QUERIES-REPLIES

50. A Definite Integral (Q 41, v. 6, p. 125). In the definite integral

$$
I=\int_{0}^{\infty} u^{-1} \exp \left(-z u-u^{-2}\right) d u
$$

put $z=2 x^{3}, v=x u$ so that

$$
I=\int_{0}^{\infty} v^{-1} \exp \left[-x^{2}\left(2 v+v^{-2}\right)\right] d v
$$

In this form the integral can be evaluated asymptotically by Laplace's method. ${ }^{1} f(v)=2 v+v^{-2}$ has its maximum at $v=1$, and for large x the integral is approximated by

$$
\left[\frac{2 \pi}{x^{2} f^{\prime \prime}(1)}\right]^{\frac{1}{2}} \exp \left[-x^{2} f(1)\right]
$$

or

$$
(\pi / 3)^{\frac{1}{3}} x^{-1} e^{-3 x^{2}}
$$

This approximation may be used to start an asymptotic expansion: successive terms may be computed from the differential equation stated in the query.
A. E.
${ }^{1}$ See D. V. Widder, The Laplace Transform. Princeton, 1946, p. 277-280.
Editorial Note: Dr. J. Ernest Wilkins also obtained the dominant term of the asymptotic expansion of this integral for large values of \boldsymbol{z}.

CORRIGENDA

v. 3, p. 355, 1. -12 , for 10^{23} read 10^{83}.
v. 6, p. 20, 1. -5 , for $n<50$ read $n \leq 50$.
v. 6, p. 25, 1. 14, for $1.2(.5)$ read $1.2(.05)$.
v. 6, p. 25, 1. 14, for 2-3D read 3-4D.
v. 6, p. 25, 1. -20, for R52 read R53.
v. 6, p. 32, 1. -7, for Johnson read Johnston.
v. 6, p. 34, 1. 7, for 1950 read 1949.
v. 6, p. 34, 1. 9, for 21 read 206.
v. 6, p. 55, 1. -4 , for y_{i} read y_{1}.
v. 6, p. 58, 1. 18, for 33 read 5.
v. 6, p. 58, 1. 20, for 35 read 5.
v. 6, p. 61, 1. -8, for 116 read 118.
v. 6, p. 82, 1. 6, for Tablisty read Tablitsy.
v. 6, p. 86, 1. -17 , for $\rho=0.6$ read $\rho=0.0$.
v. 6, p. 101, 1. -11 , for 7956 read 7556.

