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On the Numerical Solution of Equations
Involving Differential Operators with

Constant Coefficients

1. The General Linear Differential Operator. Consider the differential

equation of order n

(1) Ly + Fiy, x) = 0,

where the operator L is defined by

j» dky

**£**»%-

and the functions Pk(x) and Fiy, x) are such that a solution y and its first

m derivatives exist in 0 < x < X. In the special case when (1) is linear the

solution can be completely determined by the well known method of varia-

tion of parameters when n independent solutions of the associated homo-

geneous equations are known. Thus for the case when Fiy, x) is independent

of y, the solution of the non-homogeneous equation can be obtained by mere

quadratures, rather than by laborious stepwise integrations. It does not

seem to have been observed, however, that even when Fiy, x) involves the

dependent variable y, the numerical integrations can be so arranged that

the contributions to the integral from the upper limit at each step of the

integration, at the time when y is still unknown at the upper limit, drop out.

Thus again the computation can be made to involve merely quadratures.

It is not often that the solution of the homogeneous equation can be

simply determined, and it is perhaps for this reason that attention has not

been given heretofore to the possibility of simplifying the numerical evalua-

tion of the solution by making use of the solutions to the homogeneous

equation. However, in the case when the functions P*(x) in L are constants,

the solution of the homogeneous equation is easy to determine. This is

particularly true when the order of the differential equation is fairly low.

In the instance when the operator L is of second order, with constant coeffi-

cients, the method of using the integral equation often has decided advan-

tages over the usual methods employed for solving, differential equations.
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For this reason attention will now be centered on a second order operator

with constant coefficients.

2. Linear Differential Operators of Second Order with Constant Coeffi-
cients. Let Ly now be specialized as follows :

m *-% + >% + »>

where b, c are real constants. Let y(0) = p0, and y'(0) = px be assigned.

The differential equation (1) can be replaced by the integral equation

(3) y = aie"111 + a2emix - dix) + dix),

where
«i + ct2 = po;    «i»îi + a2m2 = pi,

G*(x) =   emk* y e-^Fiy, t)dt   /\b2 - 4c)*;    k = 1, 2,

and nti, m2 are the roots of m2 -f- bm -f- c = 0, provided b2 — 4c ¿¿ 0. In

the special case when b2 — 4c =0, (3) becomes

(3a) y = e-*6* ai + a2x +  j    it - *)e*MF(y, t)dt   ,

«i = po,    a2 = pi + ibpo.

It should be observed that when b2 — 4c is negative, mx and m2 are

conjugate complex numbers. When b, c, and the initial values are real, the

imaginary component of (3) will drop out, and the discussion which is to

follow will apply to this case and to (3a) as well. For the sake of simplicity,

therefore, we shall now assume that mx and m2 are real and distinct. Let

xr = Xo + rh,    x = xo + sh,    t = xa + ph,   yT = y(xr).

With the above, G*(x) takes the form

(4) Gk(x) = e^-^Gkixo) + d(x),

where

(5) Ckix) = emkshhib2 - 4c)"*  I    e-m™hFiy, x0 + ph)dp.

If the integrand of (5) is approximated by an is + l)-point polynomial,

then

(6)

/■s S

I    e-m^hFdp = £ arermkThFiyr, xr) + Rk,
JO r-0

where the coefficients ar result from the integration of the polynomial and

the truncation term, Rk, can be represented by

(7) Rk =   I   4>it)\_t, xo, xi, • ■ ■, x,~]dt.

In (7)  \_t, Xo, Xi, ■ ■ ■, x„] is the divided difference1 of order (s + 1) of the
function e~mtFiy, t) and <pit) is the polynomial approximation of e"m'Fiy, t).
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Thus

(8) - dix) + dix) = - «■»<*-*•>&(**) + e^-^dixo)
«-i

+ hib2 - 4c)-* £ aFiyT, xT)\emM'~r) - em^-^\ - Rx + R2.
r-0

Note that the term involving Fiy., x.) dropped out, since the coefficient of

this term appeared with the same sign in d and G2. Although this fact is

well known in the theory of integral equations, its importance from the

viewpoint of the numerical evaluation of the solution needs emphasis. Thus

the evaluation of — Gi + G2 does not depend on the value of the function at

the end of the interval. We therefore do not need a "predictor" formula

(using Milne's terminology2). The steps of integration at any stage can

therefore be carried out as follows:

1) Evaluate - dix) + G2(x) by (8).
2) Compute ax exp imxx) + a2 exp im2x) ; hence knowing ( — d + G2),

we now know y„ from (3).

3) Knowing y„ we can use (6) to evaluate the integral Gi(x) by a mere

quadrature. G2(x) is now also known, since Gi(x) and — Gi(x) + G2(x)

are known.

3. The Truncation Term. If mx and m2 are negative, e~mxtF may require

a higher order approximation formula than Fit) itself (although by no means

necessarily so). In any case, h must be small enough so that Rk in (7) is

indeed negligible for the accuracy aimed at. In some cases it is actually

possible to take a larger step h when the integral equation is used, than the

one that can be taken when the differential form (2) is operated with.

Moreover, the process of solving the integral equation may be more stable

than the corresponding solution of the differential equation by stepwise

integration. This is especially true when (2>2 — 4c)} is large numerically.

The example following illustrates the case.

4. Example. Consider the differential equation

(9) u" + vu' + e- + /(«)  = 0,

where

/(«) = exp (¿ - ^) .

This differential equation occurred in connection with certain steady state

solutions, and among the various parameters which were used, one set was

the following:

A = 74.997736;    B = 257.42325;    d = 2.19885;    «(0) - 1.294;

«'(0) = - M = - 10;    v = 24.38.

Suppose we attempted the evaluation of (9) by the usual method of

stepwise integration, first computing an integral of u", using (9), then

integrating u' to obtain u. An analysis of the manner in which an error in

u' is propagated shows that the interval h would have to be taken no larger

than l/(5z>) over the entire range of the integration. Thus for v = 25, an

interval as small as 0.008 would be needed.
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A study of the behavior of fiu), which depends not only on v but also

on M and îî(0), shows that for very small values of x, it is sometimes neces-

sary to take h even smaller than l/(5z>). This is true whether we solve the

equation by integrating (9) or by using (3). However, when M = 10, for

example, and the integral equation is used, it is possible to use a step h as

large as 0.1, for x larger than 0.4, and yet we would have to maintain an

interval of about 0.008 if the differential equation were used. It can be

verified that it is possible to lose all significance in u' within a relatively

short range of x when (9) is used, unless the interval h is kept small enough.

When (3) is used, on the other hand, the solution remains very stable, and

the size of the interval can be increased just as quickly as the behavior of

fiu) permits. It turns out that exfiu) behaves no worse than /(«) itself.

The successive derivatives of fiu) with respect to x are numerically very

large near the origin, but they go down in magnitude to reasonable levels

at x = 0.4, where M = 10. For this problem, therefore, the form (3) is far

superior to the usual method of solving the differential equation.

The permissible magnitude of h near the origin, when (3) is employed,

can be determined by usual methods, and the necessary starting values can

be computed in a simple manner; hence it is not deemed worth while to give

the specific details of the solution. We shall, however, re-write (3) to apply

specifically to (9). Here

F = fiu) + e~x\   mx = 0;    m2 = — v;   po = «(0);   px = — M.

When the above are substituted into (3), the equation becomes

u = Ui-- \   f{uit)\dt+-e-»x \    e"'f\uit)}dt,
V Jo V Jo

where
g—x        e~vxY 1 M + 1

Ui =-7 +-\M-- \ + Uo-,    v(v - 1) * 0.
v — 1 n   I v — 1 J V

Thus let
l Cx \        Çx l fx

G(x)=-       fdt;    5(x)=-e—       e"fdt--\   f dt,
V Jo V Jo V Jo

Hix) = -er" |    evtfdt = Six) + G(x).
V Jo

Using the notation

<j>, = <t>ish)

for any function <j>, we have, by the previous analysis,

u.+x = t/,+i + - er2vh[_S,-X + G,_i]-G„_i + 4>.+x,

where
i r<.v+vh i   p(v+i)h

<bs+x =-e-»<'+i> e"fdt-- fdt.
V J („-1)A V J (v-l)h

If </>8+i is evaluated by Simpson's rule, we have

*.+1 = yv [4ie-»h - l)/„ + ie-2°» - l)/.^] + R + «.+„
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where St+X is the rounding error. The total error at x can be approximated,

roughly, by

1   Cx,+l df 1 Cx'+1 df
e,+i - - - I        (5 + R) -¿ dt + - «-***>  I       e°'iô + R) -^ d/.

v Jo chi v Jo <?w

Differences can be used in the usual manner to approximate the magnitude

of derivatives. The recommendations for the special example are:

a) Compute <bs+x by Simpson's rule or some other suitable integration

formula.

b) Evaluate u,+x.
c) Evaluate G,+x by quadrature (since un+x is now known to the required

accuracy).

d) Write Ss+X = us+x — U,+x.

Return to (a) for the evaluation of <t>„+2 in the succeeding step.

The process can be readily coded for high-speed machines.

One may inquire whether (3) is always the better form to use, compared

with (1), or whether there are ranges of the parameters where one of the

forms is better than the other. An examination of the way in which the

constants enter into the solution shows that when b2 — 4c is large form (3)

would always have advantages over (1), since the square root of this quan-

tity enters into the denominator of some of the terms. In the case when

this quantity is small, however, it is likely that (1) would be the better form

to operate with.

5. The General Case. It may be worth while to remark that the method

applies to the general case mentioned in Section I, where the coefficients

Pkix) are functions of x. The solution can be constructed formally by using

the usual method of variation of parameters for linear equations.3 The

complete solution will be of the form

n

y = £ ukVk,
*=i

where the n functions uk are the known solutions of the homogeneous equa-

tion, and the n integrals Vk must be generated numerically by using the

Wronskian of the solutions uk. In the numerical process, the value of y at

some point x is obtained from the property that the contribution to y(x)

from the upper limit of integration drops out. After y(x) is known, each

individual Vkix), which is required for carrying forward the numerical

process, is then evaluated by a mere quadrature.
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