
The Use of Exponential Sums in Step by Step
Integration

Introduction. In the step by step numerical open integration of a system

of ordinary differential equations

(1) ¿i = /i(zi, •••,z„, 0

/i(zi, • • •, 2„, t) is regarded as a function of t, F(t), whose values are known
rt+b.

at t, t — h, • • •, t — (n — \)h and for which F(t) dr is desired. It is

customary to assume that F(t) is a polynomial of degree n — 1 whose

coefficients are determined by the given values of F, i.e., the values at

t, t — h, • • •, t — (n — \)h.x If the polynomial F(t) is specified by these
conditions, then the desired integral is a linear combination of the values

F{t),F{t-h), ■■■,F{t-{n-\)h).
Greenwood2 has pointed out that the polynomial assumption for F(t)

may not always be the most desirable one. In particular it might be assumed

that F{t) is a linear sum of exponentials and still obtain that the integral is

a linear combination of the values F(t), F(t — h), • ■ •, F(t — (n — \)h) with

coefficients independent of t. The authors also were led to this conclusion

by their own previous work.3

Sections 1-5 constitute a discussion of practical procedures and contain

a description of the results obtained. Sections 6-9 contain the proofs of

the results. The present discussion is for an individual step. The final total

error effect on the solution and stability considerations is not given.

1. In an open integration procedure, the expression

(2) h(a0F(t) + aiF(t - h) + ■ ■ • + an-iF(t - (n - l)h))

Xt+h
F(t) dr. The error e{t) is given by

(3)   «(/) = h(a0F(t) + aiF(t - h) + • • • + a„_!F(i - (« - \)h))

•t+h

-f F(r)dr.

This error function is linear in F(t) and hence if it is zero for F(t) = C";

i = 1, • • •, n, it will be zero for any F that is a linear combination of these

exponentials. The condition that e(t) be zero for F = ent can be written in

the form

(4) oo + aie-"* + • • • + o„-1e-"'(n-1"' = (e"<* - lftiift)**

when one cancels out e'" and divides by h. Letting ¡c,- = e~'*h, one obtains

the equation

(4')      a0 + aiXi + chxx* + • • • + a„_Ä"_1 = — (1 —#<)/{ x< In *,•}.

These equations for n different ?, will yield n linearly independent equa-

tions in ao, alt • ■ -, a„_i since the determinant of this system is the Vander-
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mondian

(5)

It «it ••■ *in-l

1   y     • • ■   xJ n-l

= TL(xi- Xj).

Notice that the a,- depend only on the product Vih.

In the step by step integration procedure an open integration is used first

to obtain from the function values at t, t — h, • ■ ■ ,t — (n — l)h, a set of

values of the unknowns zt- and fi at t = t + h. One uses the new values at
rt+h

t + h in a "closed" integration formula to recompute   I       F(j)dr. While

this method may have certain disadvantages in general, the authors have

employed alternate open and closed steps to obtain a simple estimate of

the truncation error with a minimum of computation.3 In a closed inte-

gration step F(t + h) is assumed to be known and the approximating func-

tion to I F(t) dr is h[b„F(t + h) + hF{t) + ■ • ■ + bn-iF(t - (» - 2)A)].

Thus the error of the closed procedure ec(t) may be written

(3c)    ec(t) = hlb0F(t + h) + b!F(t) + ■■■ + bn^F(t - (« - 2)A)]

•t+h

f F(r) dr.

The bi are chosen under the assumption that the error is zero for

F(t) = eHt; i = 1,2, •••,«. This leads to the system of equations

(4c) bo + he-"* + ■ ■ ■ + bn_1e-"<-n-m = (1 - e-"<h)(Vih)-1.

Unless otherwise stated the subsequent discussion refers to the open

integration procedure.

2. One may wish to consider the same value v¿ more than once in the

enumeration of the v¿. For instance, one might want a certain frequency vo

to appear three times among the c„ i.e., one might set v0 «■ Vi = j^ «■ v3.

It will be indicated below that this will yield superior accuracy for fre-

quencies near v0. Higher order contacts for various frequencies may be

obtained as follows. Suppose in equation (3), F(t) = ext. Let the error e(t)

be expressed in the form he(\h)ext. Then by certain obvious cancellations,

equation (3) yields

(6)        e(XA) = aa + aitr*" + ■■■ + an-Xe-^-^h - (eXh - 1)(XA)-*.

The previous discussion established  e(\A) = 0 for X = v\, j>2, • • •, vn. Now

for a double v it is clear that e(vh) = 0 and — e(XA)        = 0.  «(XA) may

•\ j

be considered a function of u where u = XA and — = A-7- e(u) = he'Cu).
d\ du

Thus the partial derivative condition is equivalent to de(u)/du = 0.

Other functions of u may be used as independent variables and here it

is quite convenient to introduce x = e~u. Then

(6') «(*) = at + axx + ■ ■ ■ + an-ixn~l + f(x)
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where

(7) /(*) = (1 -x)(xlnx)-1.

The condition de/du = 0 is equivalent to de/dx = 0, and the system of

equations de/du = 0, d2e/du2 = 0 is equivalent to dt/dx = 0 and d2e/dx2 = 0.

Similarly if va = vi = y2 = j% let Xi = e~'ih. The first three equations

e(xi) = 0, e(xz) = 0, e(x$) = 0 of type (6') may be replaced by the three

equations t(x) = 0, dt/dx = 0, d2t/dx2 = 0, at x = x¡.. Hence, we may use

the three equations

a0 + axxi + ■ ■ ■ + an-iXi"-1 = — f(xi),

(8) oi + 2a2X! + • • • + an-An - IK1-2 = - f'{xx),

2<z2 + 6a3Xl + ■■■ + a„_i(« - l)(n - 2)xx"-3 = - /"(*i),

to determine the a¿ instead of the first three equations of (4'). It is clear

how multiplicities in frequencies other than X\ can be taken care of by

similar methods. One can readily show that the determinant of the new

system is not zero.4

The use of the equations (8) is generally the most convenient way to

determine the a,- when they are subject to a multiplicity condition. The

conditions

/ v de d"-1«
€(M)=0,-=0, •••,^ = 0    for   .-0,

are readily seen to be precisely the condition that e{t) = 0 for F = Í, t, t2,

• • •, tn~l. Thus the polynomial case is included in the above discussion

provided multiplicities are considered. The final results of this paper are

not affected by letting a number of the frequencies coincide and from the

practical point of view, multiple frequencies may be used whenever it is

convenient.

3. The foregoing method of integration can be effectively applied to

functions of the form

(9) F(t) = ¿ C^< + «r(0
;'=i

where o(t) is small but otherwise arbitrary. From equation (3) it is seen

that the error made in integrating the function F by the above method is

(10) e(t, F) = h ¿ CXXjA^ + e(t, o),

the significance of the double argument being clear. e(X;A) is given by

equation (6).

The error may be estimated by equation (10) provided e(XA) for

X = Xi, • • •, Xr and e(t, a) are studied. The terms of the summation are then

readily estimated since |cxt| is given by exp (/Re (X)). «(XA) is evaluated

as follows. Suppose that the integration method is precise for step A and

complex frequencies v\, • • ■, vn. Now let

y  =   e-XA  —   \t      yf a,  e~"jh _   1#
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Then

(11) e(XA) = (-l^+Tn (y - yj)\(An + An+tSt,n+1 + An+2S2,n+1 + ■■■)

where

(12) &.*+•! -       Z       y-yi« ■ ■ ■ y«an
O0+O1+ • • '+an=k

and the Ai are given by the series

(13) y((l + y) In (1 + y))-* = A0 + A& + A,y2 + ■ ■ ■.

(Cf. Theorem I of §7 below.) The Ai may readily be calculated since

y[(l + y) In (1 + y)]-1 = £ (1 + y)~rdr.

If the integral is expanded by the binomial theorem and integrated term

by term, one obtains6

An = -^^-" f\(r + l)(r + 2) • • • (r + (n - 1))
n\    Jo

The first eleven values of At are listed below.

dr.

At = 1 At  = .31559
At = -.5 A-,  = -.30422
Ai = .41667 A»  = .29487
A3 = -.37500 A»  = -.28698
Ae = .34861 A«, = .28019
Ai = -.32986

The Ai decrease monotonically in absolute value, and alternate in sign.

An expression for an overestimate of

An + An+\St, n+l + ^4n+252, n+l +  ••'•

can readily be given. Suppose there is a F, 0 < Y < 1, such that \y\ < Y

and   |y,| < F for j = 1,2, •••,«.   Then  Lemma  2  below  shows  that

|Ä,n+1| <(n~l~k)Yk- Then

|4» + ¿„+iSi,n+1 + ¿„+2S2.„+1 + • • • | < \A»\ (1 + (n + 1)F
+ (n+l)(« + 2)(2!)-'F2+ •••) = [¿»1(1 - F)-<»+i>.

Thus the error is

(14) KXA) <rÔb-yil] 1^.1(1- y)-»-k

However this overestimate may be inconvenient when F is rather close

to unity, in which case the original formula (11) will probably give a much

smaller estimate.

n

We note the effect of the factor JJ | y — y¡ \. Since y — y¡ = e-XA — e~"h,
;-l
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if XA and vji are small, this difference is similar to A|X — Vi\ ; consequently

»
this factor is essentially A" FJ |X — v¡\. The original objective of this inves-

j-i

tigation was to establish that the error goes to zero like AB+1. Otherwise a

favorable comparison with the known results on polynomial integration

could not be established.
It should be emphasized that the above results hold even when a number

of the vj and consequently y¡ are equal. For a v0 which occurs r times, we

have a factor | X — v0 \T in II, which indicates a small e for X near v0.

On the other hand one can also take care of the case in which a par-

ticular Xy has multiple weight in the expression (9) for F. For instance,

if X has double weight, one finds a term Cteu in (9) replacing some term

Cjex''. This new term Ctext can be written d(Cex,)/dX and consequently in

equation (10) instead of Cjt(\jh)ex,t, there appears

a(Ci(XA)exO/dX.

Higher weights for X will correspond to higher partials with respect to X

in the obvious manner.
A similar investigation of the closed integration procedure yields the

result

tc(\h) = (-l)"+1["n (y - yi)\(Bn + Bn+tSt.n+t + Bn+2S2,n+i+ ■ • -)/(y+ l)

where the 5,-,»+i, y, y i are defined above. B¿ = Ai + Ai-i,B0 = A0. (Cf.
Corollary of Theorem I below.)

The important properties of closed integration are present in this result. It

can be shown by a gross approximation that for « > 1, \B„\ < |4„|/(« — 1)

and B„An < 0. For n — 1 ^ 1, the error of the closed integration pro-

cedure is materially smaller than the error of the open integration and of

opposite sign. Two purposes are thus achieved by following an open inte-

gration by a closed integration. The error is reduced and a good step trun-

cation overestimate may be found.

The error effect due to the function <r is calculated in Theorem II. An

overestimate similar to those above is given in the Corollary.

4. The use contemplated for this type of integration is the solution of

a system (1) in which the functions /¿(zi, • • •, z„, t), when obtained as func-

tions of time, Fi(t) are of the form (9). In such a use, the complex frequencies

X; are not known until the numerical work has been done. On the other

hand, one may have initial estimates of reasonable accuracy and the above

results indicate that one might well use these initial estimates either as the

Vi directly or to indicate a region in which the v¡ can be chosen to determine

the constants a¿ used in the integration. This means of course that the set

of Vi must be chosen in advance of the integration. One hopes that the

choice of the set of Vi is such that for each frequency X in the F¿ there is a

vj such that the factor | X — v¡\ will be small. If the set of X has many more

elements than the number of vj permitted by practical considerations, a

multiple vj may have to compensate for a number of X.

In iterative procedures, an open integration is used'to yield the first step

values of the unknown z at / + A. These z are used to compute the / at
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t + A and these values of / are then used to obtain a new value of the

increment in z for the interval (t, t + A). The resulting new values of z

may be used to recompute the /. This process may be repeated until no

significant change occurs. But the result even then is not perfect.3 If the /,-

are complicated, the amount of work involved may be proportional to the

number of iteration steps and better accuracy may be available from a

procedure of simple open integration doing the same amount of work for

the same interval of the independent variable but using a smaller step A.

Thus, for example, an open step followed by a closed step for A = At may

yield a result less accurate than two open steps of length A = At/2.

On the other hand, in order to use the closed integration procedure to

estimate the truncation error, i.e., to take advantage of the fact that in

general the error for the closed integration has the opposite sign to that of

the open and much smaller, one need not recompute the /. The / obtained

by substituting the results of the open integration from / to t + A can be

used to obtain the Az increment for the closed step from t to t + A and also

the increment for the open integration from t + A to / + 2A. After the

comparison between the increments Az from the open step and the closed

step for the interval t to / + A, the closed increment is ignored and the open

process is continued.

It also should be pointed out that the true open truncation error is not

given by equation (3) under these circumstances but by

HO = e(t, F) + I
t+h

(F(t) - f{zt, r))di

where the / is from equation (1) and Zj, • • -, z„, are true solutions of the

system of differential equations which agree with the computed solutions

at /. However, in general, for a fixed frequency, T(t) may be obtained from

e(t, eu) by means of a factor which is close to one when u = XA is small.

A similar situation exists for the closed integration truncation error. (Cf.

references in footnote 3.) The stability of these integration procedures

should also be considered.

5. In the appendices to this paper appears certain supplementary mate-

rial of an illustrative nature or designed to assist the application of the

results. In view of formula (11), above, one would normally require that

|y| «1 for every frequency X present so that «(XA) will be small. This

yields an upper bound for the A's which one can use. A quick way of finding

this upper bound is indicated in Appendix 1. Since the determinant of the

system of equations (4) is small, a straightforward numerical elimination

will involve a great loss of accuracy in the computation of the at. Practical

formulas for the accurate calculation of the at are given in Appendix 2 with

a method of successive improvement. Appendices 3 and 4 contain numerical

results which illustrate the theory.

6. In order to evaluate effectively the error it will be necessary to con-

sider briefly the higher Vandermondians, i.e., determinants of the form

(15) Vt(xu •••j*:B) =

i,xt, xt2, ■■■,xtn-2, xi"-1+*

1,*2,  *22,   •••,X2"-2,  X2n-1+k

1     <v*       -v   2     ...     v   n—2 ?v   n—1-fifc
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To study this we must consider the result of taking successive divided

differences of powers.

We define
[*1, X2]n  =   (*2n — Xtn)/(X2  — Xt)

[Xi,  • ■ -, Xr]„ =  ([*!,  • • -, Xr_i]„ —  [Xt, X2,  ■ • •, X,_i]n)(xt  - X,)"K

Lemma 1. For r < n,

(16) [xi,  • • -, X.]n  = E X^Xf  ■ ■ ■ Xrar
a\+a2+ • - -+ar=n—r+1

(in this summation a, = 0, 1, 2, • • •). For r = n + 1,

(16') [*i, • ••,*„+!]„ = 1

and for r > n + 1,

(16") Dclf ••-,*,]» = 0.

For r = 2, we see immediately that

[Xl, X22n  = E        Xt^Xf*.
flrl-H*2=n—1

In general, if the formula for r < « is true for r — 1, we have

[Xt,  • • •, X,-t~]n = E Xi^Xi"1- • -X?Z}
oi+ •. •+<*,—l—n—r+2

n-r+2 / V

=   E *iai( E *!••••-xSt?)
ai=0 \0f2+ • • •+£»!—i=n—r+2—ai /

-   E «H E *»«»••-«ES)
ou=l \a2+...+Oi—l=n—r+2—Ol /

+        E        «j01--•*£:}.
02+ • • .+a,—i=n—r+2

Then we'form ([xr, x2, • • -.ïm]« — [*i, *2, • • •, *r-i]„)(x, — *&*,

\_Xit * , Xr—li Xrjn

n—r+2

=      E     ((*/"'  - *ial)(*r - Xt)-1) E Xs"1--'*^!
ai=l asH-ha,—l—n—r+2—ai

= " Z (    E    *i**r*Y E xs^-.-x^rA.
«1-1    \ßl+ßr=ai-l / \<«+-• .+ar-l-n-r+2-ai /

Every monomial obtained by expanding this expression has

ßt + ßr + «2 + • • • + o¡r-i = n — r + 1,

and conversely, every possible term of this type occurs. Consequently for

r < n

(17) [xj, • • •, xr_i, xr]„ = E xtaixf*- • «xra'.
ai+* • •+arDB~-r+l
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To prove the remaining statements, let r — n. Then

[xi, x2, • • •, x„]„ = Xi + x2 + • • • + x„

and
([xn+1, X2, • • -, X„]„ -  [Xi, X2,  • • -, X„]„)(x„+i - Xi)-1 =  1.

The result for r > n + 1 is obvious.

The definition of [xi, • • •, xr]„ can be extended to the cases of multiple

x< by means of equations (16), (16'), and (16").

Lemma 2.   For r < n -f- 1, the number of terms in the expansion of

rjxi, • • •, xr]„ is the binomial coefficient I     _ .  I .

Subject to the condition, at + ••• -\- ar = n — r-f-1, one has as many

ways of choosing at, • • • ,aT as one can arrange n — r + 1 different things

in r groups, blank groups being admissible. This last is the specified bino-

mial coefficient.*
Now the higher Vandermondians may be evaluated.

F*(xi, • • •, x„) =
l,x2,

n—2    v n— l+k

. „n-l+fc

•, Xi"-2, Xi

•, x2     , x2

1> Xn,

1,

n-l+t

n (xi - x,)
0,

Xt,

[Xt, X2]i,

Xi""2,

|_Xi, X2J„_2,

-l+k
Xt

[Xi, X2]„_i+t

I 0, |_Xl,  • • ■ , XnJl,   ■ • • , |_Xi,  ' * ' > XnJn-2, \_Xl,  • ' ' , X„Jn_l+J;

This can readily be seen by subtracting the first row of the original deter-

minant from each of the others and then factoring out x» — xi from the

tth row for i = 2, • • •, n. One next subtracts the second row from the third,

fourth, • • •, »th row and again factors out x¿ — x2 for i > 2. Continuing

this process, one will obtain the displayed result. In the second determinant

the terms below the diagonal are zero and all but the corner term of the

main diagonal are unity. Thus

Lemma 3.

(18) Vk(xt, • • •, x„) = Fo(xi, • • •, x„)[xi, x2, • • •, xn]„_i+i:.

The determinant obtained from a Vandermondian by differentiating a

row and setting the variable of this row equal to the variable of another

row will be considered. More generally, a determinant may have the same

variable in a number of rows each of which, except the uppermost, is

obtained by differentiating the one above it. For these a notation is intro-

duced which may be illustrated.

Vk({xt\ (3) \x%(2) •)

l,Xi,   Xi2,

0, 1, 2xi,

0, 0,    2,

1, x2, x2,

0, 1, 2x2,

Xi"-2

(n - 2)xi"-3

(w - 2)(« - 3)xi"-4

x2"-2

(« - 2)x2"-3

Xt
n-l+Jfc

(« - 1 + A)xi"-2+*

(w- ! + £)(«-2+ A)xi"-3+*

x2 n—l+k

(n - 1 + A)x2"-2+*
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It is clear, for instance, that

F*({xi}<3>,X4, •..,*„) =
d3

dx32 3x2
F*(xi,

and that

and

Jx2=x1, x8=zx

dx2

d2

dx2 dxz

Fo(xi, • • •, x„) = 0

_¡x2=xlr X8=Xj I= 0,     r- Vt\ =0,

F°l        =0- éFíl        =0-Jxi=Xl,Xi=X¡ OX3 Jij-1,,13-1,

a3
Consequently when       „        is applied to both sides of the equation (18)

OXs'' 0X2

and then one lets x2 = xx and X3 = Xi, all but one of the terms on the right

hand side drop out. This leads to the equation

F*({xi}<3), X4, • • •, x„) = Fo({xi¡(3), x4, • • •, x„)[xi, Xi, Xi, x4, • • •, x„]„_i+*.

This argument generalizes, hence

Lemma 4.

(19)    Vk([xi}<*>, {x2}<«>, •••)

= Fo({xi}(l,l), {x2\M, ■-•)C*ii*ii •••.^2, x2, •••]«-!+*

where x¡ occurs p¡ times in the brackets.

7. Consider now determinants similar to the Vandermondians except

that a column is omitted. The following notation will be used.

(20)       F*,((xi, ••-,*») =

Form

1, Xi,   • • ■, Xi'"1, Xii+1,   • • •, Xi""1, Xi»+*

IV        .  .   .      v   í— 1    <*•   i+1     .  •  .     v   "—1    V   n+*

E (-i)yFM(x„ ■■■,*,) + (-\)»r+kVo,t{xt, •■•,*.)
(=0

= F*(y, xi, • • •, xn) = F0(y, Xi, • • •, x„)[y, xi, • • •, x„]n+t.

Now if pt(xt, • • -, x„) is the elementary symmetric function of degree / in

Xi, X2, * , Xn,

n

F0(y, xi, • • •, x„) = Fo(xi, • • •, x„) E ( — l)'Pn-ty'-
t-t

On the other hand

[y,Xt, • • •, x„]n+i = E yaoXtai • • -Xn"»

E r ■$*-„,,
a-0
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where

Om, n   — 2w Xt      ' ' '  Xn    •
al+...+an—m

Hence

Vk(y, xt, ■■■, Xn) = V0(y, xi, ■ • •, x„)Qy, xi, • • •, xn~]n+k

-   F0(Xi,   • • -, Xn)( E  (-iypn-ßy* E y"Sk-a.n)
\ß=0 a=0 /

(n+A       min (*y, n)

E E (-^^n-^-T+ft

Thus for 0 <t < n - 1,

=0 /3=max (0,7—t)

«V-

(21) FM(Xi, ---.Xn)  =   Fo(Xi, •••,x„)(-l)i E (-l)#/>»-*W-fc„.
0=max (0,i—*)

Since the previous discussion of multiple frequencies also applies here

we have
Lemma 5.

(22) VUixil™, •••,{*,}<»>)

= F„({xi} », ■■■, [Xr] t*>)        E        (-l)"+^„-A_(+s,n.
/3=max (0,<—*)

8. The error in using the formula h[aaF{t) + • • • + an-tF(t — (n — 1)A)]
rt+h

for  I       F(/) dt can be explicitly computed for the case F(t) of the form eu.

Suppose that this error e(t, ex<) is in the form Ae(XA)eX1. Then,

(23) A[a0eXl + a»^*"« + • • • + a^-ie*»-«»-»«] - Ae(XA)eXi

= X-1(eX(i+',) - eu).

A corresponding equation holds for \ = vit i = I, ■ ■ ■, n, with e(v¿A) = 0.

Cancel the eXi from equation (23) and e"' from the corresponding equations

in the Vi. Then

(24)

at + ate~u + • • • + a„_ie-("-1)XA - e(XA) = (AX)"1(eu - 1)

a0 + aie~'1Ä + • • • + an-.itri*-l}nh = (hvi)-1(enh — 1)

ao + ate~v^ + ■ ■ • + an-iC-("-1)'"'' = (Av.)-1^ - 1)J

It is convenient to introduce x = e_x\ x¿ = e~"ih and /(x) = (1 — x)(xlnx)_1.

The above system of equations is then solved for e(XA).

t(\h) = (-lyVo-Kxi, ■■-.Xn)   l,x,   •••,*"-»,  /(x)

1, Xi,   •■ -, Xi"-1, /(Xi)

1, Xn, *, Xn        1 J\Xn)

Let x — 1 = y, Xj — 1 = y¡.  Since   F0(xi, • • •, x„)  depends  only  on

x,- — Xj, Fo(xi, • • -, xn) = F0(yi, • • -, yn). The x» in the first n columns of
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the second determinant may be replaced by y¿, by simple manipulations

on determinants.

Let g(y) = y((l + y) In (1 + y))~l. Thus f(x) = - g(y) and

£(XA) = (-i)n+1Vt-Kyu---,yn) i,y,  •••, yn~\ g(y)

l.yx, ■•■,yin~1, g(yi)

l,y», • • •, y«""1, g(yn)

g(y) is analytic in y at y = 0 ; hence

g(y) = At + Axy + A2y2 + ■■-.

When this expression for g(y) and the analogous expression for g(yj) are

inserted above, the elementary properties of determinants permit us to

cancel out the first n terms in the g series. If the distributive property of

the last column is used, one obtains for \y\ < 1 and \y¡\ < 1,

«(XA) = {-\y*Vi*1yu ■ ■■,yn)(AnVo(y,yt, ■ • -,yn)

+ A„+iVt(y, yi, • • •, y„) + • • • + An+kVk(y, yi, • • •, y„) + • • •)

=   (-l)"^7^1;;;'^) (An + An+lSt.n+1  +   An+2S2,n+l +   ■ • •)

= (-D-^CnCy - yi)JAn + An+^n+i + ^n+252,n+1 +•••).

when we use Lemma 3 and let

Sk. n+l   = E y«0Vlai...yna„-

The An are readily calculated from the expression for g,

^ = (l+y)ln(l+y) = £ (1 + ^*'

If the integral is expanded by the binomial theorem and integrated term

by term,

(-1)" f1
An=y—~\    r(r+l)...(r+[n-l])dr.

n\    Jo

The values up to .4 m have been given in section 3.

Theorem I. Let a0> fli, • • •, <*n-i be chosen so that

rt+h

h\ßoF(t) + atF(t - A) + • • • + an-tF(t - (n - 1)A)] = J      F(r)dr

when F(t) = ent for i = 1, ••-,«. Let e(t, F) denote

rt+h

e(t, F) = h[aaF(t) + atF(t - A) -\-\- an-tF(t -(n- 1)A)] -   I       F(t) dr.

Then for F = eXí and e(t, F) = ht(\h)eu,

t(\h) = (-l^'LIKy - yj)l(A. + An+tSi,n+i + ■■■ + An+ksk,n+i + ■•■)
where y = e_u — 1, y¡ = e~'>k — 1, provided \y\  < 1 and \y¡\ < 1, and

?*.»+! = E yoyfi. . .yn"
<*0+«H-HanHfe
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The case of multiple frequencies is obtained by direct substitution.

Corollary. (Closed integration theorem.) Let b0, ¿>i, • • •, bn-t be chosen

so that

rt+h

hlb0F(t + h)+ btF(t) +b2F(t-h)+--- + bn-tF(t- (n- 2)A)] = J       F(r)dr

when F(t) = e'il for i = 1, 2, • • •, n. Let ec(t, F) denote

ee(t, F) = h[boF(t + A) + btF(t) + b2F(t - h) + ■•■
rt+h

+ bn-t(F(t - (n - 2)A)] - J       F(r)dr.

Then for F = eu and ee(t, F) = htc(\h)eu,

ec(Xh) = (-i)"+v»n(y - yj)(Bn + Bn+1Si,n+i + ■■■

+ Bn+kSk,n+1+ •••)/(! +y)

where the y and y¡ are as defined above, and

Bk = Ak + Ak-i.

The discussion for closed integration is analogous to that given above

for open integration, except that one has an additional factor ex* in the

coefficients of the unknowns in the equivalent of equations (24). It is

desirable to divide by this factor and solve for e-XAe0(XA). As a result of this

division fc becomes (1 — x)/ln x and gc(y) is y/ln (1 -4- y). The result ec(XA)

then is obtained by replacing the open g(y) = g0(y) by gc(y) and multi-

plying by ex*. Thus the Ai are to be replaced by the 5¡ which are obtained

from

Bo + Bty + B2y2 + ■ ■ ■ = y/ln (1 + y).

Inasmuch as (1 + y)go(y) = gc(y) it follows that

a        a / "n, riKr+l)---(r+(n-l))r< « 1,
n=An + An-l=(-l)»l    -~}- ^-——J*.B

Thus Bn is opposite in sign to A„, since 0 >
r - 1

n + r - 1
> -

n - 1
, and

l*.| <
1

1 \An\

9. An expression is needed to represent the error e(t, o) = 5Ä which

occurs when the function o(t) is openly integrated. The following process

will not be carried through for a closed integration procedure. Let a0 = o(t),

o~i = o(t — A), etc. Then
rt+h

(25)    h(aooo + axoi + ■ • • + an-to-n-i — s) =   I       o(t) dr = — s"h.

This equation and the set (4') permit one to solve for a,- and s.

5 = (-lyVo-Kxi, •••,.<)

o~o, 0~l,

1, Xi,

' > Cn-l,     *

■,Xt»-\ f(Xt)

1, xn ' t Xn \ /(*-)
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To introduce the y,-, let 770 = oo, »71 = <ri — o0, tj2 = o2 — 2<n + <70 and

in general

(26) 1\k   —   0~k  —  kOh»O<r*-2 + • • • + ( —l)*tr0.

Note that if the a alternate in sign and are all equal in absolute value then

17* = 2*<r. With this notation,

lio, iji,  • • •» ftn-t,   —s'

5 = (-\y+Wo-l(yi, ••-,?•)
l.yi, •••,yi"_I, g(yù

l, y». • • •, y»B_1, g(yn)I

If the determinant is expanded in terms of the first row, s" appears

multiplied by F0(yi, ••■,yn). However, ij„ is multiplied by a determinant

without an a power column of the y, but with the g column. Expanding

the gi of this column in a y series the a column cannot be cancelled as before,

but instead one obtains the Vandermondian itself. Thus

0

s = s" - E^1*+(-Dn+ltVl
*=0

We may write the error then as

»7o, ijii »Jn-l,

l.yi, •••,yi"_1, E Ajyt'
J—n

1. y». •••. y«"-1. E Ajyj

(27)

Let

(28)

Since

s=s" - E^4^+(-l)n+1<r'.

Df=T. (-l)k+ßAk<
k=ß (i)

vk= E (-!)*-"( «V
ß=o \ß/

(27')

Now

■«' = Vo-1 E Aj
j=n

s = 5" - E-£V/> + (-i)B+1<r'.
0=0

»70, fli    * " ' > In—1,      0

1, yi, •••,yiB_1, yV

l.yn, ---.yn"-1, y.*

= E^iE (-D^Fo-'F^,,
)—n (—0

=   Ê^/EÎ-D^ E (-i)"+'Pn-mSj-,-n+,
}=n \ t=0 m=max(l),l+n-fl

•)
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when Lemma 5 is used. Then

co n—1 t oo

<r'   =  pntO 1LAjSj-n,n +   E   Vt   E   (~ l)mpn-m        E        AjSj-t-n+m, n-
j=n i=l m=0 j=*n+t—m

Define

(29) G, = 2ZAr+kSk,n.
*=o

Then

n-l I

o'   =  pnVoGn +   E  Vt   E   (— l^n-mGn-m+i.
(-1 m=0

Thus if

(30) F,,*-    É   (-lypn-mGn+t-n,
m=0

we have

n-l

<r' = E >?<^n, «
<=0

since rm,o = ^nGn. It was shown that

*- É (-D'-"( 'W
ß-o \ ß /

hence

*'=E ¿ <--)•*( iW*'

n-l   n-l  /   , \

= e i ;h((-i)Hff{
0=0    <=/S   \P/

= E fl^-l)'«* where A,., - E (-l)/¡\t^
0=0 (=0 \ P /

Theorem U. If
Sk,n =      E     yiai- --y«"*!

ai+* • .+aB=fc

oo

Gv = E -4r+*-5*,„,
*=0

p„ t5 ¿Ac elementary symmetric function of degree nin yt, • • ■, yn,

t
Tn, t   =    E   ( — l)mpn-mG„+t-m,

m—0

n-l

ff»«- E (-»'( ^)r..„

p.-E(-.)-m.(¡),
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then the error in integrating an arbitrary function o is given by

ri /•«+*        "-1 i

-£(-1)MC>

*-0

where

Vk =  ¿. {-!)'-"[   „ |<T0

a' = E *7V« = E ir„,(,(-i)V
¡=0 0=0

</ can now be overestimated as follows :

Let F, 0 < F < 1 be a bound on (|y|, |y,|). |^4*| < 1. Hence, from
the definition of G„ and the result of Lemma 2

|Gr| S£0V    «"I     / (l-F)"-

This is a bound independent of r. As r increases, the bound may be im-

proved by the factor \AT\.

Now \T„,t\ is also bounded.

'    i i 1
\Tn.t\   <, E    \Pn-i

m=o "™ (1 - F)B

- ±oV»«/(i -10"

This may be inserted into the equation for Hn,ß,

«-i / ; \   '       Yn~m

m=o \ w / (1 - F)" (=max (0,») \ ß ) '

Since{ß) = (ßt\)-(ßll)'

ir    i ^ "^ / n i _Y™_ 17    «    \     /«-max(/3,<)\l

H-»' ̂mÇ0UJ(T^F)"LU + W~l    i8 + i    )y

lH al<\ßll)yl(n\ (    n    \(F+1)"-1
'^-''-d-IO-i-oU/ "Vr3+1>/     (1-F)«     '

Thus

Now

0=0
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Let <r = max | <r< |, then

(2"- l)<r[(F+l)»- 1]
<

(1 - F)"

Corollary. The error e(t, a) of integrating a function with a maximum

value of a is bounded by

(31) | e(t, a) | < -aJV + ̂ ¡M^T 1 (2" " 1)] •

Project Cyclone P. BROCK
Reeves Instrument Corp., N. Y. p_ T   MURRAY

Columbia University

[Editorial Note: A second part of this paper, to appear in the next issue of MTAC, will
contain illustrative numerical examples of the application of the above ideas.]
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A Note on the Inversion of Matrices by
Random Walks

In a recent note, Forsythe & Leibler1 described a method (first sug-

gested by J. v. Neumann and S. M. Ulam) for the inversion of certain

types of matrices by a "Monte Carlo" sampling procedure. The authors

explain their scheme in terms of drawing balls from an urn, but the pro-

cedure might, of course, be just as well described as a random walk.

A boundary value problem involving a difference equation in a bounded

domain is equivalent to a system of linear algebraic equations in as many

unknowns as there are lattice points in the domain. It is therefore to be

expected that the sampling methods for the solution of such difference

equations as explained in Curtiss2 and Wasow3 are closely related to the

method of Forsythe & Le'bler.1
In order to study this relation we rephrase the latter method in the

language of random walks. We consider a set of m points Pi, • • •, Pm and

introduce a moving particle which, starting from Pi, jumps from point to

point in such a way that the probability of going from P, to P„ in one jump
m

is p„„. Also at each point P, there is a probability p, — 1 — E Pw of the
u=l

random walk ending there.


