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Bi = c + Sx* = .00006 98850 68541 53731,
B2 = / - cx6 = .99999 99993 98930 27060.
AiB2 = .62493 99996 24367 48331, A2Bi = .00006 88298 04006 56010,
A2B2 = .98489 99994 08006 42351,AiBi = .00004 36739 74734 34833,
AiB2 + A2Bi = .62500 88294 28374 04341,
A2B2 - AiBi =  .98485 63254 33272 07518,

AiB2 + A2Bi
t = tan x = . D   .V = .63461 92975 44148 10040,

A2B2 — AiBi

which is correct to about 3 units in the 19th decimal place.

B. To obtain arctan t, for t = .59139 83513 99471 09817:

Since ai — .5, we have

.09139 83513 99471 09817
h- (t- ai)/(l + ait)  - i.2956 99175 69973 55491 '

or ti = .07053 97928 11x76 17252, a2 = .07;

.00053 97928 11176 17252
h - (h - a2)/(í + a2h)  - 100i9  37785 4967g 23321 ,

or t2 = .00053 71405 26474 81117, a3 = 0;

h  = t2, ai =  .0005 ;

.00003 71405 26474 81117
ti - (h - ai)/(l + aj3) -  L0000 00268 57026 324  '

or h = .00003 71405 16499 97288, a6 = .00003;

.00000 71405 16499 97288

1.0000 00001 11421 55

or ts = .00000 71405 16492 01681, a6 = .000007;

.00000 01405 16492 01681

h = (ti - a^)l(l + a4i) =

or    h = .00000 71405 1

h = (h - ae)/(l + ath) =
1.0000 00000 04998 36

or    h = .00000 01405 16492 00979.

arctan ¿ = arctan .5 + arctan .07 + arctan .0005 + arctan .00003

+ arctan .000007 + .00000 01405 16492 00979,

or    arctan/ = .53407 07511  10264 85054,

which happens to be correct to 20 decimals.

H. E. Salzer
NBSCL
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834[E].—L. Prandtl & F. Vandrey, "Fliessgesetze normal-zäher Stoffe im

Rohr. Ein Beitrag zur Rheologie," Zeit, angew. Math. Mech., v. 30, 1950,

p. 169-174.

This article gives two tables of functions having to do with viscous flow.

The function <b(a) is defined by

<b(a) = 8 E w(2« + l)a2"-2/(2« + 2)!
n-l
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or by

4>(a) = 2{(a2 - 2a + 2)e° - 4 + (a2 + 2a + 2)era}a-\

the latter definition being given incorrectly by the authors.

The first table gives 4S values of <b for a = 0(.1)5(.2)10.
The second table gives, to 3D, values of 4>(a£)/<b(a) for £ = 0(.2).6(.1)1

and a = 1(1)10(2)14.
D. H. L.

83S[F].—N. G. W. H. Beeger, "On composite numbers « for which a"-1 = 1

(mod n) for every a prime to w," Scripta Math., v. 16, 1950, p. 133-135.

According to a theorem of Fermât if a is any integer then an — a is

divisible by «, when « is a prime. The converse is false, however, that is,

there exist composite numbers » dividing a" — a for all a. The smallest such

anomalous composite number is 561 = 3-11-17 and any number of this sort

must be the product of at least three primes. The author studies the case

of » = pqr. If p is given, there exist only a finite number of q's and r's for

which pqr is an anomalous composite number. For each prime p ^ 43, there

is given a table of all possible q's and r's. There are in all 52 such numbers

given.

D. H. L.

836[F].—A. Gloden, "Résolution de la congruence X* + 1 m 0 (mod p3)
avec une table," Euclides, v. 10, 1950, p. 74.

The table gives two solutions <p3/2 of the congruence mentioned in the

title for each prime p < 200. Since the congruence is solvable if and only if

p = 8« + 1, the values of p considered are p = 17, 41, 73, 89, 97, 113, 137,
and 193.

D. H. L.

837[F].—A. van Wijngaarden, "A table of partitions into two squares with

an application to rational triangles," Nederl. Akad. Wetensch., Proc,

v. 53, 1950, p. 869-881 = Indagationes Math., v. 12, 1950, p. 313-325.

The table, p. 872-881, gives all integers (x, y) such that 0 < x < y and

(1) n = x2 + y2

for each integer « < 10000 for which (1) has solutions.

The table extends the previously published table of Bickmore &

Western1 for « = 1(1)1000.
It is used to study the question of triangles with integral sides and

rational medians, but is applicable to a number of other questions also.

The table was produced on a National machine, 12 columns at a time,

by constant second difference procedure. Then the table was carefully re-

arranged. An alternative procedure would have been to use punched card

equipment, in particular the summary punch and sorter.

D. H. L.

1 C. E. Bickmore & O. Western, "A table of complex prime factors in the field of 8th
roots of unity," Messenger Math., v. 41, 1911, p. 52-64.
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838[G].—H.  W.  Becker,  "Discussion of  Problem 4277," Amer.  Math.
Monthly, v. 56, 1949, p. 697-699.

The author gives a table for « = 1(1)25 of Nn and Nn' respectively the

number of non-commutative and commutative, non-associative products of

n factors, and suggests the asymptotic formula

N'n+i = .%12kn/(n + 1)V»
with k = 2.48.

J.   RlORDAN

Bell Telephone Laboratories

New York, 14

839[G].—K. Yamamoto, "An asymptotic series for the number of three-line

latin rectangles," Math. Soc. Japan, Jn., v. 1, no. 4, 1949, p. 226-241.

Kerawala's tables1 for the number of reduced three-line latin rec-

tangles, [that is, rectangles such that each line contains the numbers 1 to n,

the first in natural order, and each column unlike numbers] for n = 3(1)15

is extended to n = 15(1)20. The last entry has 36 digits.
The reviewer, in his turn, by a new recurrence relation has carried this

on to « = 25 ; the results are not yet published.

J. Riordan

1 S. M. Kerawala, "The enumeration of the latin rectangle of depth three by means of
a difference equation," Calcutta Math. Soc. Bull., v. 33, 1931, p. 119-127.

840[G].—R. Zurmühl, Matrizen. Eine Darstellung Sür Ingenieure. Berlin,

1950, Springer, xv, 427 p. 15.2 X 20.3 cm. Price 25.50 marks.

This book is a welcome addition to the literature in the field. Apart

from a large number of numerical examples which illustrate the theories and

their application, this book contains an extensive chapter (chapter VI) of

80 pages on numerical methods for the solution of linear systems of equations

and the determination of the characteristic roots of finite matrices. It is with

this chapter only that the present review is concerned. The author does not

claim to present a complete enumeration of the known methods; those which

are mentioned were chosen because of their suitability for engineering

problems.

The methods are discussed in great detail and a complete work sheet is

given many times.

For the solution of linear systems the author discusses on one hand the

Gauss elimination process and its more recent variations by Cholesky

and Banachiewicz and, on the other hand, some of the well known iteration

processes. It is generally agreed to-day that the elimination process is the

most convenient method, unless the system in question is of a special form

which makes it more suitable for other methods, in particular if its matrix

has a dominant principal diagonal. The matrix formulation employed in the

Cholesky and Banachiewicz treatment makes it very suitable for calculating

machines since some of the results can be obtained without recording all

the intermediate steps. The related problem of inverting a matrix is also

discussed.



14 RECENT  MATHEMATICAL  TABLES

The iteration processes have great drawbacks through convergence

uncertainties. These methods have been studied extensively, e.g. in a now

classical paper by von Mises and Pollaczek-Geiringer. There it is shown

that for symmetric positive definite matrices the Gauss-Seidel iteration

process will converge always so that "normal" equations can, theoretically

at least, be treated by it. This process, with error estimates by Collatz, is

discussed as well as Southwell's relaxation method (which the author

traces back to Gauss). The latter gave a method for checking as well as a

device for improving convergence in difficult cases. This device does not

seem to be known to modern relaxers. It consists in replacing the « unknowns

Xi by a system of « -f- 1 unknowns, x0 and x¿ = x< — xo, i = 1, 2, • • -, ».
n

The coefficients of x0 are given by ai0 = — Y, aih(i = 1,2, ■••, n) while the
¡fc-i

other coefficients are unaltered. An (« + l)-st equation is added : it is formed

by the negative sum of the first « equations.

In the report of Bodewig1 it is stated that the combination of Gauss

elimination and application of iteration afterwards is the most efficient

method known so far. This was verified by the author in the case of 8

systems of 42 equations with small determinant.

Next, characteristic roots: the usual iteration process for the determina-

tion of the dominant root when it is real is discussed, particularly for the

case of real symmetric matrices. Next, matrices with a complex dominant

root are treated, both in the case of linear and non-linear elementary divisors.

The latter case is based on the results of H. Wielandt and for both cases

the methods of Duncan and Collar are used. Collatz's "inclusion" theorem

for the characteristic roots of real symmetric and positive (not necessarily

symmetric) matrices is explained. It is a certain generalization of the itera-

tion procedure for finding the dominant roots. Several methods are given

for the determination of all the characteristic roots. Some of them were

developed in Germany in recent years only and have not been published in

easily accessible places before. There is the method (by Koch) to apply the

iteration process used to determine the dominant root by starting with a

vector orthogonal to the vector that corresponds to the dominant root. Next

the method of reducing the matrix to a matrix of one dimension less, but

having the same roots as the original one apart from the dominant root. The

methods of Duncan and Collar and of Wielandt are reported here. Wielandt's

"fractional iteration" does not require the knowledge of the dominant root,

but requires the knowledge of a suitable approximation to the next one.

The process of Frazer,. Duncan and Collar leads to the determination of the

characteristic equation by applying powers of the matrix to an arbitrary

vector. The method of Hessenberg also leads to the characteristic poly-

nomial by building it up from polynomials of lower degree.

O. Taussky
NBS

1 E. Bodewig, "Bericht über die verschiedenen Methoden zur Lösung eines Systems
linearer Gleichungen mit reellen Koeffizienten I-V," Nederl. Akad. Wetensch., Proc, v.
50, 1947, p. 930-941, 1104-1116, 1285-1295, v. 51, 1948, p. 53-64, 211-219 = Indagationes
Math., v. 9, p. 441-152, 518-530, 611-621, v. 10, p. 24-35, 82-90.
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ues were

841[I, L].—G Blanch & R. Siegel, "Table of modified Bernoulli poly-
nomials," NBS, Jn. oS Research, v. 44, 1950, p. 103-107.

The polynomials to which the title refers may be defined by their Fourier

series as follows

00

bk+i(x) = — Y, n~k cos («x + iirk)
71-1

and are related to the Bernoulli polynomials

Bk(x) = (B + x)k

by the relation

2k\bk(2irx) = (-2Tr)kBk(x)

so that &i(x) = (ir — x)/2, b2(x) =--r- -4- — , etc. The polynomials are

given explicitly for k = 1(1)11 and   x = 0l — J7r;17D. The val

computed from differences using the IBM 405 tabulator and checked by

summation.

D. H. L.

842[I].—E. T. Frankel, "A calculus of figúrate numbers and finite differ-

ences," Amer. Math. Monthly, v. 57, 1950, p. 14-25.

Figúrate numbers are, effectively, taken as defined by generating

functions

(1 - /)-» = E Fr"t'

and thus are essentially binomial coefficients with sign convention reversed.

Their relation to finite differences and sums depends essentially on the

following results.

If V(t) = X uJr is the generating function of ur (r = 0, 1, • • •). then

(1 — t)-1 V(t) is the generating function of w0 + «i + • ■ ■ + ur and (1 — t) V(t)

of ur — «r-1- The author writes Sur = u0 + «i + • ■ • + ur and S-1wr

= ur — Ur-i and defines their iterates in the usual way, which of course

involves figúrate numbers. The function generated by the product of two

generating functions, now commonly called the convolution, he calls the

criss-cross product. For «-th degree polynomials, special attention is given

to numbers S-{n+1)uT, which the author calls dr, because dr = 0, r > «, and

all other sums (or differences) of the given number sequence ur can be ex-

pressed in terms of them. Other than illustrative tables, there are two main

tables, one of figúrate numbers Frn for « = — 7(1)7 and r = 0(1)7 and one

of dr = S-ln+1)rn for « = 1(1)11 and r = 1(1)11. The last have a long his-

tory (back to Laplace) and have lately been called cumulative numbers

(Dwyer), Kummer numbers (Piza), triangular permutation numbers

(Kaplansky & Riordan).
J. Riordan

Bell Telephone Laboratories

New York 14, N. Y.
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843[I].—E. Pflanz, "Allgemeine Differenzenausdrücke für die Ableitungen

einer Funktion y(x)," Zeit, angew. Math. Mech., v. 29, 1949, p. 379-381.

This paper gives an expression for the ?w-th derivative of a function y(x)

at a point Xo, i.e. yim)(x0), in terms of the functional values at (« + 1) points

Xo and x„ = x0 + aph, p = 1(1)«. In general the points x0, x„ may be spaced

irregularly, but must be distinct. Also y(x) is assumed to have a continuous

(« + l)st derivative. The general formula is

y(m)(xo) = (-l)mh-mm\Smy(x0)

n n n

- (-l)nhrmm\ TI a, Y a,-™-1 T[' (a„ - aJ^Ffa, n, a„)y(xp)
»=1 p—l r=l

+ Rm,n       (1 < m < «).

Here F(l, n, ap) = 1 and

m-l

F(m,n,a„) = £ (-l)'ap'5,        (2 < m < «).
v=0

S\ denotes the sum of all possible products of X distinct factors from the

n

set «i_1, a2~\ • • •, a„_l and the IP (a„ — a,) denotes the fact that the case
r-l

v = p is excluded. The remainder term Rm,n is a rather involved expression

which is given explicitly.
For «+1 =£ + 5+1 equi-distant points of interpolation, denoted by

Xo + ph, with p = — p(l)q, where p and q are integers ^0 and p + q ^ 1,

the general formula is given in this special case. All formulas are given with-

out proof, the only indication of their origin being the statement that they

were obtained from Lagrange's interpolation formula. To facilitate the

computations for equally spaced points xp, the exact fractional values of Sx

are tabulated for X < p + q < 7, (p, q ^ 0), X = 1(1)7.
The expression which is given for the derivatives for equally spaced

points Xp, even with the author's auxiliary table of S\ is far from being in

the simplest form for computational purposes. The present article should be

compared with a similar paper by Bickley,1 which is omitted from the list

of references. Bickley tabulates the exact integral quantities mnArr in the

formula (retaining Bickley's notation)

n

« \wmDmyp = m ! Y m-A v,yr
r=0

for n = 2(1)6, m = 1(1)«, p = 0(1)«, r = 0(1)«; for « = 8, 10, m = 1(1)4,
p = 0(1)«, r = 0(1)«. Bickley also gives error terms. Although Bickley's

formulas are much more direct and involve only a fraction of the computa-

tional work arising in the use of Pflanz's formulas, final judgment of the

value of this note should be reserved until his expressions for the remainder

may be compared with other forms given by Bickley and other writers in

textbooks on finite differences.

In the heading of the table of Y*Sor 1 < ^ + g < 7 read X < p + q < 7.
H. E. Salzer

NBSCL

1 W. G. Bickley, "Formulas for numerical differentiation," Math. Gazette, v. 25, 1941,

p. 19-27.
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844[K]—F.   J.   Anscombe,   "Table   of   the   hyperbolic   transformation

sinh"1 Vx," Roy. Stat. Soc, Jn., A, v. 113, 1950, p. 228-229.

The function tabulated was proposed by the author1 for use in transform-

ing highly skewed distributions of counts to a more nearly normal form. In a

forthcoming book on statistical methods2 he also proposes its use in normal-

izing a variable obeying a Student-Fisher ¿-distribution. The tabulation

values are given to 3D for x = 0(.01)1(.1)10(1)200(10)500.
c. c. c.

1F. J. Anscombe, "The transformation of Poisson, binomial and negative-binomial
data," Biometrika, v. 35, 1948, p. 246-254.

2 No title or publisher is given.

845[K].—W. G. Cochran & G. M. Cox, Experimental Designs, ix + 454 p.
New York, Wiley & Sons, 1950. 15.8 X 23.7 cm. Price $5.75.

The tables presented are listings of plans for experimental designs and

tables of random permutations of nine and of sixteen numbers.

Plan 4.1 gives one latin square arrangement each of sides 3(1)12, except

that a set of four 4X4 squares is given. A randomization procedure is sug-

gested which selects one square at random from all possible 3X3 squares

or 4 X 4 squares. (Fisher & Yates1 give complete representations up to

6X6 squares.) Plan 4.2 gives graeco-latin squares of orders 3, 4, 5, 7, 8, 9,

11 and 12.
Plans 6.1 and 6.2 present 23 and 24 factorial designs with the highest order

interaction confounded in each and plan 6.3, a 26 factorial in 4 blocks with

three four-factor interactions confounded. Plan 6.4 is a balanced group of

partially confounded 24 factorial designs in blocks of 4 units, and plans 6.5

and 6.6, the same for 25 and 26 factorials in blocks of 8 units. Plan 6.7 gives

a balanced group of four replications of a 33 factorial design in blocks of 9

units which partially confounds the highest order interaction (ABC), and

plan 6.8, a balanced group for a 34 factorial which partially confounds each

of the three-factor interactions. Plan 6.9 partially confounds ABC and BC

of a 3 X 22 factorial design in blocks of 6 units. Plan 6.10 is a balanced group

which partially confounds, for a 3 X 23 factorial, the two-factor and three-

factor interactions involving two of the three factors at two levels each.

This plan and the next also involve blocks of 6 units. Plan 6.11 is a balanced

group for a 32 X 2 factorial, confounding partially AB and ABC. Plans 6.12
and 6.13 are balanced groups for a 42 factorial in blocks of 4 units and a

4 X 22 factorial in blocks of 8 units, both of which partially confound the

highest order interaction. Plan 6.14 is a balanced group of nine replications

of a 4 X 3 X 2 factorial in blocks of 12 units in which components of AC

and ABC are partially confounded.

Plans 8.1a and 8.1b are 23 factorial designs in two 4X4 squares with

AB, AC, BC and ABC partially confounded and with ABC completely
confounded. Plan 8.2 is a 24 factorial in an 8 X 8 quasi-latin square with all

three- and four-factor interactions confounded. Plan 8.3 gives a 26 factorial

in an 8 X 8 quasi-latin square which completely confounds four of the four-

and eight of the three-factor interactions. Plan 8.4 is a 26 factorial in five

8X8 quasi-latin squares so that each three- and four-factor interaction is

confounded in two of the squares. Plan 8.5 gives a 33 factorial in two 9X9
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quasi-latin squares with four of the degrees of freedom for ABC confounded

in each. Plan 8.6 is a 34 factorial in two 9X9 quasi-latin squares in which

all three-factor interactions are partially confounded. Plan 8.7 gives a

4 X 22 factorial in an 8 X 8 quasi-latin square with 2/3 confounding of

ABC. Plan 8.8 is a 2 X (22) factorial in a 4 X 4 half-plaid square with ABC
completely confounded. Plan 8.9 gives a 2 X (3 X 2) factorial in a 6 X 6

half-plaid square with BC and ABC partially confounded. Plan 8.10 is a
3 X (3 X 2) factorial in two 6X6 half-plaid squares with AB and ABC
partially confounded in each. Plans 8.11 and 8.12 are 2 X (23) and 2 X (24)
factorials in 8 X 8 half-plaid squares with ABCD confounded in the first

and ABD, BCE, ACDE, BCDE and ABCDE confounded in the second.
Plans 8.13 and 8.14 are 2 X 2 X (23) and 2 X 2 X (24) factorials in 8 X 8
plaid squares with four and twelve third- and higher-ordered interactions

confounded.
Plans 10.1 to 10.6 give w X « balanced lattice designs in « blocks and

« + 1 replicates for « = 3, 4, 5, 7, 8 and 9. Plans 10.7 and 10.8 give the
three replicates each for « = 6 and 10 to complete, with the first three sets

of each of plans 10.1 to 10.6, the triple lattices. Plan 10.9 is a 12 X 12
quadruple lattice. Plans 10.10 to 10.16 give the three replicates of the

k X (k + 1) rectangular lattices in blocks of k units for k = 3(1)9.

Plans 11.1 to 11.46 present in detail balanced incomplete block designs

for all combinations (of treatments t, units per block k, replications r,

blocks b, and X, the number of times two treatments appear in the same

block) that are considered by Fisher & Yates1 with the exception of the

» X « balanced lattices given in plans 10.1 to 10.6. There is included, as

plan 11.5, one design not given by Fisher & Yates: (6, 3, 10, 20, 4).
Plans 12.1 to 12.8 are the k X k balanced lattice squares for k = 3 (prime

powers) 13.
Youden squares (incomplete latin squares) are given in plans 13.1 to

13.15 for r < t in the following combinations:

/    7    7    11    11    13    13    15    15    16    16    19    19    21    31    37

r345649786    10      9    10      56      9"

Extensions of these squares for r > t are given in plans 13.16 to 13.26 with

¿333  34445567

r    578 10 579697 8'

The relative efficiency of each design as compared with a randomized

block layout is given, starting with plan 11.1.

Table 15.6 gives 1000 random permutations of the numbers 1(1)9 and

table 15.7, 1000 random permutations of 1(1)16. The first table was con-

structed by reducing pairs of random digits modulo k and neglecting repli-

cates of previously obtained residues. 200 permutations were obtained for

each of k = 9(1)13 with numbers above 9 omitted. The authors do not point

out a source of bias in that the digits 1 to 9 are not equally likely in this

process. (The probability of residue = 1 is .1165.) The second table was also

constructed by a mixture of methods but, this time, without bias. Sixteen

pairs of random digits were ranked numerically with additional digits used

to break ties in rankings. Permutations produced by the order of the ranks
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gave 800 of the permutations ; the remaining 200 were obtained by drawing

from an urn. Both tables were tested for randomness by testing the dis-

tributions of numbers in positions and positions for numbers. A further test

of the number of inversions in order in each permutation was made; none

of the tests indicated significant deviation from random order.

Leo Katz
Michigan State College

East Lansing, Michigan

1 R. A. Fisher & F. Yates, Statistical Tables for Biological, Agricultural, and Medical
Research. Edinburgh, 3rd ed., 1948 {MTAC, v. 3, p. 360-361].

846[K].—M. G. Kendall, "Tables of autoregressive series," Biometrika,

v. 36, 1949, p. 267-289.

The author gives further examples of autoregressive series calculated

from ut+2 + aut+i + but = et+2, in which a and b are constants and t is a

random element, in addition to 4 he previously published.1 There are 8 series

of 400 terms each with e rectangularly distributed with a = —1.1 in all 8

and b = .5 in the first 4 and .8 in the second 4. There are 5 series of 500

terms each constructed from ut+i — cut = tt+i in which c = .1(.2).9 respec-

tively and e is normally distributed. The final set of 5 series of 500 terms

each obeys the same difference equation as in the first 4 series but with the

terms of each of the preceding 5 series taken as the values of the e's in turn.

The final set of 4 tables gives the product sums about zero, Yt utut+k and

estimates of the serial correlation to 3D for k = 0(1)50 for the first and for

k — 0(1)30 for the remaining 3 of the 4 previously published series; to 4D

and k = 0(1)4 (for the serial correlation) for the first 8 of the present series

and also for the 2 series of 1600 terms obtained from each of the 2 sets of 4,

and to 3D for k = 0(1)30 for the 5 series in which t is normally distributed.

C. F. Kossack
Purdue University

Lafayette, Indiana

1 M. G. Kendall, Contributions to the study of oscillatory time-series, National Institute
of Economic and Social Research. Occasional Papers. IX. Cambridge and New York, 1946.

847[K].—L. W. Pollak, assisted by U. N. Egan, Eight-Place Supplement to
Harmonic Analysis and Synthesis Schedules Sor Three to One Hundred

Equidistant Values oS Empiric Functions. (Dublin Institute for Advanced

Studies, School of Cosmic Physics, Geophysical Memoirs No. 1, Parts 1

and 2), Dublin, 1949. Parts 1 and 2, separately bound: xix, 43 p; 72 p.,
23.8 X 32.6 cm, 7s 6d each.

This work is supplementary to the Harmonic Analysis and Synthesis

Schedules Sor Three to One Hundred Equidistant Values o/ Empiric Functions,

by L. W. Pollak, assisted by C. Heilfron [MTAC, v. 2, p. 306-307] and
is intended to be used in conjunction with them or with the All Term Guide

Sor Harmonic Analysis and Synthesis using 3 to 24; 26, 28, 30, 34, 36, 38, 42,
44, 46, 52, 60, 68, 76, 84 and 92 equidistant values, by L. W. Pollak and
U. N. Egan, although it is also independently useful in harmonic analysis

and synthesis. Its purpose is to provide more accurate values of sines, cosines,

and angles pertinent to the harmonic analysis or synthesis of equidistant
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values of empiric functions than were given in the publication to which it

is supplemental.

For the preponderance of problems in harmonic analysis or synthesis,

such as those commonly encountered in geophysics, economics, or ordinary

physics laboratory work, the tables provided in the former publication are

more than amply sufficient in accuracy. The present work, however, should

be extremely valuable to astronomers and others having need for unusually

high accuracy in computation, since angles are given to 10-12 degree and 10-10

second (although reliable to only 10~8 second), and sines and cosines to

eight decimal places in one of the included tables, and to ten decimal places

in another.

Part 1 consists of an "Introduction," and two tables called "Appendix"

and "Register" ; Part 2 consists of a table known as the "Index." The "Regis-

ter" and "Index" contain the same information as the portions of the previ-

ous publication having the same captions, the difference being in the greater

number of significant figures given for values in the later work.

The "Introduction" includes description of the method of computing

the tabulated values, illustrated by three short tables, the reliability and

accuracy of the values, and a brief discussion of the method of using the

tables, either with or without the use of the previously published Schedules,

or the All Term Guide. Three short additional tables illustrate suitable work

forms and methods, respectively, for harmonic analysis and synthesis using

the tables of this publication and the Schedules, and the construction of a

schedule by means of this Supplement only. An extremely brief bibliography

(7 items) is given.

The "Appendix" provides sine or cosine values to ten decimal places,

listed according to the 2068 identification numbers ("T-numbers") given in

the Schedules, which indicate the sine or cosine value to be used as a multi-

plying factor of each empiric value in harmonic analysis. Since the same

values as multipliers are used repeatedly at various places in any series of

empiric values, their identification by such serial T-numbers (that of their

order of appearance in schedules for analysis of a series of « empiric values,

n increasing from 3 to 100, sine or cosine values equal to 0, § or 1 being so

stated rather than identified by a serial T-number), is a convenience in

saving labor and space. Pollak has previously published1 a set of tables giving

multiples of each of the first 120 "T-numbers." The sine or cosine values of

the "Appendix" were computed by Pollak, using the angles to twelve deci-

mals of a degree, as presented later in the "Index," and interpolating

linearly, extending the interpolation to the second differences, with the ten-

place values given in E. Engel's tables of sines, cosines, and tangents

[MTAC, v. 1, p. 131, 170-171].
The "Register" presents values of angles in increasing order of magni-

tude, accompanied by their identifying T-number. These angles are given

both in degrees, minutes, and seconds to the 10~10 second (reliable to only

10-8 second), and in degrees and decimal fractions of a degree to 10-12 degree.

Each angle given in degrees and decimal parts of a degree was derived indi-

vidually by dividing the product 360°i by w, the number of equidistant

empiric values in a period. The last figure retained, in each case, was rounded

off. Accuracy of these values was insured by the authors, using an inde-
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pendent check process. The rounded off values thus obtained were then

converted into minutes and seconds. Since the rounding-off process limits

significance to ±5-10-13 degree, or 1.8 X 10-9 seconds, the presentation of

values to 10~10 second in this table is misleading.

The "Index" presents the same angular values (iz), together with their

complements (\z'), and the multiplying factors sin iz — cos \z' given to the

eighth decimal place, arranged in ascending magnitude of «, and also, conse-

quently, of their identifying T-numbers, both of which are furnished. All

the cosines and sines were computed twice, once by Miss Nuala O'Brien,

using Peters'2 Eight-Place Tables of Trigonometric Functions, and inde-

pendently by Pollak (the values given in the Appendix), and, in addition,

a schedule-by-schedule check was made, so that the error is less than

5 X 10-9.
The present work fills an apparent need for a set of such tables, giving

sine, cosine, and angular values to greater than usual accuracy [cf. MTAC,

v. 2, p. 307]. Because of the frequent practice of those having limited library

funds, who usually purchase only one—the most accurate—set of a given

type of tables, and therefore, in the present case, might choose to purchase

only the Supplement, without the Schedules, it seems to the reviewer that

repetition of much of the material included in the "Introduction" to the

Schedule might have been advisable. This included an excellent, condensed,

presentation of the procedures used in analysis and synthesis, for grouped

data, non-equidistant values, mean values, and values having non-cyclic

change, together with Walker's short-cut method, and formulae for compu-

tation of error. It also seems that a much more comprehensive bibliography

would have been appropriate.

The quality of printing and of the paper used in this Supplement, al-

though somewhat inferior to that used for the Schedules, is good.

Marcella L. Phillips
NBS

1 L. W. Pollak, Rechentafeln zur Harmonischen Analyse. Leipzig, 1926.
2J. Peters, Achtstellige Tafel der trigonometrischen Funktionen für jede Sexagesimal-

sekunde des Quadranten. Berlin, 1939.

848[K].—J. Westenberg, "A tabulation of the median test for unequal
samples," Nederl. Akad. Wetensch., Proc, v. 53, 1950, p. 77-82, = In-
dagationes Math., v. 12, 1950, p. 8-13.

Given that in a pooled sample of Ni + N2 from a univariate statistical

universe 2« observed values of the variate do not and Ni + N2 — 2» do

exceed a given critical value, the author writes the joint probability that in

the sample of Ni, w + A values and in the sample of N2, « — A values do not

exceed this value. The critical value is taken to be the median of the pooled

sample. Then the number of values in the sample of Ni lying between the

median of this sample and the median of the pooled sample is \(N2 — Ni)

+ A = o. The author remarks that the above probability is maximal for

5 = 0 and is symmetrical with respect to N\ and N2. He then tabulates the

values of |<5| to ID that will be exceeded in such samples with probabilities

.001, .005, .01(.01).05 for Ni and N2 = 6, 10, 20, 50, 100, 200, 500, 1000,
2000. The mode of calculation is not described but evidently 151 is treated

as a continuous variable whereas in actual samples 151 is always an integer.
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The experimenter can then tell from the table where his 5 lies with respect

to the given percentage points. A second table and logarithmic chart give

for the same set of values of Ni the minimal values of A2 to ID (A remark

similar to that with regard to fractional values of 5 could be made here.) for

which the two samples could result in a 151 at the significance levels given

above. The author gave the results for Ni = N2 in a previous paper.1

C. C. C.

'J. Westenberg, "Significance tests for median and interquartile range in samples
from continuous populations of any form," Nederl. Akad. Wetensch., Proc, v. 51, 1948, p.
252-261.

.849[K].—A. van Wijngaarden, "Table of the cumulative symmetric bi-

nomial distribution," Nederl. Akad. Wetensch., Proc, v. 53, 1950, p.
857-868, = Indagationes Math., v. 12, 1950, p. 301-312.

The function tabled is

P(«,C) = l-21-"¿(") = 2-"T(")

to 5D for « = 1(1)200 and c = 0(1)    ^—z—    . Noting that for « even

we see that the table enables one to find all the partial sums in (J + §)n

for « < 200. In order to save space the tabulation is made with the argu-

ments c and« — 2c. Values of P(n, c) to 7D for « = 1(1)49 are also available

in the tables recently published by the National Bureau of Standards.1

The reviewer compared the two tables for n = 48 and 49 as a check of the

present author's assertion that his accuracy "is well under one unit of the

last (fifth) decimal place." The differences were less than 1 unit in this

place but for « = 48, c = 9, 16; « = 49, c = 16, 17 the final digit differed
by unity from the rounded off value from the NBS tables. In the present

tables no signs are indicated for final 5's.

c. c. c.
1 NBS, Tables of the Binomial Probability Distribution. NBS Applied Math. Series, No. 6,

Washington, 1950 {MTAC, v. 4, p. 208-209].

850[L].—M. Abramowitz, "Tables of integrals of Struve functions," Jn.

Math. Phys., v. 29, 1950, p. 49-51.

The standard notations1 (p. 328-329) are used, and the integrals in ques-

tion are

Hn =   f Hn(t)dt,       Ln=   f   Ln(t)dt.
Jo Jo

Ho, Hi are tabulated for x = 0(.1)5 to 6D and for x = 5(.1)10 to 5D;
Lo, Li for x = 0(.1)5 to 6D, for x = 5(.1)10 to 6S. The tabulated values were
obtained by numerical integration, using Watson's tables1 (p. 666-685) for

Hn(t) and tables of the Computation Laboratory of the NBS for Ln(t). Spot

checks were made by using the series expansion of the integrals in powers
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of x. It is stated that in general, interpolation with five-point Lagrangean

interpolation coefficients will yield the full accuracy of the tables.

The integrals arose in a paper by Levine & Schwinger.2

A. E.

1 G. N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge, 1922.
2 H. Levine & J. Schwinger, "On the theory of diffraction by an infinite plane screen.

I," Phys. Rev., s. 2, v. 74, 1948, p. 958-974.

851[L].—S. Chandrasekhar & G. Munch, "On the integral equation

governing the distribution of the true and the apparent rotational veloci-

ties of stars," Astrophys. Jn., v. Ill, 1950, p. 142-156.

The authors discuss the numerical solution of the integral equation

/•OO

(1) g(y) = y  I     x-^x2 - y2)-*S(x)dx.
Jv

The analytical solution involves differentiation and hence is not very reliable

when g(y) is given in the form of a histogram, and the authors hold that

any direct numerical solution of (1) is likely to encounter the same difficulty.

They advocate the use of either of two methods, (i) Determine /(x) from

its moments by means of the formula (given in the paper) for converting

moments of g into moments of/, (ii) Assume a shape for/(x) and determine

the parameters by fitting the corresponding g to the observed g(y).

In following up the second alternative, they use

/(x,xi) = T-*{e-(*-* '>2 + «ri*-*-*1'2}.

For the corresponding g(y, x{) they give an integral representation, several

expansions, and some numerical material.

Table l(p. 148) gives

x = TT-ie-*1* + xMxi) to 4S,   x2 = Xi2 + i to 2D,

x3 = 7T-*e-*l2(l + xi2) + (§ + xi2)xMxi) to 3S,

and

x/[2(x2 - z2)]* to 4 or 5S for Xi = 0(.1)1(.2)3.
Here

$(xx) = 27T-* J     e-t%dt.

Table 2 (p. 150) gives Fn(y) to 4 to 6D for « = 0(1)6 and y = 0(.2)2.6, where

Fn(y) = x-»22»+1/n(y)/(2«)!,

h(y) = èTrfl - 9(y)),        h(y) = \ir-^ye-y\
and

7n+1 = (« - i + y2)In - (« - l)y2In_i,        « = 1, 2, • • •.

Table 3 (p. 153) gives
Xoo

x_1(x2 — Xi2)-h-{x-xl^dx to 4D

forxi = 2(.5)5(1)10.
Table 4 contains the results of astronomical computations.

A. E.
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852[L].—V. N. Faddeeva & M. K. Gavurin, Tablitsy Funktsii Besselta
J„(x) tselykh nomerov ot 0 do 120 [Tables of Bessel Functions Jn(x) of

integral order from 0 to 120]. Pod redaktsiel L. V.. Kantorovicha.

(Matematicheskie TabliVsy, no. 2.) Akad. Nauk, SSSR, Matemati-
cheskiï Institut imeni V. A. Steklova, Moscow and Leningrad Gostek-

hizdat, 1950, 440 p. An errata slip containing 23 corrections is inserted

in this volume. 17 X 26 cm. Cloth, 21 roubles. An edition of 4000 copies
was issued in April.

The attractive appearance of this publication of the Academy of Science

is in marked contrast to no. 1 of the series [RMT854]. It contains the fol-

lowing four tables :

Table 1, p. 9-371: /„(*) for « = 0(1)120, x = [0(.1)124.9; 6D, Ô2]. In
Juo(x) the first significant value .000001 is for x = 95.4.

Table 2, p. 373-382: Zeros < 125 of J„(x) to 5D. There are 40 zeros for Jo(x),
39 for Ji(x), and the last is a single zero for Jiu(x). Most of the values

given here are new.

Table 3, p. 383-388: Interpolation coefficients.
Table 4, p. 389-439: Jn(x), x = [0(.01) 14.99; 8D], n = 0(1)13.

The authors state that it was not until their tables had been completed

that they became acquainted with the first 8 volumes of the Harvard Bessel

Function tables. With the twelfth and final volume of the Harvard tables

we have at our disposal the values of Jn(x), n = 0(1)135, x < 100, at inter-

val <.l, to 10D at least.
For x < 100, all the values of Jn(x) in the two new Russian tables are in the

Harvard tables, which do not, however, give any explicitly stated zero

values. Thus there is an appreciable amount of new results here. Not alone

on account of difference in cost (less than 37 roubles as compared with $96)

many workers will probably often find it convenient to turn to the two

volumes of Russian tables, if it is found that they are reliable.

Since the Russians appear to have started the publication of a series of

mathematical tables, already including two tables of Bessel functions, let

us hope that the series will include the Tables of Bessel Functions with

Complex Argument, announced in Matematicheskiï Sbornik, v. 51, 1941

[MTAC, v. 3, p. 66], but, as far as we know, never published.

R. C. Archibald
Brown University

Providence, R. I.

853[L].—C. W. Horton, "A short table of Struve functions and of some

integrals involving Bessel and Struve functions," Jn. Math. Phys., v. 29,

1950, p. 56-59.
/„ is the Bessel function, Hn the Struve function,

Cn=   \   t"Jn(t)dt,       Dn=   f t"Hn(t)dt,
Jo Jo

Tables of J„, H0, Hi are known.1 The present paper gives H„ for « = 2(1)4,

C„ for « = 1(1)4, and D„ for « = 0(1)4, all for z = 0(.1)10 mostly to 4D.
Values of Hn have been computed to 7D by means of the power series and
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the recurrence relations, and then rounded off to 4D because of the coarseness

of the interval.
Values of C0 were taken from a table by Lowan & Abramowitz,2 and

values of C„ obtained by means of numerical integration and a recurrence

relation. For » = 3,4 and z > 6 only 3D are given.

The situation with regard to Dn is similar, except that here a table by

J. W. Wrench3 was the point of departure.

It is believed that the maximum error is .6 units of the last decimal.

A. E.

1 G. N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge, 1922, p.
666-685.

2 A. N. Lowan & M. Abramowitz, Jn. Math. Phys., v. 22, 1943, p. 3-12 {MTAC, v. 1,
p. 154].

3 MTAC, v. 3, p. 66.

854[L].—L. A. LÍÜsternik, I. la. Akushskii & V. A. Ditkin, Tablitsy
Besselevykh Funkfsit. (Matematicheskie Tablitsy, no. 1.) [Tables of Bessel

Functions. (Mathematical Tables, v. 1)]. Moscow and Leningrad,

Gostekhizdat, 1949, 430 p. 14.6 X 22 cm. Boards, 15.70 roubles. An
edition of 10000 copies published in March.

This volume contains the following seven tables, several of which are new:

Table 1, p. 8-345: J0(x), Ji(x) for x = [0(.001)25; 7D], A2.
Table 2, p. 349: 8D values of zeros ak of J0(x), ßk of /i(x), yk [except 7D for

k = 1(1)10] of Ji'(x) for k = 0(1)40.
Tables 3-6, p. 350-429: J0(akx), J0(ßkx), Ji(ßkx), Ji(ykx) for x = [.01(.01)1;

7D], k = 0(1)40.
Table 7, p. 430: 2[/12(a4)]-\ 2[/02(&)]-1 = 2[/22(/3*)]-1, 2t*2(t*2 - l)"1

X [Ji2(yk)l~\ for k = 1(1)40; 7S].

These last four tables are new and are for calculating terms in the de-

velopment of a function in a Fourier-Bessel series. From data in the volume

it is easy to verify the accuracy of the second and third of these functions,

but in the case of the first it is not nearly so easy since the values of Ji(ak)

are not here given—but are, of course, readily available elsewhere.

Most of the values of yk are also new; but all the other values of the

functions are implied in the Harvard and BAAS tables. The typography of

the volume is very unattractive, the paper poor, and the proofreading bad.

For example ßi0 is given as 126.1461387, instead of 126.4461387, on pages
388, 389, 408,409; and there are other errors on pages 6, 7, 340, 347, 348, 374.

R. C. Archibald

855[L].—J. P. Stanley & M. V. Wilkes, Table o/ the Reciprocal oS the
Gamma Function Sor Complex Argument. Computation Centre, Univer-

sity of Toronto, 1950. i + 100 p., 35.4 X 25.1 cm. Price $4.50.

The table is that briefly described in UMT 102 (MTAC, v. 4, p. 162).
l/r(x + iy) was computed for x = — .5(.01).5, y = 0(.01)1 from the

infinite series in powers of x + iy- twenty-one terms of the series were used.

The computations were carried out on the EDSAC in the Mathematical

Laboratory at Cambridge University, and checked by differencing in both
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directions on a National accounting machine. In order to minimize rounding-

off errors, ten decimals were carried throughout the process. In the present

volume values are given to 6D, and the authors estimate that the maximum

error does not exceed .7 units of the sixth decimal place.

Values of the reciprocal gamma function outside the range of tabulation

can be obtained by one or the other of the functional equations satisfied by

the gamma function.

The preface (1 p.) gives the following references to available numerical

values of the gamma function in the complex domain:

J. G. Beckerley, Indian Jn. Physics, v. 15,1941, p. 229-232 [RMT 195,
MTAC, v. 1, p. 419-420].
H. T. Davis, Tables oS the Higher Mathematical Functions, 1933, p. 269f.
A. Ghizetti, Accad. Naz. Lincei, Atti Rend., s. 8, v. 3(2), 1947, p. 254-
257 [RMT 617, MTAC, v. 3, p. 415-416].
M. E. Long, Radar Research Development Establishment, Memorandum

no. 96, 1945 [RMT 234, MTAC, v. 2, p. 19].
W. Meissner, Deutsche Mathematik, v. 4, 1939, p. 537-555 [RMT 140,
MTAC, v. l,p. 177].
C. P. Wells & R. D. Spence, Jn. Math. Phys., M.I.T., v. 24, 1945, p.
51-64 [RMT 228, MTAC, v. 1, p. 446].

The preface states that the present table has been checked against all

the available values, but it does not state whether any discrepancies

were found.
It should be noted that in connection with the tabulation of certain

parabolic cylinder functions, a table of In T(x + iy) for x = j, \, § is being

prepared at the Scientific Computing Service, London, by J. C. P. Miller

[MTAC, v. 2, p. 62-63, 147-148, v. 4, p. 90].
A. E.

856[R].—New Zealand Department of Lands and Survey, Geodetic and

Transverse Mercator Projection Tables. Latitudes 34° to 48°. (International

Spheroid), Wellington, 1946, 96 p. 22 X 33.3 cm.

These are tables of special functions for the Transverse Mercator projec-

tion for an area included between latitudes 34° and 48° and longitude 3°

each side of a chosen central meridian.

The formula for the x-coordinate in the Transverse Mercator projection

may be written

x = m + G(AX)S + I(A\y

where m is the meridional distance from the equator to latitude <t>. G and I

are functions of <p and of the constants of the meridian ellipse. These func-

tions are tabulated as well as analogous functions for the Transverse Mer-

cator y-coordinate, and for the various inverse formulas expressing latitude

and longitude in terms of x and y, etc.

Notable points concerning these tables are:

1. The meridian distance, though tabulated only from 34° to 48°, is given

for one minute intervals accurately to 1/1000 link [1 link = 7.92 in.].
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2. Detailed examples are given of the geodetic computations involved with

the formulas and of the interpolation procedure for the tables.

3. All quantities are in multiples or submultiples of links which would make

it necessary to use conversion factors for application to areas where

triangulation distances are in meters or feet.

The only detected tabular errors occur on p. 21 and p. 31 and are noted

in the volume.
P. D. Thomas

U. S. Coast and Geodetic Survey

Washington, D. C.

MATHEMATICAL TABLES—ERRATA

In this issue references have been made to Errata in RMT 854 (Liùster-

nik, Akushskiï & Ditkin).

179.—G. F. Becker & C. E. Van Orstrand, Smithsonian Mathematical

Tables, Hyperbolic Functions, Washington, fifth reprint, 1942 [MTAC,

v. 1, p. 45].

On p. 314, in the table of the anti-gudermannian, the value of 43°3',

Sor       2667.20        read       2867.20

Charles T. Johnson
5852 Adelaide Ave.

San Diego, Calif.

180.—A. M. Legendre, Traité des Fonctions Elliptiques, v. 2, Paris, 1826.

In Chapter 3, p. 56 and 58, corresponding to « = 4, the coefficient of ô%

Sor       421/(4725-210)        read        1/3024

On p. 58, corresponding to « = 5 and « = 6 the coefficients of 54/0,

Sor -5/384 read 1/384
Sor        -23/1440       read 1/120

H. E. Salzer
NBSCL

UNPUBLISHED MATHEMATICAL TABLES

110[E].—Richard R. Kenyon, Table of' xne~x. 3 leaves and a graph deposited

in the UMT File. Photostat.

This is a table of xne~x to 5S or 6S for « = 0(1)8 and x = 0(.01).1(.1)5-

(1)30(5)60. A graph is included with the tables to show the behavior of the

function. It allows rough graphical interpolation to be made for non-integral

values of w.


