The above mentioned tables occupy 53 pages. Then come 6D tables of values of C_n , θ_n , \overline{C}_n , $\overline{\theta}_n$, P_n , Q_n , R_n , S_n where

$$G_{n} + iF_{n} = C_{n} \exp \left(i\{x - \frac{1}{2}\pi n + \theta_{n}\}\right)$$

$$F_{n}' - iG_{n}' = \bar{C}_{n} \exp \left(i\{x - \frac{1}{2}\pi n + \bar{\theta}_{n}\}\right)$$

$$F_{n} - iG_{n} = \left(-Q_{n} + iP_{n}\right) \exp \left(i\{x - \frac{1}{2}\pi n\}\right)$$

$$G_{n}' + iF_{n}' = \left(R_{n} - iS_{n}\right) \exp \left(i\{x - \frac{1}{2}\pi n\}\right).$$

These functions are given for y = 1/x in the range 0 to .1 at varying intervals .01, .005, .002, and δ^2 .

Finally, there are 6D tables of f_n , \bar{f}_n , g_n , \bar{g}_n for n = 1(1)6, and x = [0(.05)m, 6D], δ^2 , *m* varying from 2 to 5.35.

R. C. Archibald

Brown University Providence, R. I.

MATHEMATICAL TABLES-ERRATA

In this issue references have been made to Errata in RMT 865 (GRUBBS).

181.—R. L. ANDERSON & E. E. HOUSEMAN, Tables of Orthogonal Polynomial Values Extended to N = 104 [MTAC, v. 1, p. 148-150].

A recalculation of this table reveals the following complete list of errata

Page	Line	n	For	Read
615	14	31	broken type	- 585
618	22	39	496388	4496388
	14	40	-3583	-2583
625	2	57	+42481	+32481
629	17	61	-2648	+2648
642	38	74	13505	135050
649	14	81	+701925	+701935
653	40	85	- 88686	+88686
663	44	95	+2107	-2107
665	45	97	-110308	+110308
669	24	101	-26593	-26592

The last of these was reported by W. F. BROWN JR. in MTAC, v. 4, p. 222. The values given for n = 72 on p. 640, line 36 are really for n = 71. The correct values are: 124392, 966 52584, 15878 63880, 39 89066 92520, 3436 29622 27080.

JACK SHERMAN

Beacon Laboratories Beacon, N. Y.

182.—N. G. W. H. BEEGER, "On the congruence $(p-1)! \equiv -1 \pmod{p^2}$," Messenger Math., v. 51, p. 149–150, 1922.

On p. 150, p = 239 for w = 147 read 107.

This error was discovered as the result of recalculation and extension of Beeger's table of Wilson's quotient to p < 1000 by use of the SEAC. K. GOLDBERG

NBSCL

183.—H. T. DAVIS, Tables of the Higher Mathematical Functions. V. 2, Bloomington, 1935.

Table 38 of log E_n , p. 298

n	for	read
11	6358	6400
37	9184	9084
12	0201	0301
14	3908	3907

32 Boulevard Saint Michel Paris, France

184.—R. E. GREENWOOD & J. J. MILLER, "Zeros of the Hermite polynomials and weights for Gauss' mechanical quadrature formula," Amer. Math. Soc., Bull., v. 54, 1948, p. 765-769 [MTAC, v. 3, p. 416].

The above table was compared with our similar 13-place manuscript table. Apart from a few discrepancies of only a unit in the last place, the following errors were found in the weight factors:

page	n	for	read
768	7	$\lambda_3 = 0.000 \ 971 \ 781 \ 258$	$\lambda_3 = 0.000 \ 971 \ 781 \ 245$
	10	$\lambda_4 = 0.001 \ 343 \ 645 \ 77$	$\lambda_4 = 0.001 \ 343 \ 645 \ 75$
			H. E. SALZER
			R. Zucker
			R. E. Capuano

NBSCL

185.—Z. KOPAL, "A table of the coefficients of the Hermite quadrature formula," Jn. Math. Phys., v. 27, 1948, p. 259–261 [MTAC, v. 3, p. 473]. On page 260, corresponding to n = 18, the sixth value of p, for 0.000051 59 read 0.000051 80 H. E. SALZER R. ZUCKER

R. E. CAPUANO

R. LIENARD

NBSCL

186.—M. KRAITCHIK, "On the divisibility of factorials," Scripta Math., v. 14, 1948, p. 24–26 [MTAC, v. 3, p. 357–8].

P. 25, n = 18, for 108514808571661 read 226663.478749547

[The fact that this large "prime" factor of 18! - 1 is composite was proved by A. Ferrier, letter of 16 Nov. 1950, who showed that (for $N = 108 \cdots 661$)

 $2^{N-1} \equiv 5107\ 05663\ 62894\ (\mathrm{mod}\ N).$

The problem of factoring N was proposed during a demonstration of the SWAC on 29 Jan. 1951. The factor 226663 was discovered by the SWAC in 25 minutes running time. D. H. L.]

82

187.—NBSMTP Table of Natural Logarithms. V. 1, New York, 1941. P. 184, x = 18254 for 9.18213 read 9.81213 LINDLEY M. WILSON

NBS

188.—WILHELM MAGNUS & FRITZ OBERHETTINGER, Anwendung der elliptischen Funktionen in Physik und Technik. Berlin, 1949 [MTAC, v. 4, p. 23].

> P. 113, col. 4, last line. For 1,26928 read 1,29628 T. J. HIGGINS D. K. REITAN

Univ. of Wisconsin Madison

189.—A. REIZ, "On the numerical solution of certain types of integral equations," Arkiv Mat., Astr. Fys., v. 29A, no. 29, 1943, 21 p. [MTAC, v. 3, p. 26.]

On p. 6, Reiz tabulates $\pm x_i$, p_i and α_i , where x_i are zeros of the Hermite polynomials, p_i are $\pi^{-\frac{1}{2}}$ weight factors, and α_i are weight factors $\exp(x_i^2)$, for n = 2(1)9. The following errors of more than a unit in the last (7th) decimal place were found:

	for	read	
n = 3,	1.3239316	1.3239312	
n = 4,	1.2402244	1.2402258	
n = 5,	1.1814877	1.18148 <i>86</i>	
n = 6,	1.3358489	1.33584 <i>91</i>	
	0.9355808	0.9355806	
	1.1368912	1.1369083	
n = 7,	0.89718 <i>39</i>	0.8971846	
	1.1013979	1.1013307	
n = 8,	1.9816 <i>821</i>	1.9816568	
	0.866 <i>8381</i>	0.8667 <i>526</i>	
	1.071 <i>8011</i>	1.071 <i>9301</i>	
n = 9,	0.8417403	0.8417527	
	1.04 <i>49691</i>	1.0470036	
		H. E. Salz	ER
		R. Zucker	

R. E. CAPUANO

NBSCL

UNPUBLISHED MATHEMATICAL TABLES

[EDITORIAL NOTE. The Mathematical Tables Committee of the Royal Society wishes to announce the establishment of a depository of unpublished mathematical tables in the library of the Royal Society. Lists will be published periodically of the tables which have been accepted. The tables will be available for examination in the library and it is proposed to arrange for photo-copies to be supplied as a reasonable charge to those who desire them.