
6 THE SIEVE PROBLEM FOR ALL-PURPOSE COMPUTERS

(c) At [24]: In(x), based on manuscript of BAAS now in print.

(d) [24] : Spherical Bessel functions. Keypunched but not checked.

(e) At NOTS, Kenneth C. Rich and Charles Ricker, China Lake
Pilot Plant, China Lake, California. Bessel functions y»(x) and

Yn(x), « < 20, BAAS, v. 10.

Readers are again requested to review their keypunching loads, for

possible keypunching of other basic mathematical tables during spare hours.

Any one who can undertake a part of this work is requested to communicate

with the undersigned.
Gertrude Blanch
Everett C. Yowell

National Bureau of Standards

Los Angeles 24, Calif.

The Sieve Problem for All-Purpose Computers

Introduction. The term all-purpose digital computer is often used to

indicate a computing machine capable of performing the rational operations

using addition and multiplication as basic functions of the arithmetic

unit. Even when these operations are supplemented by some discrimination

and "extract" commands, for dealing directly with the digits of numbers,

there are a number of processes to which such a machine is not well suited.

This includes even finite processes that are combinatorial in nature. Perhaps

the most well-known of these processes is the sieve process. Although special

equipment has been constructed for carrying out this algorithm1 we shall

not describe it here. Our purpose is to indicate how the all-purpose computer

may be programmed to compete with sieve machines.

Let us first state the general problem to be solved by the sieve process.

Let mi, m2, • • •, mk be a set of k positive integers which, for the purposes we

have in mind, may be assumed to be relatively prime in pairs. For each m¡

we consider «,• distinct arithmetical progressions or linear forms in the

variable x which we denote by

Pii(x) = mtx + an T. ~ }' ' ' •
[J ~ ±t ¿! '''i«»

We may assume that, for i fixed, the o« are distinct non-negative integers

less than m(. The problem is to find all integers N between given limits, say

A < N < B,

such that each N belongs to k arithmetical progressions.

The number k is called the width of the problem, the k numbers w.will

be called the moduli of the problem and the numbers a,-,- (j = 1 • • ■ «,) the

admissible remainders for the modulus «j,-. The solution N, or even the

number of solutions, is an exceedingly complicated function of the given

parameters mu atj, A, B. There are two extreme cases which may be

mentioned.

the sieve problem for all-purpose computers 7

Eratosthenes Sieve Problem. In this case mi = 2, m2 = 3, and in
general w¿ is the i-th prime number, k is the number of primes not exceeding

A = B*, Hi = mi — 1 and an = /. This gives the famous sieve of Eratos-

thenes and has for solutions (besides N = 1) all the prime numbers between

5* and B. In this sieve there is the maximum number of admissible re-

mainders for each modulus.

Chinese Sieve Problem. In this extreme case there is the minimum

number of admissible remainders for each modulus, that is, «,- = 1 for all i.

This problem is very old2 and often "solved" by what is known as the

Chinese Remainder Theorem. If A = 1 and B is the product of the moduli,

then there is a single solution N which may be found by any one of a number

of other nearly equivalent practical methods rather than by a bona fide

sieve process. On the other hand, this type of sieve problem is often useful

as a checking routine for a more general sieve setup.

Quadratic Sieve. Midway between the two extreme examples we have

examples in which each w¿ is approximately \m,i so that, to put it roughly,

any number A1, has, a priori, an even chance of belonging or not belonging

to one of the arithmetical progressions of a fixed modulus m. The expected

number of solutions N is therefore approximately (B — A)/2k. This kind of

problem is the one most frequently met with and occurs in problems in-

volving quadratic residues and congruences, binary quadratic forms,

Diophantine equations of the second degree, etc.; hence the reason for

calling this the quadratic sieve problem.

Theoretical Aspects. It is theoretically possible to combine any two

arithmetical progressions with relatively prime moduli

Pi = Wix + cii P2 = m2x + a2

into a single one of the form

P3 = mxm2x + a3

where P3 consists of all numbers common to Pi and P2. Thus all numbers

belonging to both the forms

5x + 4 12x + 5

comprise the arithmetical progression

60x + 29.

By proceeding in this way one may combine the k sets of arithmetical pro-

gressions into a single set whose modulus is m = mim2 ■ ■ • mk. The number

of arithmetical progressions in this one set is clearly n = nin2 • • • nk. The

ratio n/m is the density of solutions of the problem. The above process

becomes intolerably unwieldy even for moderate values of k except when

most of the «» are equal to unity. In the quadratic case, for example, a

moderate value of k, like 20, which eliminates all numbers but one in a

million, would lead to one set of at least 4-1021 arithmetical progressions

with a modulus of 4-1027. To produce and sort for size the 4-1021 admissible

remainders is clearly out of the question. In these cases it may be, indirectly,

more practical to examine all integers N between A and B excluding each

integer in turn for non-membership in one of the original sets of arithmetical

8 THE SIEVE PROBLEM FOR ALL-PURPOSE COMPUTERS

progressions. This is the procedure we speak of when we refer to a sieve

process.

Normalized Sieve Problem. In order to make a comparison of the

effectiveness of different sifting processes we restrict ourselves to the case

in which «i > 1 for all i. That this is no real restriction is seen from the

following consideration. If, for example, «i = 1 so that we are looking for

an N of the form mix -f- an, we may change variable from N to Ni where

N = miNi + on and thus eliminate Pn(x). This reduces the width of the

problem by unity, introduces new constants ay in the remaining k — 1

sets of progressions, but leaves the other n¡ unaltered. The limits A and B

are replaced by A/mi and B/mi so that the result is a fictitious speed-up

of the sieve process by a factor of mi. Proceeding in this way with any other

cases of m< = 1 we finally come to grips with the real problem in which

Mi > 1. To be sure, a case in which n, = 2 breaks up the problem into two

parts each of which may be considered separately as a problem with an

« = 1. The result is two short problems instead of one long one. This dis-

section of the problem is a favorite method with hand computers and

accounts for the fact that fairly slow automatic sieves have considerable

competition from hand methods. Of course the same dissection method is

applicable to automatic sieves too, but often it is not practical because of the

comparatively long set-up time involved. For these reasons, therefore, we

consider as a normalized sieve problem, one in which «, > 2. To put the

matter in another way, we consider that all integers N between A and B

have, a priori, an equal chance of satisfying the conditions imposed by the

problem. The effectiveness of a particular process will then depend only

upon the speed with which it can dispose of the average candidate N and

pass on to N + 1.

Rates of Special Sieves. Without going into details it is desirable for

purposes of comparison to mention existing sieves and to give an idea of

their effectiveness. First of all we have hand methods. These involve the

so-called movable strip method and its generalization, the stencil method.

Here the range of natural numbers is represented by one or more sheets of

paper ruled in squares, each square representing, by virtue of its position on

the sheet, a definite integer. Strips of paper of length «z,- are punched with

mi — ni holes, representing the inadmissible remainders modulo m,-, and are

moved carefully down the columns of the sheets and those square cells which

are revealed by the punched holes are crossed out by the computer. After

k of these strips have been applied, those cells which still survive are the

answers to the sieve problem. Rates as high as 3 numbers per second are

difficult to maintain over a long period of time.

Electromechanical sieves have been built to canvass 50 numbers per

second. These sieves can accommodate almost any reasonable sized moduli

Wi and handle problems of width k < 20.

A photo-electric sieve has been built in 1932 which runs at 6000 numbers

per second and an electronic sieve is under development which is designed

for approximately 300000 numbers per second. These high-speed sieves are

not equipped with high-speed output and are intended to be used on prob-

lems whose progressions give restrictions comparable to or higher than those

of quadratic type. It will be seen that such high speeds are not obtainable

THE SIEVE PROBLEM FOR ALL-PURPOSE COMPUTERS 9

with all-purpose computers but that the more modest speeds of the electro-

mechanical type sieve can be achieved and even surpassed.

Direct Attack by an Ail-Purpose Computer. Most all-purpose com-

puters are equipped with a division command or at least a division program.

A direct method of handling the sieve process would consist in dividing a

trial value of N by each modulus «¡ in turn and then inspecting the re-

mainder for membership in the set a,3-. In the case of the Eratosthenes sieve,

the inspection of the remainder is practically instantaneous as it requires

only one or two addition times. If the number of moduli is large, for example

large enough to make a list of primes above 107, then the number of divisions

in case A^ is a prime will be greater than 440. Speeds are such that 50 milli-

seconds per division is not often realized. Allowing only 10 milliseconds per

division, times of the order of several seconds are required to treat these

cases. This does not compare favorably with even hand methods. However,

in case the number of moduli is small a much more favorable speed prevails.

A small Eratosthenes sieve is often incorporated into a problem in which a

parameter p is supposed to have a prime value. In this way a large per-

centage of composite p's are eliminated, the remaining composites being

taken care of later either from the output or by some other internal program.

Beyond a certain point we get diminishing returns from each new modulus

we introduce.

In the case of a typical quadratic sieve problem the examination of the

remainder would be a much longer routine but still, on the average, rather

shorter than a division program. Sieves of width 25 would canvass numbers

at the rate of three or four per second. This is still too slow to compete with

much simpler equipment. Besides, the memory capacity of many machines

would be exceeded in trying to accommodate the given remainders a»y in

many typical problems.

Binary Method of Representing a Sieve Problem. The fact that, as far
as a given modulus m is concerned, a proposed number N is either rejected

or accepted, makes it possible to treat the sieve with binary methods. The

sieve problem may in fact be represented by a matrix of k rows and infinitely

many columns. The infinite rows are periodic, the i'-th row having a period

of mi. The element situated in any column whose number is congruent to r

modulo mi is 0 or 1 according as r is or is not one of the acceptable remainders

an. The problem is then to find those columns which consist wholly of

zeros. (Clearly the rôles of 0 and 1 may be interchanged here.) The matrix

will be referred to as the sieve matrix.

For example, suppose that the problem is to find the least positive integer

of the forms

{5x + 1 or 4
7x + 2 or 3 or 4

9x + 1 or 6 or 7

The matrix corresponding to this problem is

0 1 1 0 1 0 1 1 0 1 0 1 1 0 •••'
1 0 0 0 1 1 1 1 0 0 0 1 1 1 •••
0 1 1 1 1 0 0 1 1 0 1 1 1 1 ■••

Here we are looking for the first column which consists wholly of zeros.

10 THE SIEVE PROBLEM FOR ALL-PURPOSE COMPUTERS

The answer to the problem will be seen to be 16. In fact if we continue each

periodic row two more steps beyond what is shown, we obtain a column of

zeros.

Machine Methods of Realizing the Sieve Process. Most of the high-
speed digital computers use binary numbers and almost all of the decimal

type machines use a binary code for decimal digits. The purely binary

machines are the most natural ones with which to apply the following

methods. The use of decimal type machines entails a considerable reduction

in the width of the problem or else a certain amount of indirect use of the

binary code for the decimal digits. In what follows we shall assume that we

are dealing with a binary type machine, leaving the modifications necessary

for the decimal machine to the ingenuity of the reader. The operations

needed to carry out the sieve process clearly involve shifting operations

and the extraction or discrimination of digits. This does not mean that

addition, subtraction, and multiplication are not needed. In fact these latter

operations are frequently involved in the execution of the former ones.

Of the various possible methods to be used that one is to be preferred

which gives the greatest speed in canvassing the columns of our matrix.

The decision may be determined by the logical structure of the machine. In

any case, there are two general steps to carry out: (a) the passage from one

column of the matrix to the next and (b) the inspection of a column to see

if it contains a non-zero element.

First Method. The steps (a) and (b) can be carried out simultaneously

by the simple process of doubling the binary number represented by each

row. Since in many cases the period m^ will exceed the number 5 of digits

which the adder will accommodate, it will be necessary to program this

doubling as a "multiple precision" process, taking account of overflow

between the separate batches of s digits of the entire number. In particular,

if overflow occurs in the first column there are two important consequences.

First, this indicates that a 1 was standing in the first column and so the

corresponding number N is to be rejected. Secondly, this overflow must be

sent to the other end of the period to perpetuate the periodic pattern of

the digits. This operation has to be performed k times, once for each row.

If at any time no overflow is obtained in the entire set of k operations, then

we have a solution of the problem and the machine is instructed to print

out the answer, continuing on or halting as desired. The entire process can

be carried out using only addition with detection of overflow, and involves a

certain amount of "tallying" and modification of commands. The method

has the disadvantage of requiring k multiple precision operations in passing

from N to N -{- 1. When k is large (20 or 30 in some typical cases) and the

m's large, the major portion of the time is spent in keeping the periods up-

to-date. However, for small k and m, the method is both simple and fast.

In fact, its use is recommended in problems in which no actual sifting is

involved. Suppose, for example, that we have a problem involving one or

more parameters and these are given certain irregularly spaced values such

as for instance

x = 1, 3, 6-9, 12, 15, 18-22, 25.

Instead of storing all these numbers in as many memory positions, this

THE SIEVE PROBLEM FOR ALL-PURPOSE COMPUTERS 11

information may be stored in only the one word

101001111001001001111100 1,

in which the r-th digit from the left is 1 or 0 according as r belongs to our

set or not. By successive doubling and inspection for overflow the machine

can inform itself as to which values of x it should consider.

Second Method. In order to eliminate the lengthy multiple precision

processes of the first method one may proceed as follows. The periodic

digits of each row of our matrix are stored as before in "words" of 5 digits.

The minor of k rows and the first 5 columns of the original matrix are now

duplicated in a special part of the memory where the operation of doubling

and testing for overflow is performed as in the previous method. However,

when overflow occurs the fact is recognized by the machine but the digit

is not kept track of as before. After 5 doublings the information in the

original k by s matrix is all used up and the matrix now consists wholly of

zeros.

The next process consists of circulating the original matrix by moving

the elements of each row 5 places to the left. Since s binary digits is a word,

this process is simple and fast. Only one complication arises, that of dis-

posing of the first word in each row. If for a particular modulus mt we have

mi = sqi + r{ (0 < r,- < s),

then the first s — rt digits of this first word w, belong in the penultimate

word of the shifted matrix while the last r¿ digits form the last word. This

disposal of Wi can be accomplished by use of a product command. The

machine computes the exact two word product of wt by 2"~r. The "most

significant" word of this product is thus added to the penultimate word of

the shifted matrix and the least significant word is placed at the end.

One disadvantage of the second method is the fact that all k rows of

the matrix have to be treated, even though a rejection of the value of N

may result from one of the first few rows. This early rejection of A7 is a

highly probable event in the case of a quadratic sieve problem. In fact the

probability of getting a rejection after h trials is 1 — 2~h, so that only one

A7 in a thousand is apt to pass the test imposed by the first ten rows. More-

over, in many problems some moduli are much more restrictive than others

and if the rows of our matrix which correspond to these moduli are put first,

the probability of early rejection is very considerably increased. In order

to exploit this possibility we propose another method.

Third Method. This method differs from the previous one in its more

rapid treatment of the minor of k rows and s columns. Instead of using the

detection of overflow we employ the more elaborate "extract" command.

This command, which varies slightly from one binary computer to the next,

enables the machine to extract from a given binary number those digits

which occupy specified positions. These positions are specified by a number

called the extractor. As extract is performed in the SWAC, for example,

those digits of a given number, called the "extractee," are selected which

correspond to the zero digits of the extractor; all other digits are made zero.

Thus if the extractee is

1 1 1 0 1 0 1 0 0 0 1 •••

12 THE SIEVE PROBLEM FOR ALL-PURPOSE COMPUTERS

and the extractor is

0 1 1 0 1 1 0 1 0 1 1 •••

the extracted number is

10000010000 •••.

In other words, the extracted number has for its i-th digit the product of

the i-th digit of the extractee by the complement of the i-th digit of the

extractor.

Let us now consider the minor of k rows and the first 5 columns of our

sieve matrix. Starting with the extractee consisting of s l's and using the

first row of our minor as extractor, the extracted number records by its

l's those columns whose first row elements are zero. Using this extracted

number as a new extractee and the second row as extractor, the extracted

number now records those columns whose first and second elements are

both zero. Continuing this process and comparing the successive extracted

numbers with zero (that is the number consisting of 5 digits 0) after each

extraction, we very soon (at least in the typical case) arrive at an extracted

number which is zero. At this point the entire minor is thrown away and a

new minor is created by circulating the rows of our matrix as described in

the second method. If, however, our minor contains one or more columns

of zeros, a non-zero number will result from all k extraction operations with

digits 1 in the positions corresponding to the solution or solutions of the

problem. To find these positions we may proceed successively to double the

corresponding number and test for overflow as in Method 1. An obvious

method of tallying will produce the solution or solutions which the extraction

process has detected.

Comparison of Methods. On the basis of speed, a comparison of the

three methods for the case of the quadratic type sieve problem may be made

as follows.
Let

T = the average time required to dispose of a single number N and

pass on to N + 1,
5 = the number of binary digits in a machine word,

h = the average number of words for each modulus of the problem,

k = the number of moduli, or width, of the problem,

a = the addition time of the computer, that is, the time required to

receive and add two numbers and to dispose of their sum.

For the three methods rough approximations to T may be given as

follows :

First Method : T = 5hka
Second Method: T = 5£(1 + 2hs^)a
Third Method: T = {lOkh + 6(1 + log^ls^a

As an example of what may be done on the SWAC for which s = 36

we take a typical case of h = 2 and k = 17. The addition time for the

SWAC being 64 microseconds, the three values of T turn out to be 10880,

6044, and 672 microseconds respectively.

THE SIEVE PROBLEM FOR ALL-PURPOSE COMPUTERS 13

The above formulas for T do not take into account certain occasional

routine operations such as resetting tallies to zero, the restoration of modified

commands, the decimal conversion and printing of the solutions, etc. To

take these activities into account may lengthen the time by as much as

10 percent. In actual tests on the SWAC, for instance, the third method gave

T = 695 microseconds. It should be pointed out that h must be at least 2

in the second and third methods since a complete minor of s columns is

needed.
Operating Suggestions. We conclude with a few remarks for the benefit

of the programmer and operator in dealing with sieve problems. In the

normal case the expected output is only a few numbers N occurring in un-

predictable places between A and B. It is evident that the machine must be

in absolutely perfect operation during the run in order to be sure that no

solution has been overlooked. Absolute precision in the circulation of the

rows of the sieve matrix is, of course, of paramount importance. The ac-

curacy of this operation may be checked at the end of the run by printing

out the entire matrix and inspecting the result. In order to check the machine

during operation the programmer may deliberately insert one or more

"traps" or precomputed extraneous solutions. It is not difficult to find by

hand methods a number N0 which satisfies most of the requirements imposed

by our matrix. To make A^o satisfy all the conditions we may deliberately

weaken the remaining ones by changing a 1 to a 0 in each of the outstanding

rows. This weakening, especially when applied to large moduli, will not

change perceptibly the overall exclusion ratio but may introduce one or

more unexpected extraneous solutions which, however, are easily recognized

when they occur. This is a very cheap price to pay for the confidence that

one gets from seeing the machine deliver the one or more predicted solutions

No on schedule.
In case the running of the problem is interrupted either by machine

failure or by another problem of higher priority, there are three procedures

available.
First, one may start the problem over from the beginning. This is

especially advisable if the interruption occurs early in the run. Secondly,

one may make an obvious translation in the variable N and compute by hand

a new sieve matrix. Of course, this has to be done with considerable care but

in case the machine is being used on another problem, there may be time

to do this. In running very long problems it may be wise to prepare in

advance several matrices from which a new start may be made in case of

interruption. This procedure, however, is almost as much work as breaking

up the problem into parts as described above, and this latter procedure

always pays off in the consequent speed-up of the problem.

A third procedure is available in case there is still some memory space

unused. This method is simply to make the machine compute its new starting

matrix itself. This program may be based on the First Method, using

detection of overflow to circulate each row of the original matrix to its new

position. Of course the amount of this circulation depends on the new

proposed starting point and is different for each modulus. If, instead of

starting with N = 1, we wish to recommence with N = Nx, the row cor-

responding to the modulus m must be circulated rj—^l"steps where r is the

remainder on division of Ni by m. The program for carrying this out is set

14 USE OF LARGE INTERVALS IN FINITE-DIFFERENCE EQUATIONS

up with Ni as a free parameter which can be typed into the machine as

occasion demands, no further information being needed. This elaboration

of the program makes it possible to operate a lengthy sieve problem as a

backlog workload without the need of a specially trained operator.

D. H. L.

1D. H. Lehmer, "The mechanical combination of linear forms," Amer. Math.
Monthly, v. 35, 1928, p. 114-121, "A photo-electric number sieve," Amer. Math. Monthly,
v. 40, 1933, p. 401-406, "A machine for combining sets of linear congruences," Math.
Annalen, v. 109, 1934, p. 661-667.

1 L. E. Dickson, History of the Theory of Numbers, v. 2, Washington, 1923; New York,
1934, p. 57.

The Use of Large Intervals in Finite-
Difference Equations

In a recent article Sir Richard Southwell1 has challenged the general

theory of finite differences and in particular the use of it in connection with

the solution of differential equations by relaxation methods.2 Opinions differ

on the method of treatment of a numerical differentiation formula such as

where h is the interval between pivotal points and where 82ny0 is the 2«th

central difference of y0. This equation is replaced for the purpose of numerical

solution by its equivalent

h2y0" = (yi + y-i - 2y„) + A (y0),

where yu y0, and y_i refer to the values of y at xa + h, xa, and x0 — h

respectively and

AM«(-¿í* + ¿a«-...)y.

I advocate the use of as large an interval as possible (consistent with con-

vergence of the finite-difference equations and convenience of computation)

calculating A(y) and incorporating it into the computation. Southwell

prefers to use such a small interval that A is negligible. He states : "Accuracy

is not predictable from quantities computed from a finite-difference approxi-

mation unless the interval is small enough to justify belief in the convergence of

the Taylor series: in general the radius of convergence, though it exceeds one

or two of the smallest intervals that are practicable, will not exceed many

such intervals, and consequently what have been claimed as closer approxi-

mations may in fact be less accurate."

The purpose of this note is to point out that, in the writer's opinion, this

statement is unduly cautious and that its conclusion cannot be true if finite-

difference equations are properly used.

In the first place it is not clear what role the Taylor series plays in finite-

difference theory. If the Taylor series is not convergent, care must certainly

be exercised ; but finite-difference methods do not always break down in this

case.3 The point to be emphasized, however, is that an examination of the

differences will tell us, in all practical cases, whether the finite-difference

