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Introduction.—For step-by-step numerical integration of ordinary differ-

ential equations there are too many formulae, too few evaluations or com-

parisons. Perhaps the complexity of the subject will not permit the general-

izations the mathematician would prefer, but only restricted numerical

comparisons of specific procedures. This paper, at any rate, will restrict

itself to showing reasons for preferring one of two procedures for the integra-

tion of second-order differential equations in which the second derivative,

d2x
x = -jx , is a function of x alone, or of x and t, or of x, y, z, t (with similar

equations for y and z). These equations are important, of course, in certain

dynamical problems of astronomy, ballistics, aerodynamics, etc., including

the rocket problem.

The comparison of the two procedures will extend to at least three

equivalent forms, in which the integration formula at each step is based upon

(a) antecedent values of x,

(b) backwards differences of x,

(c) central differences (estimated) of x.

Although there are reasons for preferring forms (a) or (b) in certain circum-

stances, the comparison will be made first between the procedures in form

(c) because there is some advantage to distinguishing between errors of

estimation and errors resulting from the neglect of higher order terms in

the integration formulae.

The preferred procedure, designated the "second-sum procedure" or

"22 procedure," involves tables of x and its first and second sums, 2x and

22z, as well as its differences (explicitly or implicitly), ôx, ô2x, ô3x, ■ ■■. It

has been used for more than a century by astronomers,1'2 but has apparently

been overlooked by a number of mathematicians, physicists, and others, in

recent years.

The compared procedure, designated the "second-difference procedure"

or "ô2 procedure," involves the summation (explicit or implicit) of the second

difference of x, &2x, which is obtained by formula from x and its differences

(or the equivalent). This procedure was used by Cowell & Crommelin,

perhaps for the first time in an extended calculation, in their celebrated

prediction of the return of Halley's Comet in 1910. In publishing the results

of this work3 they recommended without explanation, however, that future

integrations of this type should be done with the 22 procedure and formulae.

In spite of this recommendation a great deal of work has been done by the
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52 procedure, by astronomers as well as others, that could have been shown

to be better adapted to the 22 procedure.

In short this paper will show that (1) under comparable circumstances,

the 52 procedure requires two approximations (or the use of "predictor" and

"corrector" formulae8) whereas the 22 procedure requires only one. It will

show further that (2) the estimated differences normally employed by the

astronomer may be replaced by backwards differences or antecedent values

of the second difference without increasing the error or requiring a second

approximation. The second of these facts, as well as the first, is significant

to modern calculation with automatic electronic digital computers.

The S2 Procedure.—For the purposes of the comparison it will be neces-

sary first to outline the "52 procedure" with estimated central differences,

since these may be unfamiliar to many persons otherwise well acquainted

with the problem. Their introduction makes it possible to use the same for-

mula for "predictor" and "corrector," the difference between the two ap-

proximations being due to the improvement in the estimates of the differ-

ences involved. This formula7 we shall call the "(82) formula" and write

as follows:

(52)        52xn = h2 \ xn + ¿ S2xn - ¿ Vxn + ^ 5*xn - ■ ■

where h is the interval of the argument (0.1 in the table below), the notation

for the differences is best appreciated by reference to the numerical table

below, and the subscript n indicates that the various quantities are to be

found on the same line of the table (the underlined quantities on the 0.8

line in the example below).

The following table shows an integration table for the simple differential

equation x = —x. How the table was started is not significant; at the given

step all numbers not in parentheses may be taken as correct. The values of

the differences of x in parentheses are estimates based upon the assumption

that the sixth difference is zero. The estimates of ¿>2Xo.s, &E0.861 and xa.t, on

the other hand, are a result of the first approximation or "prediction" below

the table.

t x Sx s*x x = —x Sx
0.0 +.000 000 000 000 000 -.000 0000

+99 833 417 -99 8334
0.1 +.099 833 417 -997 502 -.099 8334

+98 835 915 -98 8359
0.2 +.198 669 332 -1985 038 -.198 6693

+96 850 877 -96 8509
0.3 +.295 520 209 -2952 740 -.295 5202

+93 898137 -93 8981
0.4 +.389 418 346 -3890 939 -.389 4183

+90 007198 -90 0072
0.5 +.479 425 544 -4790 261 -.479 4255

+85 216 937 -85 2170
0.6 +.564 642 481 -5641721 -.564 6425

+79 575 216 -79 5752
0.7 +.644 217 697 -6436 810 -.644 2177

+73 138 406 -73 1384
0.8 +.717 356 103 (-7167 586) -.717 3561

(+65 970 820)
0.9 ( + .783 326 923)

S'x S'x        A«ï   sm
0000 000

+9975      -100
+9975        -100

+9875       -97
+ 19850       -197

+9678      -100
+29528        -297

+9381        -91
+38909        -388

+8993        -89
+47902       -477

+8516        -89
+56418        -566

+7950      (-89)
+64368      (-655)

(+7295)      (-89)
(+71663)      (-744)
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"Prediction" "Correction"

+ xo.s = -0.717 3561 -0.717 3561

+   ¿S2io.8 = +5971  .9 +5973 .0

- TIK ***'■» * _+3  .1 _     +3 .0
240 -        -

h-Wxa.a = -0.716 7586 .0 -0.716 7585 .0

S2Xo.a =  -.007167586 -.007167585

After the predicted ô2x0,s is summed in the table to produce an estimate

of Xo.a, it is possible to calculate accurately ¿0.9 = —0.783 3269. [From an

inspection of the "correction" we may verify that no significant revision of

this number will be necessary.] The table may now be differenced to show

that the accurate value of 52f0.8 = +71676, and this number replaces the

estimate (+71663) in the "correction," with a resulting change of one digit

in 52Xo.8, too.85, and x0.9. The table is now ready for the next step.

The E2 Procedure.—The "(2C2) formula" is as follows:

(2C2)        x„ = h2 {»*. + £* - ±*xn + 4«,-

where the notation is the same as in the (Sc2) formula. The numerical co-

efficients are the same in the two formulae because the one is simply the

second sum or the second difference of the other. The table associated in this

procedure with the numerical example of the preceding section is as follows:

t X2x Sä x = —x Sx S*x        á3*       í'í      S*x
0.0    +0.0000000 -.0000000 0000 000

+9.9916653 -99 8334        +9975      -100
0.1  +9.9916653 -.099 8334 +9975        -100

+9.8918319 -98 8359        +9875       -97
0.2 +19.883 4972 -.198 6693 +19850       -197

+9.693 1626 -96 8509        +9678      -100
0.3 +29.576 6598 -.295 5202 +29528        -297

+9.397 6424 -93 8981 +9381        -91
0.4 +38.974 3022 -.389 4183 +38909        -388

+9.008 2241 -90 0072        +8993        -89
0.5 +47.982 5263 -.479 4255 +47902       -477

+8.528 7986 -85 2170        +8516       -89
0.6 +56.5113249 -.5646425 +56418        -566

+7.964 1561 -79 5752        +7950 (0)
0.7 +64.475 4810 -.644 2177 +64368       (-566)

+7.319 9384 -73 1384        ( + 7384) (0)
0.8 +71.795 4194 -.717 3561        (+71752)      (-566)

+6.602 5823 (-65 9632)       (+6818)
0.9 +78.398 0017 (-.783 3193)        (+78570)

Note 1 : The estimates of the differences (in parentheses) are arbitrarily

made poorer in this example than in that of the preceding section, to empha-

size the fact that an even larger error of estimation will not require a second

approximation in the 22 procedure.

Note 2: (For those unfamiliar with sum columns.) Given a starting

value, the numbers in the 2x column are summed from the x column just

as the x column could be summed from the 5x column. Similarly the 22i

column is summed from the 2a column. Starting values may be obtained by

an inversion of the process followed below.
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Note 3: The subscript n refers to the 0.9 line in this example rather than

the 0.8 line, as indicated by the underlining, in order to make the figures of

the two examples more directly comparable.

The calculation of £0.9 and of an accurate value of £0.9 to replace the

estimate of this quantity proceeds as follows, in accordance with equa-

tion (2C2):

+        S2xo.8 = + 78.398    00    2

+ j2     Xo.t = —65     27    7

-3    3

+ 78.332     69    2
-   0.783 3269

Although this value of £0.9 differs by 76 units of the last place from the
estimate in the table, it will be found, in checking the figures of a possible

"correction" or recalculation, that the preliminary value of xVxo.9, and hence

the final value of £0.9, will not be altered from what is shown in the above

calculation. Nor would they if an even greater error were made in the

estimate.

Comparison.—1. It will be observed, in the numerical work of the two

examples, that the yV term involves in the first a 5 digit number

(¿2xo.8 = +71663), in the second a 7 digit number (xo.9 = —7833193), but

that only 5 digits are carried in either calculation (+59719 and —65277).

That is in the 22 procedure the last two digits of the estimate of x are of no

significance, and a much larger estimation error can be tolerated than in the

52£ that plays the same role in the 52 procedure. Thus the first approximation

is sufficient in the 22 procedure, but a second is necessary in the 52 procedure

to alter or check the last digit in the calculation. It is assumed, it will be

noted, that successive columns of sums, function, and differences taper off

in size by about one digit or more per column. When the tapering is more,

the situation is even more favorable to the 22 procedure: for example, if

there are four more digits in the 22£ column than in the x column, the last

four digits of the estimate of x will not be significant, and a very crude

estimate is tolerable. A tapering of one digit per column is probably the least

that would be tolerated in any procedure for numerical integration when

automatic or rote methods are employed; an experienced computer, using

the utmost of judgment, may be able to integrate by these procedures when

the tapering is only one digit per two columns.

2. Since a larger estimation error can be tolerated in the 22 procedure

than in the 52 procedure, it is evident that fewer difference columns will need

to be taken into account, an advantage when the memory of an automatic

computer is limited.

3. It is assumed that the accumulation of rounding error and the effect

of neglected terms will be about the same in the two procedures. The discus-

sion is concerned instead with the effect of errors of estimation, explicitly

as in the foregoing example or implicitly in equivalent processes involving

backwards differences or antecedent values of x. (The estimation of differ-

ences should not be confused with a first approximation or "prediction,"

-240   S'U,=

h~2 Xo.9 —

¿0.9   =    — 3Î0.9   =
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but should be recognized as merely an alternative way of making the inte-

gration depend upon backwards differences.)

4. It is assumed that the purpose of numerical integration is the con-

struction of as accurate as possible a table from which the integral may be

obtained, and not necessarily a table of the integral itself. Often, as in comet

orbits or ballistics tables, only a few values of the integral at the end of the

table are needed. Since, however, it is customary to carry two or three more

places in a table than are required in the end, it will be noted that the values

of the integral obtained in the first approximation by either procedure are

probably sufficiently accurate for all intended uses. From this point of view,

evidently the second approximation in the 52 procedure is necessary only to

avoid the accumulation of error in the summation of 52£. The equivalent

summation of x in the 22 procedure is free of estimation error. For inter-

polating non-tabular values of the integral, Bower has supplied a table.6

5. To shorten the paper, I have not included in the foregoing discussion

a third procedure which may be used in integration of second-order differ-

ential equations. This procedure is based upon the formula for the second

derivative, x, in terms of the differences of x, which we may write

52x = h2x + jz S4£ - — 56£ +

My investigation of this procedure revealed only a greater disadvantage:

namely, three approximations as compared with the two of the 52 procedure

and the one of the 22 procedure. Various attempts have been made to im-

prove this formula for restricted classes of second-order differential equations

by introducing special devices to eliminate the tV term—beginning with

Numerov,4 and most recently by Fox & Goodwin.9 At best these devices

yield results comparable to the 22 procedure only when the 1/240 term is

negligible, and at least for some of them Jackson5 is right in believing that

they would become the 22 procedure if they were carried to their logical

conclusion.

Another proposal sometimes made in connection with the second-

derivative formula above is that it be used to correct a first approximation

in which the estimation error is ignored. This proposal would have merit if

it were not for the fact that the estimation error is negligible in the first

approximation by the 22 procedure.

The Backwards-Diff erence Formula.—When the central differences used

in the (2C2) formula are estimated by a summation based upon the repetition

of the last value of a given difference, the calculation will yield exactly the

same result as if it had been based upon a backwards-difference formula

ending with the same difference. This formula is as follows:

(262)        £„ = h2 \ 22£„ + —   £„_i + 8xn-3/2 + 2^ 52£„-2

18 1726  t 1650  , 11
+ ¿o ô3x„-5/2 + Ä ¿W„_, + — **_„ + • • ■ J | •

The estimation of differences may thus be entirely avoided in rote calcu-

lation, by automatic machinery or otherwise.
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The Antecedent-Function Formula.—When the computer feels that he

can dispense with the check afforded by the run of the differences, he may

replace the (2¡,2) formula by the equivalent expression in terms of ante-

cedent values of the function to be integrated:

(2„2)        £„ = h2 22£n + ^(l + l+^ + ^+..•)£„-,

1 / 19 18 \-M1 + 2-20 + 3-2Ô+---,K-2

1/19 18 \+ 12V20+     20+ ■■■)x"-3

■if 1*4        V* 12V20"1"    'Jx°-*

+

It is evident that this general expression will yield a number of formulae,

depending upon the order of the last difference of the (2&2) formula that is

taken into account:

(202)o £n = Ä2J22X„ + ^£n_1

(202),        xn = h2 J22xn + ^(2x„_1-xn_2)

(2„2)2       x„ = V   22x„ + — (59xn_! - 58xn_2 + 19*«_,)

(202)3       xn = h2   22x„ + — (77x„_x - 112x„_2 + 73xn_3 - 18x„_4)

and so on, where (202)m includes the effect of 8mx.

I am greatly indebted to Professor W. E. Milne and Dr. Gertrude

Blanch, of the Institute for Numerical Analysis, for advice and comment

on this paper. A part of the work was done while I was on the Institute staff

and so had support from the Office of Naval Research.
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Formulas for Calculating the Error Function
of a Complex Variable

1. Various methods have been suggested for the computation, to high

accuracy, of the error function 3>(Z) = f<?e~uldu for complex arguments

Z = X + i Y. The Maclaurin series is convenient for extreme accuracy only

when \Z\ is small, and the asymptotic expansions1 are useful only for fairly

large values of \Z\. Other less elementary methods (e.g., the Airey con-

verging factor,2 or the continued fraction expansion1) have limited success

in certain regions of the Z-plane. The most convenient methods for calcu-

lating $(Z) to very many figures are described in the works of Miller &

Gordon3 and Rosser.4 It is the purpose of this note, which is self-contained,

to present in a concise and practical form, two schemes for the computation

of $(Z) which follow the main ideas of Miller, Gordon, and Rosser.

2. The basis of the present methods is the following formula :

00 00

(1) £  exp ( —(w + raa)2) = 7r}a-1   £   exp ( — »Vo-2) cos (2mru/a)
n=—oo n=— oo

which is an immediate corollary of Poisson's formula.6 Formula (1) is also

essentially Jacobi's imaginary transformation,6 which has long been familiar

to a number of mathematicians and physicists.7'8 Also, (1) was used by

Dawson9 in his computation of SoY e"2du. Two different methods for calcu-

lating $(Z) are given here in 4 and 5. In all formulas, summations are from

1 to « except where otherwise noted. The symbol = will denote approximate

equality.
3. Dawson's formula for f<? eu2du is needed in the second method. It

follows from the approximate equality obtained from (1), which is

(2) e"2(l + E) = air-*(l + 2 £ exp (- a2«2) cosh 2nau),        a ^ 1

where the relative error E = 2 £ e_"2,r2/a2 cos (2mru/a), is of the order of

magnitude of 2e~'r!/t'\ since 2e_4T2/<l2 is very small by comparison. Approxi-

mate values of E are given in the following table :

a      1        0.9        0.8 0.7 0.6 0.5

E    10-4    10-6    i-10-6    è-10-8    1-10-"    f-10"17

Putting a = \ in (2) Dawson obtains

(3) e"2 = «-KÍ + £ e~"2'4 cosh nu),

the relative error in (3) being less than 2-10-17. Then integration of (3)

results in

(4) J     C'du = x-*(i Y + £ »-1 exp ( - w2/4) sinh n Y).


