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Appendix II. Glossary.

n    the number of component sentences in the complete schema.

pi   the jth component sentence.

dj, bj, etc.    the jth component schema of order 1, 2, etc.

c    the number of connectives in the schema.

T    estimated computing time in seconds.

1 (or 01)    in the proper context the truth value of a true sentence.

0 (or 00)    in the proper context the truth value of a false sentence.

x(B)y   y is to replace x wherever x appears.

(h)    address in the memory of the number h.

C(M)    contents of the memory box M.

~    It is not the case that . . .

a     ... and . . .

v    . . . or . . .

->    If . . . then . . .

<->    ... if and only if . . .

x   For every x . . .

Wilton R. Abbott

Univ. of California
Berkeley

1 Edmund C. Berkeley, Giant Brains, New York, 1949, Ch. 9.
2 George W. Patterson, Logical Syntax and Transformation Rules. Moore School of

Electrical Engineering, Research Division Report 50-8, Univ. of Pennsylvania, Phila-

delphia, 1949.

On the Accuracy of Runge-Kutta's Method

1. Introduction. While the accuracy of the most frequently used methods

of integrating differential equations is fairly well known, that of the Runge-

Kutta method does not seem to be too well established ; except for a formula

in Bieberbach's text1 on differential equations there are no references per-

taining to the error inherent in the Runge-Kutta method to be found in the

standard textbooks on this subject.

Since this method may be employed quite advantageously in many cases

of practical interest it is important to have on hand an estimate of the error.

The purpose of the following sections is to provide such an estimate. As a

comparison shows, the bound derived for this error seems to be somewhat

better than the one cited by Bieberbach.

2. Runge-Kutta's Fourth Order Method. In trying to find that solution

of the differential equation

(1) dy/dx = f(x,y),       y(x0) = y0,

at Xi = xq + h, which agrees with the exact Taylor expansion about xo :

(2) y(Xl) =ya + hy0' + ¥{y," ¡2) + h3(y0'"/6) + A«(yolT/24)

+ Ä6(yo7l20) + • • •
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up to the term in A4, Runge and Kutta developed the following formulae:

(3) y{Xl) « y„ + (*i + 2h + 2k3 + kt)/6,

h = hfo,        /o m f(x0, y<¡),

k2 = hf(x0 + A/2, yo + ki/2),

¿3 = hf(x0 + A/2, y„ + fe/2),

£4 = hf(xa + A, y0 + k3).

To get an estimate of the truncation error inherent in this procedure, one

may apply the method first to an interval of length Ai = A, and then

integrate over two consecutive intervals of length A2 = A/2. Having the

results Yx, F2 of these integrations it is easy to obtain an estimate of the

error of the second integration : Since the values Yx, F2 differ from the exact

value yi by certain errors Ex, E¡:

Yx = yi + Ex,        F2 = yx + £,,
where

Ei = Chx\       E2 « 2CA26 = Ex/16,
obviously

(4) Et « (Yi - F2)/15.

3. Calculation of the Error Term. A more accurate estimate of the error

is obtained by a comparison of the exact coefficient (yo°/120) of A6, as it

occurs in the Taylor expansion (2), with the approximate one resulting from

Runge-Kutta's algorithm (3). Suppose equations (3) have been expressed

in the form

y(xx) = y0 + Cxh + C2h2 + Qh3 + C4A4 + C6A5 + • • •

Then & = y<F>/i\, i = 1, 2, 3, 4,

(5) C6= (yoV5!)+e,

and the following considerations are concerned with the determination of «.

In computing the successive total derivatives of a function u = u(x, y{x)),

y' = f, it is helpful to make use of the operator2

D m d/dx + fd/dy.

This operator has the following properties:

n

Dn = E (î)fdn/dx"-kdyk,

. D(Dnu) = Dn+1u + n{Df)D"-luv,

(6) D°u = u.

Let us now apply the operator D to f(x, y(x)) and use the abbreviating

notations
T" = Dnf,        S" = Dnf„.

Then (6) may be expressed as

D(T") = T-+1 + nTS"-\

( } DS = S2 + Tf„.
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Applying (7) repeatedly we get

y' = f
y"  = Df =   T

y"> = D(T) = r2 + Tfy
yiv = D(T2 + Tjj = p(ji) + D{T)fv + TS

= T3 + fvT2 + 3ST + Tf2.
Similarly,

y = t* + fvT* + 6T& + 4-sr2 + /„2r2 + 3/„v(P)2 + yysr + /.»r,

with (P)2 = (Df)2.
The expansions of the Runge-Kutta's expressions (3) are somewhat

more laborious to calculate. First we find that

A2 = A/(xo + A/2, yo + h/2) - A[/ + (A/2)/, + (Ai/2)/,

(8) + i((Ä*/4)/« + 2(h/2)(kx/2)fxv + (kx2/<L)M + • • • ]

= Ai + (P/2)A2 + (P2/8)A3 + (P3/48)A4 + (P4/384)A6 + 0(A6).

Here, as well as in the following, the arguments of / and /„«y are #o, yo.

Next we compute

A3 = hf(x0 + A/2, y0 + A2/A) - A[/ + (A/2)/, + (A2/2)/„

+ h«h2/4)U + 2(A/2)(A2/2)/rv + (A22/4)/vv) + • • •]

= h\J + (1/2)(A/, + A2/„) + (l/8)(A2/„ + 2AA2/*V + h2fvy) + •••].

It is convenient to introduce here the operators:

d = hd/dx + kid/dy,       i = 1, 2, 3,

Uin m Gi"f = (hd/dx + hd/dyYf.

In terms of the Uin we may write

(9) h = A[/ + (I/,/2) + (W/8) + (W/48) + (W/384) + .••]•

In order to express A3 in powers of A we notice from (8) that

A22 = Ax2 + fTh' + (1/4) (P + fT2)¥ + 0(A6).

Further,

A23 = A!3 + (3/2) fTh4 + 0(A»),

A24 = kx4 + 0(hJ>).

Consequently,

Ux = Ar

U2 = hfx + A2/„

= Ux + (1/2) fvTh* + (l/8)/BP2A3 + (l/48)/„r3A4 + 0(A6)

U22 = Ux2 + TSh3 + (1/4) (ST2 + P/„„)A4 + 0(A6)

u2* = w + (3/2) rs*A« + 0(W>)
U,* = Ux* + 0(A5).

Therefore, by (9),

(10) A3 = kx + \Th2 + A33A3 + A34A4 + A36A6 + 0(¥),,
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with

A33 = (2Tfv + P2)/8

AM = (3fyT2 + 6ST + P3)/48

Ass = (4/„P3 + 12(SP2 + Pf„ + TS2) + P4)/384.

Finally we compute

A4 = hf(x0 + A, y0 + A3)

(11) = A[/ + A/, + As/, + h(h2fxx + 2hk3fxy + k32fyy) + • • • ]

= AC/ + U3 + (U32/2) + (W/6) + ( W/24) + •••]•

Since, by (10),

A32 = (Ai + (P/2)A2 + A33A3 + ■■•)2

= kx2 + JTh? + (1/4) (P + /A33)A4 + 0(A5),

A33 = A23,       A34 = A24,

there result the following expressions:

U3 = hfx + A3/„

= Z72 + (1/4)P/V2A3 + (1/16) fy(fyT2 + 2ST)h*

W = W + (l/2)STfyh*
W = W,        U,* = i/24.

Thus it follows from (11) that

(12) A4 = kx + Th2 + A43A3 + A44Ä4 + A45A5 + 0(h6),

with

A43 = (l/2)(Tfv + T2)

A44 = (l/6)(6A33/v + 35r+r3)

A45 = (1/24) (24^/. + 5A33) + 3Pfyy + 6TS2 + P4).

In the Runge-Kutta expression (3) the coefficient C6 of A6 is thus found

to be

C6 = (A16 + 2A26 + 2A36 + A46)/6

= (36Pfyy + 60TS2 + 72fvST + 36ST2

+ 12f2T2 + 8/„P3 + 10P4)/1152.
It follows that

e = C, - (yoV120)

= (- 12P/„3 + 9Pfyy + 3TS2 + 6STfy - 3ST2

+ 3f2T - 2/,P3 + (P4/2))/1440,
or, more explicitly,

e = C- 12P// + 3(J2 - S)fxx + 3(2Tfy + 2//„2 - 2/5 - ffVy)fxy

(13) + 3(3P + 2Tffy + ff2 - ffyy)fyy - 2fyfxxx + 3(fx - ffy)fxxy
+ 6ffxfzyy +(T+ 2fx)ffyyy + (P4/2)]/1440.

4. Estimate of the Error. Let it be assumed, now, that in a certain



132 ON  THE ACCURACY  OF  RUNGE-KUTTa'S  METHOD

region B(x, y) containing (x0, yo)

) \f(x,y)\<M,

K   ' |/xvl <L»>/M*-\

where M, L are positive constants independent of x, y. In that case clearly

\T"\ < £ e})M>(L"/M>-1) = M(2L)"

\S"\ < Ê (f)M'(Ln+yM¡) = L(2LY,    \P\ < (2ML)2.
i-o

By (13), then

(15) |£| ■ |«A61 < (73/720)ML4A5.

To calculate a suitable value of L one may first compute bounds

Li,k for l/iVl, then define quantities

Li+j = max C(P^-,oW<¡+'\ (Li+j^,x)^i+'\ (MLi+j^,2yia+fí, ...,

(Mi+'-1L„,i+y)I«i+'>],
for i + j < 4. Then one may put

(16) L = max (Llt L2, L3, Lt).

5. Example. Let us consider the differential equation

y' = x + y,       y(0) = 0,

and restrict x, y to 0 < x < 0.2, 0 < y < 0.2. The exact solution is

y - e* - x - 1, so that y(0.2) = 0.02140276. For Ai = 0.2 Runge-Kutta's
method gives Yx = 0.0214, for A2 = 0.1 it gives Y2 = 0.02140257. Now for
the above example we may take M — 1, L = 1, so that for A = 0.2, by

formula (15),

|£| « (1/10)(2/10)6 = 0.000032;

actually the error is less than 0.000003. According to the expression ex-

hibited by BlEBERBACH1

(17) \E\ <6MN¥\N& - 1\/\N - 1\,

where |/| < M, |/«y| < N/M*'1, and, further, hN < 1, aM < b, where
|ac — aco| < a, \y — yo| < b. With TV = 1 formula (17) leads to

|£| < 0.0096,

which is considerably larger than the error estimate obtained by (15).

6. Systems of Equations. For a system of differential equations

yi = Mx, yx, y2),      yi(x0) = y.o,      i = l, 2,

the Runge-Kutta formulae become:

A¿i = A/o,   /o = fi(xt>, yio, y2o)

A,-2 = hfi(x0 + A/2, y« + An/2, y20 + A2i/2)

(18) A« = kfi(xo + A/2, y10 + A12/2, y20 + A22/2)

ku = hfi(x0 + A, yio + Ai3, y2o + A23)

yi(xx) = yi0 + (1/6) (Aa + 2A,-2 + 2A,-3 + ku).
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Proceeding in the manner described in the foregoing sections for the

case of a single differential equation, and making use of the abbreviations

R" = D"fz,    t" = Dng,    <7n = D"gy,    p» = D"gz,    x m Cr]2

one obtains for «i = G6 — yv(xo, yio, y2o)/120 the expression

1440*1 = (P4/2) - 2(/„P3 + /.r») + 3CP2(/„2 + te») + r2(fyfz + ¿g.)]

- 3(ST2 + Rr2) + 12C5(P/„ + t/.) + R(Tgy + T&)]

- 6CP(5/, + *f.) + r(Rfy + p/,)] + 3(TS> + rP2)

+ 9(P/W + 2Trfyz + */„)

- 12CP(/,3 + f,gy(2fy + gz)) + rfz(f2 + fygz + fa,)]
- 15/^(P2g + r2/).

Assumptions similar to (14) now permit one to get a bound for «s A5.

If, namely, near (x0„ yxo, yK),

\f<\ < M,        \d,p+,>+rfi/dxi>yxqy2r\ < LJ,+"+r/M"+'-1

for 0 < p + q + r < 4, it is found that

(19) | £¿ | < (973/720)ML*h\

For the differential equation y" — y = 1, y(0) = 0, y'(0) = 1, which is
equivalent to the system y/ = y2, y2' = 1 + yx, yi(0) = 0, y2(0) = 1, the

solution is y = e1 - 1. Thus y(0.1) = .1051709. With A = 0.1, R.K.'s
method gives y(0.1) = .1051707, whence E = 2-10-7. In the region 0 < x
< 0.1, 0 < yi < 0.11, 0 < y2 < 1.11; above estimate (19) asserts that

| P,-1 < 1.5-10-5.
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