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Use of Continued Fractions in High
Speed Computing

1. Introduction. In the course of carrying out computations required

for numerical solution of problems it is frequently necessary to have avail-

able the value of one or more functions for various values of their arguments.

If a high speed machine is being used, it is usually not efficient to look up

tables of the functions outside the machine or store them in the internal

memory and it is therefore necessary to calculate the values of the function

whenever they are required. This is generally done either by using a rational

approximation to the function or a finite number of terms of an infinite

process. Usually the infinite process used is that of the power series. The

purpose of this paper is to show that another infinite process, a continued

fraction expansion, may, in some cases, be more efficient.

The choice of which infinite process to use may depend on :

1. Properties of the method of computing, such as

(a) the number of orders required to program the calculation

(b) rounding error involved

(c) the magnitude of the numbers entering into the calculations

2. Properties of the series, such as

(d) speed of convergence

(e) region of convergence

3. Properties of the machine being used, such as

(f) amount of high speed storage available

(g) what factors determine the total time spent on a problem.

Since methods of computing continued fractions are not as well known

as they deserve to be, the following section will be devoted to examples of

three methods of computation. In section 3 the speed of convergence of

some particular continued fractions will be compared with that of the corre-

sponding power series and in section 4 we shall discuss some situations in

which continued fractions might be used.

2. Computing Continued Fractions. A continued fraction expansion of

the function f(x) takes the form

(1) /(*) = bo + at

h + ös

where the a's and b's may be functions of x. For convenience the expansion

is usually written in the form

(2) f(x) = bo + at      ch.      as

b, + b» + b¡+ ....
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The following are examples of such expansions

(3) ex = 1      x     x     x      x     x

1-1 + 2-3 + 2-5+ •••

(4) In x = x - 1       l2(x - 1)       V(x - 1)      2\x - 1)

1+2 +        3 +        4
22(x - 1)      32(x - 1)

+ 5 + 6 + •••

(5) arc tan x = x      (x)2      (2x)2      (3x)2

1 +   3   +    5    +    7    + •••.

In practice a finite number of terms are used to approximate the function;

the so-called "rath approximant" is given by

(6) fn(x)   =   bo  +  Ol «2 On

bt + b2+ ■■■ +bn'

Three different ways of computing f„(x) are given by the following methods

I, II and III.

Method I. The obvious way to compute fn(x), if n is given, is to carry

out the successive additions and divisions indicated by the form of the

Table 1. Computation of arc tan 1 using ten terms of the continued fraction

i K~t ¿n-i an-i Cn-i

0 19 19. 81 4.26315789
1 17 21.26315789 64 3.00990099
2 15 18.00990099 49 2.72072567
3 13 15.72072567 36 2.28997063
4 11 13.28997063 25 1.88111778
5 9 10.88111778 16 1.47043717
6 7 8.47043717 9 1.06251895
7 5 6.06251895 4 .65979175
8 3 3.65979175 1 .27323959
9 1 1.27323959 1 .78539814

expansion when it is written as in (1). More formally, the method consists

of calculating the sequence

dn—i  =   bn—i + Cn-i+1 Cn+1   =   0

Cn—i — an~i/ an^i

for i = 0, 1, • ■ • ra — 1. Then fn(x) = b0 + cx. This method is illustrated in
Table 1 by the computation of arc tan 1 using 10 terms of expansion (5).

Method II. Successive approximants, for consecutive n, may be calcu-

lated by writing

fn(x)   -  An/Bn,

where

A0 = b0       At = bobt + a¡       An+t = b„+iAn + a„+i^4n-i

Bo   =   1 B¡   =   h Bn+l   =   bn+lBn + «n+l-Bn-l-

An example using this method is given in Table 2 where expansion (4) is

used to calculate In 2.3026.
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Table 2. Computation of In 2.3026 by Method II

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

bn

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

an

1.3026
1.3026
1.3026
5.2104
5.2104

11.7234
11.7234
20.8416
20.8416
32.5650
32.5650
46.8936
46.8936
63.8274
63.8274

0
.13026
.26052
.951236676
.5162360112
.3076812414
.2451291574
.2076611128
.2172177286
.2387758543
.3095128077
.4182214453
.6470074325
.1037228754
.1865088276
.3459668557

X 10'
X10'
X 10'
X 10*
X 10»
X 104
X 106
X 10«
X 10'
X 10s

X 10»
X 10'°
X 10'2
X 10"
X 10»

Bn

.1

.1

.33026

.112104

.62049467

.3686580032

.2939378741

.2489757642

.2604419673

.2862883034

.3711012300

.5014411389

.7757520931

.1243621523

.2236212522

.4148090065

X 10'
X 10'
X 10'
X 10»
X 10»
X 10»
X 10*
X 105
X 10«
X 10'
X 10»
X 10»
X 101»
X 10"
X 1013
X 10»

A./B.

1.3026
.788833041
.848530539
.831974933
.834598025
.833948868
.834061554
.834035048
.834039852
.834038754
.834038959
.834038913
.834038922
.834038919
.834038920

Method III. The rath approximant may also be expressed as a sum. i.e.

fn(x)    =   bo  +   E PlP2   ■
1=1

where

Ti  =
bi-tbi

1 + P, =
1

1 + r<(l - p,_,)
with initial values

Pi
Ol

b,
1   +P2

1

l + V

Table 3 gives the computation of In 2.3026 by this method.

Table 3. Computation of In 2.3026 by Method III

P»

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1.3026
.6513
.2171
.4342
.26052
.39078
.279128571
.372171429
.289466667
.361833333
.296045455
.355254545
.300600000
.350700000
.303940000

V+ih,

1.0
.605583480
.883804325
.722675023
.841558660
.752522289
.826411810
.764779246
.818747283
.771456089
.814076311
.775672245
.810920125
.778579904
.808641743

PlPi

1.3026
-.513766959

.059697499
-.016555608

.002623093
-.000649157

.000112686
- .000026506

.000004804
-.000001098

.000000204
- .000000046

.000000009
-.000000002

.000000000

/.

1.3026
.788833041
.848530540
.831974932
.834598025
.833948868
.834061554
.834035048
.834039852
.834038754
.834038958
.834038912
.834038921
.834038919
.834038919

3. Truncation Error. These errors arise because only a finite number

of terms of an infinite process can be used. For a discussion of these errors

it is convenient to separate functions into classes on the basis of the

order of magnitude of the rath term in their power series expansions. If the

order of magnitude of the rath term is xn/n\ the function belongs to one

class; if it isa;"/« the function belongs to a second class, etc. The reason for

this classification is that functions in the first class can generally be com-

puted adequately from their power series, while for functions of the second
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class an unreasonable number of terms may be required. Heising10 states

that in computing arc tan x by means of a general purpose board on the

604 Electronic Calculating Punch the maximum error after 990 terms are

used is still 11 X 10~7. Fortunately the continued fractions of some of the

functions in the second class converge rapidly enough to make them prac-

tical for machine computation.

Table 4. Truncation error in e1 after 10 terms

x Power Series Continued Fraction

1 2.7 X 10-» .67 X 10"8
2 61 X 10-« 22 X 10-«
3 59 X 10-" 44 X 10-1

Examples of functions belonging to the first class are ex, sin x, cos x,

sinh x and cosh x and examples of functions belonging to the second class

are In x, arc sin x, arc sinh x, arc tan x and arc tanh x. To compare the con-

vergence of the power series and the continued fractions expansions of

functions in these two classes we have chosen ex to represent the first class

and In x and arc tan x to represent the second. The continued fractions

expansions are given by (3), (4) and (5) and the power series are

X X2 X3
(7) f = 1 + j + 2Ï + Jj + • • •

™ , (*- »)     (* - D2 ,  (« - D3(8) In x = —--j— + —-3-

(9) arc tan x = - —- + -7 — • • • •

Tables 4, 5 and 6 give the comparisons. The calculations were carried out

to two more decimal digits than were required, this should make the round-

ing error negligible (except, perhaps, for the computation of In x for x near

zero).

Table 5. Number of terms required to compute In x to 9 decimals

x Power Series Continued Fraction

.0001 95,000* 550

.0010 11,500* 315

.0101 1,350* 105

.1054 143 34

.5108 25 16

.6931 16 11

.9163 8 7
2.3026 16
4.6052 24
6.9078 — 30

* Approximate values.

Table 4 gives the difference between ex and the 10th approximant from

the power series and from the continued fraction (in the power series the

last term is x10/10!). This table indicates that the continued fraction con-

verges a little faster than the power series but the difference is too small to

be of practical importance.
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Table 5 gives a comparison of the number of terms required for fixed

accuracy. For the power series the number of terms, n, is determined by the

condition that the absolute value of the (w + l)th term in (8) shall be less

than 9.3132 X 10~10. The continued fractions were computed by Method III

and n was obtained as the first integer for which pip2 • • • pn < 9.3132 X 10-10.

The table shows that the continued fraction expansion converges appreciably

faster than the power series in 0 < x < 2. Actually the continued fraction

converges for all x > 0, while the power series diverges for x > 2. The con-

tinued fraction could be used to compute, in a reasonable number of terms,

In x for .1 < x < 10.
Table 6 gives the corresponding comparison for the arc tangent. For the

power series, ra is determined by the condition that the absolute value of

the (ra + l)th term in (9) shall be less than 10~6 while for the continued

fraction n is the number of terms required to reduce the truncation error

to less than 10-6. The continued fraction converges faster than the power

series and also converges in the region where the power series does not,

i.e., for x greater than 1.

Tablf. 6. Number of terms required to compute arc tan x to 6 decimals

x Power Series Continued Fraction

.13 3

.2 4 3

.3 5 4

.4 6 5

.5 8 5

.6 11 7

.7 15 7

.8 22 7

.9 44 8
1.0 — 8
2.0 15

4. Machine Computation. Computing machines differ greatly in many

aspects. In deciding what method should be used to compute values of

functions the amount of high speed storage available is one of the most

important factors.

Machines which have enough high speed storage to accommodate arbi-

trary coefficients can probably compute values of many functions most

rapidly by using polynomial approximations with a fixed number of terms.

If, however, the majority of the arguments fall in the region in which only

a few terms of an infinite process are required, or if varying degrees of

accuracy are required from one computation to another, the infinite process

may be more efficient. In general the computation of a term in a power

series requires fewer operations than the computation of a term in the

continued fraction. However for functions such as In x and arc tan x more

terms of the power series are required. In either case it is desirable to com-

pute only as many terms as are required to achieve the required accuracy.

Therefore, for computing continued fractions, Method I would not be

suitable, but Method II or III could be used. It is immediately evident

from Table 2 that Method II cannot, in general, be used without a floating

decimal point, because An and Bn increase too rapidly. Furthermore, since
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Method II requires as many operations and more storage than Method III

the latter is more suitable for machine calculations.

Table 7 gives the calculations required in computing successive approxi-

mants to the continued fraction, the values required from storage and the

initial values, if Method III is used. If an and b„ are simple functions of ra

and x which can be computed as required, the first calculation requires the

storage of only ra and x. For example, for expansion (4),

«•«- [Kp(*-l)/{ra(ra-l)}?

where QyJ denotes the greatest integer <y. Even with this simplification,

five quantities must be stored.

This fact makes this method of computation impossible for machines

with very small internal memories, such as the IBM 604 Electronic Calcu-

lating Punch. The computation of power series requires very little storage

and can be carried out on such machines. However for functions of the

second class where too many terms of the power series are required, con-

tinued fractions can be used if the maximum number of terms of the

continued fraction expansion that will be needed to give the desired accuracy

is determined in advance and Method I is used to compute the value of the

expansion. If the coefficients can be generated in a simple manner only three

numbers have to be stored at any one time.11

Table 7

Calculation Required from Storage Initial Values

1. rn = a„/6„_ifc„ a„, 2>„_i, bn 1
2. 1 + p. = (1 + r„(l + P-OF1 1 + p„_! 1
3. (pip2 • • • Pn-l)Pn P1P2 • • • p»-i ai/bi

4. fn = /n-l + PlP! ■ • • Pn /n-l bo + Ol/6l
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On a Punched-Card Method of Solving
Certain Integral Equations

1. Introduction. In the present paper we are concerned with the numeri-

cal solution of the homogeneous Fredholm equation

(1.1) <b(y) = J   p(x, y)<b(x) dx,

where the given kernel p(x, y) satisfies the conditions

(1.2) p(x, y) > 0,        0 < * < 1,        0 < y < 1

and

(1.3) j    p(x,y)dy = 1,        0 < x < 1.
Jo

The solution <b(y) is to be a non-negative function such that

(1.4) £<b(y)dy = 1.

Equations of the type (1.1) have received considerable attention in the

theory of probability,1,2 and the above problem has been formulated with

this in mind. Although all the examples which have been considered by the

authors are special cases of (1.1), the numerical method to be explained is

immediately applicable to the following more general equation

(1.5) <b(y) = f(y) + £ K(x, y, \)<b(x) dx,

where f(y), K(x, y, X) are given functions, X is a parameter (supposed

known) and a, b are constants. This integral equation includes the general

non-homogeneous Fredholm equation

(1.6) <b(y) = f(y) + x£ K(x, y)<b(x) dx

as a special case.

Numerical methods for the solution of integral equations have been

considered by a number of writers.3-10 The methods employed may be

classified briefly as follows: (a) Methods which involve the solution of a


