(*) exp (Ix2)

for ii = 3, 2 and x = 0(.1).4(.2)4(1)6. There are also graphs of some related

functions. The integrals involved can be expressed in terms of the error

function and the exponential integral function.

820[L].—W. Hodapp, "Über die Hermiteschen Funktionen zweiter Art von

reellem und rein imaginärem Argument," Arch. d. Math., v. 2, 1949/50,

p. 186-191.

Two solutions of the differential equation y" — xy' 4 ny = 0, n = 0,

1,2, • •• are

Hn(x) = (-\yew-^-e-w,        hn(x) - (-l)-e^^ f" e~^-^du.

II n is the H ERMITE polynomial, and the author calls hn the Hermite function

ot the second kind. (It can be expressed in terms of the parabolic cylinder

function.) He gives for hn convergent expansions in ascending powers of x,

explicit forms for n = 0(1)3, asymptotic expansions for large x, and indi-

cates briefly some approximations for the real zeros of hn(x). A numerical

table, to 2D, gives upper and lower bounds, approximations, and the exact

values of the positive zeros of hn(x) for n = 1(1)6.

A. E.

821[L].—M. Kotani & H. Takahashi, "Numerical tables of functions useful

for the calculation of resonant frequencies of a cavity magnetron," Phys.

Soc. Japan, Jn., v. 4, 1949, p. 73-77.

The authors tabulate three functions

JW      2xJ9'(x)^ ti\xJn'(x)      m

f«'v''x)-^hUJl+m,(x)-m + l

2 m-o \xj'v_l+m,(x)      m 4 lj

tfn \ vJo^      L  v-   Í vJm,(x)       J_]
m"''X) - 2xJ0'(x) + tAxJUx) ~ m\

c(fc»;*)-| £ (-ir^H4
¿ m--—x J \i+mv\ \x)
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The tables are to 4S, mostiy, and are as follows:

S(x) for x = .2(.01)2

Sie, v\ x) f°r x = .2(.1)2.3 for the following pairs

4 0(1)2 8 0(1)4

5 0(1)2 10 0(1)5

6 0(1)3 12 0(1)6

g(£, v, x) for x = .2(. 1)2.3 and for

v = 4, ? = 0, 1

v = 5, 6        g - 0, 1,2.

822[L].—A.  R.  Low, Normal Elliptic Functions. Univ. of Toronto Press,

Toronto, 1950, 32 p., 15.5 X 23.5 cm, Price $1.25.

Elliptic functions are inversions of integrals whose integrands are rational

in the variable of integration and in the square root of a quartic polynomial.

Various theories of elliptic functions differ in the standardization which they

adopt for the quartic radicand. The most symmetric theory is Weierstrass'

where one of the zeros of the quartic is at infinity, and the sum of the other

three is zero. The most highly standardized is Jacobi's theory in which two

of the zeros are assumed at 1 and — 1, while the other two (at ±&-1) are

symmetric with respect to the origin. The author's "normalized form" as-

sumes three of the zeros at the standard positions 0,1, °o : the fourth zero

is called the parameter and denoted by m: it is the k2 of the Jacobian theory.

m' = 1 — m is the complementary parameter, and the case of principal

practical importance is 0 < m, m' < 1.

The standard cubic is P = p(p — m)(p — 1), and it is proved that every

elliptic integral can be reduced to a form in which the integrand is a rational

function of p and P*. The elliptic function pi = pi(u, m) is defined by the

relation

2jPt
P~Up

and is clearly ns2(w, k) of the Jacobian theory. Three other elliptic functions

are defined by the relations

pi(u, m) ■ pz(u, m) = m,p2(u,m') + p3(u, m) = 1,

— pi(u, m') 4 pi(u, m) = 1, m' = 1 — m.

Values of pi to pi, were computed by the aid of these relations from Milne-

Thomson's tables of elliptic functions.1 There are six tables, each to 5D,

for m = 0(.1)1 and u/K = .1(.1)1.

Table I: K, K/K', u. Table II: sn(u,k). Table III: px(u,m). Table IV:
p2(u, m). Table V: pz(u, m). Table VI : pn(u, m).

A. E.

1 L. M. Milne-Thomson, Die elliptischen Funktionen von Jacobi. Berlin, 1931.
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823[L].—R. S. Scorer, "Numerical evaluation of integrals of the form

1 =   I     f(x)ei*Mdx and the tabulation of the function Gi(z) = -  I     sin
Jjti IT Jo

(uz 4 lw3)dw," Çwar/. Jn. Mech. Appl. Math., v. 3,.1950, p. 107-112.

Integrals of the form

/ =   I     f(x)el*Mdx

often occur in calculating the wave form due to a source in a dispersive

medium, and are frequently evaluated by the method of stationary phase.

If the approximation of <j>(x) by its Taylor series, in the vicinity of a point

of stationary phase, up to and including cubic terms is adequate, the answer

can be expressed in terms of Airy integrals (for which tables already exist1)

and of the two functions

1  j"" If00
Gi(z) — -  I     sin (uz + \u3)du,        Ili(z) = - I     exp (uz — \u3)du.

t Jo ir Jo

Gi(z) and Hi( — z) were computed, on the EDSAC in Cambridge, England,

by numerical integration of the differential equations which they satisfy.

The computation was performed to 8D, with the interval .02 in z. The tables

given in the paper are to 7D for z = 0(.1)10: modified second differences are

also given. Outside of the tabulated range the asymptotic formulae recorded

in the paper are valid to the accuracy contemplated.

In an accompanying note by Miller & MuRsi2 it is shown how the

functions tabulated here together with the Airy integrals can be used to

solve the differential equation y" — xy = f(x) numerically when / is a

polynomial. A. E.

1 B. A. Math. Tables Committee, Pt.-V.B. The Airy Integral. By J. C. P. Miller,
Cambridge Univ. Press, 1946, 56 p.

2 J. C. P. Miller and Zaki Mursi, "Notes on the solution of the equation y" — xy
= fix)," Quart. Jn. Mech. Appl. Math., v. 3, 1950, p. 113-118.

824[L].—E. Sauvenier-Goffin, "Les fonctions T(x) correspondant, pour

les Naines blanches, aux exposants adiabatiques T, des configurations

gazeuses," Soc. Roy. Sei., Liège, Bull., 1950, p. 47-54.

4D tables are given of

8x5 4x2 4 5 8x5(x2 4 l)1
and

3(x2 4 l)*/(*)        3(x2 + 1) 8x5(x2 4 1)* - (x2 4 2)f(x)

where

f(x) = x(2x2 — 3)(x2 4 1)* 4 3 arc sinh x,

for x = 0(.1)3(.5)10. Exact values are given for x = 0, oo.

82S[L].—Dorothy A. Strayhorne, A Study of an Elliptic Function, Thesis,
Chicago, 1946. Air Documents Division T-2, AMC, Wright Field,
Microfilm No. R c-734 F 15000.

The mathematical  part of this paper repeats results which are well

known. The numerical part consists of two tables. The first one gives the
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numerical values to 4D of the Weierstrass elliptic function p(u) for the

values of the invariants g% = 37, g3 = — 42 corresponding to the periods

2o) = 2.2772 and 2a>' = 1.3674t. The argument is imaginary between .04i

and 1.36¿ in steps of .04i. The second table gives the corresponding Jacobi

elliptic functions snw, en«, dnu, likewise to 4D, for u — 0(.05)1. The value

of the modulus is k — .9585 corresponding to the choice of the invariants

mentioned above.

F. Oberhettinger
Calif. Inst. of Tech.

Pasadena, Calif.

826[L].—Marcel Tournier & Marc BassiÈre, "Une solution des équa-

tions de la couche limite obtenue par la considération de phénomènes

transitoires," La Recherche Aéronautique, 1948, no. 4, p. 67-72.

On p. 72 are two tables. Table 1 is of E3(z) = T(%)fo* erl%dt, z = [0(.02)-
1.68; 4D], A. The values were calculated by the development into powers of

s up to z = 1. For values of z > 1, interpolations were made in the table ol

Pearson.1 A short table of E3(.611x) (x = 0(.1)2.8) is also given to 4D and

compared with a "curve of Blasius."

R. C. A.
1 K. Pearson, Tables of the Incomplete T-Function. London, 1922.

827[L, P].—Georg Vedeler, "Basic function for beams with arbitrary

constraint," K. Norske Videnskabers Selskab, Forhandlinger, v. 22, 1949,

p. 171-177.

The author compares a vibrating beam of length / pinned and having

fixations Sa, Sb, respectively, at the two ends with a beam whose ends are

clamped and subjected to static shears and moments of such a nature that

the two beams have the same frequency spectra. The wth deflection mode of

the first beam is

F„ = y4„(cosh a„x — cos anx) — Bn (sinh anx + sin anx).

For the case/a = /b = /, for n = 1(1)6 a table of anl, An, and BH is given

for/ = 0(.05).7(.02)1.
Edmund Pinney

Univ. of Calif.

Berkeley, Calif.

828[L].—F. G. Tricomi, "Sul comportamento asintotico dei polinomi di

Laguerre," Ann. di Mat., ss. 4, v. 28, 1949, p. 263-289.

A set of four formulae which describe completely the asymptotic be-

havior of

¿^(x)=è(M+a)^fm
/Zo \n - mj    ml

as«-» oc. The four formulae are valid, respectively, in the following four

cases: (i) x is in the neighborhood of the origin, (ii) 0 < x < v, (iii) x is in

the neighborhood of v, (iv) x > v, where v = 4re 4 2a 4 2. These formulae

are numerically tested on /io(x) = e~*xLiè(x) for which 4D values are com-
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pu ted both from the exact equation and from the approximation. These

values are given together with the absolute error in case (i) for x = 0(.1)1,

in case (ii) for x = .5(.5)3(1)6(2)36, in case (iii) for x = 34(2)50, and in case

(iv) for x = 46(2)52. There is also a table comparing errors of the various

formulae in the regions where they overlap.

Asymptotic formulae are also given for the zeros, and they are tested

numerically on the zeros of /io(x).

P. 289 is an auxiliary table for the roots of the transcendental equation

x 4 sin x = a, when a and x are expressed in degrees and decimal parts of

degrees. If 0 < a < 90°, Tricomi puts x = \a +f(a), and if 90° < a < 180°
he puts at = 180° - a and xx = 180° - x = lO1«14665^ 4/i(ai). 3D tables,

with first differences, are given for/(z) and/i(z) for z = 0°(1°)90°.

A. E.

829[L].—Chang Wei, "Der Spannungszustand in Kreisringschale und

ähnlichen Schalen mit Scheitelkreisringen unter drehsymmetrischer

Belastung," Nat. Tsing Hua Univ. Sei. Rep., s. A, v. 5, 1949, p. 289-

349.

Table I,p. 345, gives the real and imaginary parts of J\(rVi) and ifj(1)(rY») ;

Table II, p. 346, the real and imaginary parts of the derivatives with respect

to r of the functions tabulated in table I; Table III, p. 347, the real and

imaginary parts of /}(—rV— i) and i7j(1,( — rV — i) ; and Table IV, p. 348,
the real and imaginary parts of the derivatives of the functions tabulated in

table III. All four tables are to varying degrees of accuracy, for r = 0(1)30.

There are several other tables in the paper, but they are of less universal

interest.
A. E.

830[M].—W. M. Stone, "A list of generalized Laplace transforms," Iowa

State College, Jn. of Science, v. 22, 1948, p. 215-225.

This paper presents a table of "generalized Laplace transforms," which

is in fact a list of 75 functions f(s), each corresponding to a numerical func-

00

tion F(k), by means of the relation sf(s) = £ F(k)s~h so that/ is essentially
*=o

the generating function of F. The functions F are chosen from rational

functions and combinations of sines and cosines. The functions / are all

elementary.
D. H. L.

831[U].—J. C. Lieuwen, Kortbestek Tafel, being v. II of Zeevaartkundige
Tafels uitgegeven op last van het Ministerie van Marine, The Hague

Staatsdrukkerij-en Uitgeverijbedrijf, 1949, ii, 160 p., cloth, 20.7 X 29.5
cm. No price stated.

This collection of navigation tables adds one more to the long list of

short methods for the reduction of astronomical sights; it contains many

points of interest. Before the main tables there are an arc-time conversion

table and four short tables of more or less standard form. Table I is a straight-



218 RECENT   MATHEMATICAL  TABLES

forward traverse table giving d'lat and departure to O'.l for each degree of

bearing and for distances of 10(10)490 and 1(1)9 minutes of arc. Table II

is for converting departure into d'long and vice versa and gives the first nine

integral multiples of secant (middle latitude) and cosine (middle latitude)

for l°(r)13o(30')24o(20')34o(10')53o(5')70o(4')72°28'; the full multiplication
has to be done by adding the products of successive integers. The curious

choice of intervals is evidently dictated by the desire to limit the relative

error, without interpolation, to a minimum of 1 in 500. The third table,

comprising Tables III a, b, and c, is a collection of altitude correction tables;

from these it transpires that

(a) the interpolation table cu for latitude, has been "faked" by the

incorporation of the second-difference correction on the assumption

that the altitude is 70°;
(b) the altitude correction tables have been correspondingly adjusted for

a mean value of the latitude difference.

This very considerable complication arises from the curvature of position

lines derived from observations at high altitudes; the error due to curvature

is precisely that arising from neglect of second differences in interpolations

and only those who have striven to find a way of incorporating the correc-

tions in, say, triple-entry tables can fully appreciate the ingenuity of this

device. In this case interpolation to the exact D. R. longitude offers no

similar difficulties since the interval (lm) is so small that second differences

do not arise; neither do the cross-terms, which are so very difficult to

deal with.
Table IV is a collection of small tables for ex-meridian sights; it is

ingeniously arranged with one of the arguments in the body of the table in

a manner typical of many of the tables to be described in detail later.

The three main tables, A, B, and C, for the calculation of altitude and

azimuth from an assumed position are based on a modification of Souil-

lagouët's and Dreisonstok's methods, though the table for obtaining the

second azimuth angle is new. The astronomical spherical triangle is divided

into two right-angled triangles by a perpendicular, length a, from the zenith

to the opposite side, meeting this in a point whose declination is K. The first,

or time-triangle, is solved directly by double-entry tables. Table A thus

gives K to O'.l, Ti to 0°.l, (the angle at the zenith, contributing towards the

azimuth) and A = 105 log sec a to the nearest unit, or in some cases the

nearest 10 units, for the page heading degrees of latitude (b) from 0° to 71°

and with horizontal and vertical arguments hours and minutes of hour

angle (P) ; this table is identical in scope with many others, in particular

with Table I of Hughes' Tables for Sea and Air Navigation.

The second triangle can be solved in many ways but only by direct

double-entry table if the greatest care is taken to avoid difficulties of inter-

polation and loss of accuracy. Practically all modern tables (with the excep-

tion of those of de Aquino) solve this triangle by logarithms. Here, however,

direct values are tabulated for the second azimuth angle 7"2, with the usual

(Hughes-Dreisonstok) logarithmic solution for the altitude. Table B

consists of two parts. On the left-hand pages is given a straight table of

B = 105 log sec (K ± d) with argument K ± d, where d is the declination,

for the range 0°(0'.5)20o(l')89°59'. The interval appears to be determined
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by the requirements of the facing page; at intervals of 1' the half-difference

to give the value at the following 0'.5 is also tabulated. The corresponding

right-hand pages contain an ingeniously arranged double-entry table for the

angle T2; the horizontal argument is integral degrees of K ± d, covering the

same range as on the facing page, and the second argument is A = log sec a

for which values are given in the body of the table, corresponding to integral

degrees of 7Y There is also tabulated J"2, the variation of T2 with K ± d.

The table is based on the formula:

tan T2 = tan (K ± d) csc a

and so is difficult to interpolate when K ± d is small. Generally, however,

the table is satisfactory for its purpose, though the unfamiliar form of entry

may confuse users; it is reasonable to ask whether it would not have been

better to have accepted the rapidly changing intervals and given Ti directly

with argument A ; the present table looks neater but interpolation to tenths

of a degree is in places difficult.

Table C is a straight table of 105 log csc (h — 1°) with argument h for

the range 0°(0'.5)88°. It is identical in principle with Table II in Hughes'
tables, though it does not include the additional decimal for high altitudes.

It is entered inversely with argument A + B to give the calculated altitude

corresponding to the assumed position.

The second innovation is now introduced in the shape of two tables Ci

and C2 for the interpolation of the altitude to the D. R. position. The first

of these is for interpolation for the minutes of latitude and gives, to O'.l, the

corrections for each minute and for azimuths at intervals of Io, except within

30° of the meridian when larger intervals are used. This would be apparently

a straightforward table of b cos (Az.), but it is modified in two ways: firstly

(as mentioned earlier) by the second-difference correction appropriate to an

altitude of 70°, and secondly by the addition of 30'. Thus, all the entries are

positive. In using this table the integral degree nearest to the D. R. latitude

must be used ; for the exact 30' the next larger value is the appropriate one.

The second table c2 gives the corresponding interpolation for longitude, but

here no second-difference correction is required and it is necessarily triple-

entry. The table is in two parts, the one on the left-hand page being essen-

tially a table of the rate of change of altitude with time, — cos (lat.) sin (Az.).

The horizontal argument is latitude and the body of the table gives the

azimuth corresponding to certain approximately equally-spaced values of

the rate of change, which are however not specifically given. This page

therefore determines a particular line, for which the facing page gives the

appropriate multiples (with the addition of 30') at intervals of 3s. This is

again an ingenious and carefully considered arrangement. It will be noted

that the correction is always positive and in fact, is always greater than 15'.

Moreover, the indication is that interpolation is always to be done in a for-

ward direction, as opposed to the backward and forward method for the

latitude; even so the theoretical error is negligible owing to the smallness of

the interval to be covered.

There is also a two-page table and a chart for drawing position lines.

The interpolation tables described are nominally to an accuracy of O'.l,

but this accuracy can only be obtained with some care in use. Direct entry
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in the interpolation tables, without mental interpolation or adjustment, will

suffice to a reduced standard of 0'.5 in altitude and 0°.5 in azimuth, which

the author clearly regards as adequate for most navigational purposes.

Sufficient has been said in the above description of the contents of these

tables to show that they have been devised with extraordinär)' care and

skill. The arrangement, layout, printing, paper, binding are all excellent;

the figures have heads and tails, are well spaced and are easy to read. The

only real criticism is that the ingenuity by which the interpolations to the

D. R. position are designed makes it essential to use the tables precisely as

instructed. These tables must stand very high among those using the so-

called "short-methods."
These tables are the product of prolonged research not only by the author

but by a representative committee of Dutch experts. All concerned deserve

great credit for an achievement combining ingenuity, practical insight and

fine execution. An English edition is contemplated.

D. H. Sadler

Royal Greenwich Observatory

Herstmonceux Castle, Sussex

832[V].—Ballistic Research Laboratories, Tables of Ballistic Functions

f(0), c(f), s(f), X(ß, b), Y(ß, b), T(ß, b). Aberdeen Proving Ground, 1949.
Approx, 270 leaves, 21.6 X 27.9 cm, tabulated from punched cards.

These are tables of ballistic functions describing the motion of an object

subject to the acceleration of gravity and to a resistance proportional to the

square of the velocity. The equations describing such motion are solvable by-

quadrature, as observed by Euler. The approximation (square law drag and

constant density) is usable primarily for mortars and for certain rockets, and

is now, save for variations of the Siacci method, the only widely used method

which avoids numerical integration of the normal equations. These tables

give complete trajectories, rather than terminal data only, as given in the

tables of Otto and Lardillon.1 The data have been put in a compact and

convenient form and should prove useful.

Table 1 is a repetition of one given by C. Cranz,1 and corrects a large

list of errors (29) occurring in the latter.

The tables were computed on IBM equipment under the direction of

I. Schoenberg.
Specifically, the tables comprise:

1. £(ö) = y0« sec3 tdt to (approximately) 7S for 0 = 0°(1')87°.

2. s(f) = sin 0(f) for [f = 0(.01)50;9D] where 0(f) is the function in-

verse to f.
3. c(f) = cos 0(f) to 8D for the same range of f as in 2.

4. X(ß,b) = fi»c(b(i - /))ry/.
S..Y(ß,b) = yi" j(6(1 -t))t-idt.
6. T(ß, b) = fi» c(b(l - t))Mdt.

The last three functions have been tabulated to 8D, for b = . 1 (. 1)2 and

ß = 0(.02)3, with upper limits of these ranges restricted by ß(b — 1) < 2.

Save in Table 1, differences through the third order are given. The physical
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meaning of the parameters is:

b = g/(2kV2),

where g is the acceleration due to gravity, k is the usual "resistance" co-

efficient, Vs is the summital velocity, and ß = VJ(horizontal component of

velocity)2. Thus, along a single trajectory, b = constant, and the change in

horizontal distance, vertical distance, and time is given parametrically with

ß, as the change in X, Y, and T divided by 2k, 2k, and 2kV„ respectively.

J. L. Kelle y
Univ. of Calif.

Berkeley, Calif.

1 C. Cranz, Lehrbuch der Ballistik, v. 1, Berlin, 1925.

833[V].—A. van Wijngaarden, "Écoulement potentiel autour d'un corps de

révolution," Centre National de la Recherche Scientifique, Colloques

Internationaux, XIV: Méthodes de Calcul, Paris, 1949, p. 72-87.

The paper tabulates functions used in calculating approximate potential

flow about a body of revolution with or without angle of attack by a method

corresponding to an improvement of von KÁrmÁn's source doublet distri-

bution method. The body shape is approximated by a finite number of

distributed sources, the tth source distributed along the axis of revolution

between x = (i — \)a and x = (i + l)a. The value of the stream function

induced by the ith source at any radius r from the axis and at x = te is

\pi = — QiCik/4ir where Q, is the source strength and

c« - 2 - -r- (82 tan2 \6 + ÔJ In tan2 ¿0).

The 8X- indicates the second order central difference in the x direction and

tan 0 = rk\a(k — i)}~1. Table 1 (p. 78, 79) gives 4D values of cik for

rk/a = 0(.02)2 and for k — i = 0(1)9. The corresponding velocity com-

ponents are ur = (2-¡ra2)~1QiUrik normal to the axis and ux = (2ira2)~lQiUx¡k

parallel to the axis where urik = \8X2 tan2 §0 and w*« = \8X- In tan210. The

uXik and Urik are given in Tables 2 and 3, respectively (p. 80-83), for the same

range of parameters. The velocities induced by similarly distributed doublets

are needed when the body moves other than parallel to its own axis of

revolution. If <f> is the angle about the axis of revolution, the axial velocity

induced by a doublet of moment M, is (47ra3)-1 M'íuxoc cos 0 while the radial

velocity is (4xaz)~lM¡u,ik cos </>, where

u'xik = ar~x8x2 cos 0;  u,ik = ar~l8x- (cot 0 cos 0).

These two functions are given in Tables 4 and 5, respectively (p. 84-87), for

the range of parameters given above.

Frank E. Marble
Calif. Inst. of Tech.

Pasadena, Calif.


