In a previous discussion of a paper by Carrus and Treuenfels (CT), a difference test indicated that some of the early zeros of the associated Legendre function $P_{n}{ }^{1}(\cos \theta)=0$ as a function of n were incorrect ($M T A C$, v. 5, p. 152-153). The investigation of the present article also reveals some errors. The authors give an alternative proof of an equation due to Macdonald ${ }^{2}$ for determining the early zeros of $P_{n}{ }^{m}(\cos \theta)=0$ where θ is near π. For $m=1, \theta=165^{\circ}$, this formula gives 1.035 as an approximation to the first zero. Employing power series, it is shown that the first zero must be between 1.0316 and 1.0321 . The value reported by CT is 1.053 and so is in error. Application of the Macdonald formula shows that for $165^{\circ} \leq \theta \leq 180^{\circ}$, the corresponding values of n decrease with increasing θ. For $m=1, \theta=170^{\circ}$, the first zero given by CT is 1.05 and thus is also incorrect. Numerical analysis of early zeros for values of θ other than those cited above is not given, but sufficient evidence now exists to show that the CT tables should be used with caution.

Yudell L. Luke
Midwest Research Institute
Kansas City, Missouri
${ }^{1}$ P. A. Carrus \& C. G. Treuenfels, "Tables of roots of incomplete integrals of associated Legendre functions of fractional orders," Jn. Math. Phys., v. 29, 1951, p. 282-299 [MTAC, v. 5, p. 152-153].
${ }^{2}$ H. M. MACDONALD, "Zeros of the spherical harmonic $P_{n^{m}}{ }^{m}(\mu)$ considered as a function of n," London Math. Soc., Proc., s. 1, v. 31, 1900, p. 264-278.

MATHEMATICAL TABLES-ERRATA

In this issue references to Errata have been made in RMT's 989, 990, and 991.
203.-Akademif̂ Nauk, SSSR. Tablitsy znachenǐ Funktsǐ Besselıa ot mnimogo Argumenta. [MTAC, v. 5, p. 151-152.]

p.	x	Function	For	Read
10	.444	$\Delta i H_{0}$	2367	2267
19	.899	$\Delta i H_{0}$	667	657
42	2.031	H_{1}	593738	493738
42	2.032	H_{1}	481922	381922
106	5.237	$i H_{0}$	153939	132939
114	5.650	ΔH_{1}	788	782
115	5.700	x	5.605	5.700
118	5.815	ΔH_{1}	476	469
118	5.816	ΔH_{1}	449	456
163	8.061	ΔH_{1}	949	849
166	8.235	ΔH_{1}	001	81991
195	9.654	$i H_{0}$	276029	276022
205	.074	ΔK_{1}	82290	81290
206	.139	ΔK_{0}	76	876
220	.815	ΔK_{0}	693	683
220	.848	ΔK_{0}	645	685
230	1.312	K_{0}	380745	381745

p.	x	Function	For	Read
238	1.719	J_{3}	20163	30163
249	2.295	J_{3}	889777	869777
251	2.369	$J_{-\frac{3}{3}}$	942091	941991
253	2.491	J_{3}	318266	308266
254	2.538	J_{3}	480753	490753
254	2.539	J_{3}	506447	516447
257	2.663	J_{3}	864568	884568
260	2.803	K_{1}	926830	926820
264	3.044	ΔK_{1}	565	505
264	3.047	ΔK_{1}	394	334
269	3.262	$J_{-\frac{3}{3}}$	739537	739587
269	3.293	$J_{-\frac{1}{2}}$	271376	271326
276	3.629	ΔK_{0}	122	128
293	4.480	ΔJ_{3}	779	784
294	4.502	ΔK_{0}	588	582
304	5.029	ΔK_{0}	145	140
374	8.533	K_{0}	300300	300250
375	8.576	K_{1}	118097	118197
392	9.423	ΔK_{0}	283	263

Besides the above errata, 112 errors of less than five units in the last place were noticed. For further errata see $M T A C$, v. 5, p. 152.

515 W. 110 Street
New York 25
204.-BAASMTC, Mathematical Tables, v. 1. Cambridge, 1946, 2nd ed.

Table II-Circular Functions
page 7, $x=48.6$
for . 094544709979701 read .094544709879701
Stanley H. Cohn
Indiana University
Bloomington
205.-N. W. McLachlan \& P. Humbert, Formulaire pour le Calcul Symbolique. Mémorial des Sciences Mathématiques, fasc. 100, 1941.
p. 4, formula 2; upper limit of second integral: for t read $\pi t^{2} / 2$.
p. 5, formula 11; omit the index t on the left hand side.
p. 7, formula 3; same correction to second integral as on p. 4.
p. 14, formula 2; omit $b^{2 v+1}$ on the right hand side.
p. 14, last formula; for 1 on the r.h.s. read p.
p. 32, formula 10 ; to the 1.h.s. $a d d(1 / \pi) \log [(t-b) /(t+b)] J_{0}(a y)$.
p. 34, formulae 3, 4; to the l.h.s. $a d d \pm(i / \pi) \log [(t-b) /(t+b)] J_{0}(a y)$, respectively.
p. 34 , formulae 5,6 ; to the 1.h.s. $a d d \pm(i t / \pi) \log [(t-b) /(t+b)] J_{0}(a y)$, respectively.
p. 34, delete formulae 7, 8 .
p. 55, formula 1; for n above \sum read m. After the formula add $m=\frac{1}{2} n$, n even; $m=\frac{1}{2}(n-1), n$ odd.
p. 58, formula 1 ; should be on p. 19 in $\S 3$, since $|\sin t|$ is not discontinuous.
p. 61, line below Règles; for $f_{2}(x)$ read $f_{2}(y)$, and for $\phi_{2}(p)$ read $\phi_{2}(q)$.
N. W. McLachlan

Vizard \& Co.
51 Lincoln's Inn Fields
London, W.C. 2
206.-N. W. McLachlan, P. Humbert \& L. Poli, Supplement au Formulaire pour le Calcul Symbolique, Mémorial des Sciences Mathématiques, fasc. 113, 1950.
p. 4, formula 4; upper limit of second integral; for x read $\pi x^{2} / 2$.
p. 6, third formula from bottom; for $\sqrt{i x}$ read $i \sqrt{i x}$.
p. 7, last formula; same correction as on p. 4.
p. 8, formula 4; for $0 \leq x<\infty$ read $0<x<\infty$.
p. 10, line 19; see correction to p. 14 in Fascicule 100.
p. 11, line 11; see corrections to p. 34 in Fascicule 100.
p. 19, last line but one; for K read k.
p. 29, formulae 3, 4; for $\frac{\sin a \sqrt{3} t}{2} \mathrm{read} \sin (a \sqrt{3} t / 2)$.
p. 30, formula 3; for 1 in parentheses read p.
p. 44, formulae 9, 10; for $H_{0}{ }^{(1),(2)}$ read $H_{2 v}^{(1),(2)}$.
p. 46, formula 2; for e^{-b} read $e^{-b s}$.
p. 47, formula 4 ; the argument of the second gamma function should be $\left(-\mu-\nu+\frac{1}{2}\right)$.

N. W. McLachlan

207.-E. Oberg \& F. D. Jones, Machinery's Handbook. 14th edition, New York, 1950 (and earlier editions).
Table of Gear Ratios and Decimal Equivalents, p. 708-711 (different page number in earlier editions)

Insert in appropriate positions

Decimal Equivalent
.6944 . 7956

Gear Ratio
25/36
34/45
Thos. H. O'Beirne

Barr \& Stroud
Glasgow, W. 3
208.-K. Pearson, Tables of the Incomplete Beta-Function. Cambridge, 1934.

On pages 2 and 3 , line $1, p=q=\frac{1}{2}$ in the value of the complete Beta function
for 3.14159245 read 3.14159265
University of Illinois
Urbana, Illinois
209.-J. V. Uspensky, Introduction to Mathematical Probability, 1937.

On page 407, Table of the Probability Integral
for $\phi(z)=.499997$ read .500000
Charles T. Johnson
5852 Adelaide Avenue
San Diego, California

UNPUBLISHED MATHEMATICAL TABLES

In this issue an Unpublished Manuscript Table is referred to in RMT 990.

144[F].-A. Gloden \& J. Bonneau, Factorization of $N^{4}+1$ for isolated values of N betweer 30000 and 40000 . One page typewritten manuscript. Deposited in UMT File.
The table contains 88 factorizations, all complete. No primes are given. [For previous tables of this kind see MTAC, v. 2, p. 211, 252, 300; v. 3, p. 21, 118-119, 486; v. 4, p. 24; v. 5, p. 133-134.]

145[D, F].-D. H. Lehmer, Table of Cyclotomic Cosines. Ten manuscript pages tabulated from punched cards. On deposit in the UMT File. Also available on punched cards.
The table gives 20D values of

$$
2 \cos 2 \pi k / p \text { for } k=1(1)(p-1) / 2
$$

for every odd prime $p<100$. There are 517 values in all. Thus the table gives twice the real parts of the p-th roots of unity.

146[F, L].-D. H. Lehmer, Table of Kloosterman Sums. Twenty manuscript pages tabulated from punched cards. On deposit in the UMT File. Also available on punched cards.
The table gives 19D values of

$$
\mathrm{Sp}(k)=\sum_{n=1}^{p-1} \exp \{2 \pi i(k n+\bar{n}) / p\} \quad(n \bar{n} \equiv 1(\bmod p))
$$

for $k=1(1) p-1$ and for every odd prime $p<100$. The table was computed from UMT 145, and contains 1034 entries. These sums appear in Fourier coefficients of many elliptic modular functions.

AUTOMATIC COMPUTING MACHINERY

Edited by the Staff of the Machine Development Laboratory of the National Bureau of Standards. Correspondence regarding the Section should be directed to Dr. E. W. Cannon, 415 South Building, National Bureau of Standards, Washington 25, D. C.

Technical Developments

THE SERIAL-MEMORY DIGITAL DIFFERENTIAL ANALYZER
Introduction. In January, 1950, the first model of a digital differential analyzer became a working reality. This machine was entirely contained

