


A Technique for Real Time Simulation
of a Rigid Body Problem

1. Introduction. With the advent of large-scale high-speed digital com-

puters, there arises the question of their possible use in the solution of

problems in "real time," i.e., in conjunction with instruments receiving and

responding to stimuli from the external environment. The criteria for satis-

factory operation in such real-time service are different from those generally

encountered. First, the computer must calculate fast enough to respond to

the fastest changing stimuli; speed in solving the associated equations is in

fact the primary requirement. Again, because it is impossible accurately to

predict stimuli variations, either the response must be delayed or a "reason-

able" amount of inaccuracy must be tolerated or both. Third, because of the

limited range of number representation in the digital computer (or, for that

matter, in any computer), all parameters must remain bounded no matter

when or where they occur. Finally, the computations must be stable.

This paper is devoted to a discussion of the manipulation of the dynam-

ical equations of a rotating rigid body with fixed center of gravity.1 The

techniques here adapted will be seen to sacrifice accuracy to speed of

computation, but in such a way as to hold inaccuracies reasonably low; at

the same time, a singularity generally encountered will be circumvented.

Stability will not be discussed.
2. Manipulation of Eulerian angles. The equations of motion of a

rotating rigid body are usually simplified by using a set of axes attached to

the rigid body. The simplification results from the fact that this choice of

axes causes the moments and products of inertia to become constants. In

addition, the products of inertia can be made to vanish by properly orienting

these axes with respect to the rigid body.

The orientation of the rotating axes OX, 0 Y, and OZ relative to a set of

fixed axes OX0, 0Y<>, and OZ0 may be defined by the Eulerian angles \p, 9, <t>.
For convenience assume OZ0 downward, OX0 North, and OYo East, if' is

the angle measured about OZ0 from the X0Zo plane to the (vertical) plane

containing OZ0 and OX; it is positive when OX is toward the East. 0 is the

angle between OX and the X0 F0 plane ; it is positive when OX is above the

XoYo plane. It is measured about an axis in the XBY0 plane. Call this axis

0 Y'. <t> is the angle measured about the OX axis from 0 Y' to 0 Y; it is positive

for clockwise rotation as viewed from the origin along the positive OX axis.

If the angular velocity of the moving axes has components p, q, and r

about the moving axes OX, OY, and OZ, respectively, then the following

three differential equations show the relations among the angles and the

components of angular velocity.

0 = q cos <f> — r sin <t>,

1    , .       .
<j> =- (p cos 6 + q sin 0 sin <j> + r sin 0 cos 4>),

Í = ^^ (a sin <t> + r cos 4>)-
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The presence of cos 6 in the denominator makes two of these equations

indeterminate when 6 is ±90°. This makes the equations difficult to use

especially where point by point numerical computations are being performed.

One common method is to limit the variable 6 say to the range ±85°. This is

avoiding the problem rather than solving it.

This indeterminism is a product of the mathematical approach to a

physical problem. A different choice of axes for example would present the

same difficulty at a different orientation of the rotating body. Therefore the

way out of the difficulty required a new mathematical point of view.

3. Derivation of direction cosine equations. When the equations of
motion contain the Eulerian angles they appear in combinations equal to

one or more of the direction cosines. That is, the Eulerian angles can be

eliminated from the mechanical equations of motion by introducing the

direction cosines as parameters. The kinematic differential equations for the

direction cosines are quite simple and have no indeterminate points. This

is the principal gain.

The new differential equations can be derived by the following method.

The unit vector along the Xo axis is related to the unit vectors along the

moving X, Y, Z axes by

ia = ih + jtni + kn\.

Differentiate this with respect to time

di .       dj dk
0 = -jt h + ih + — wi + jrii! + -jjj «i + Mi.

If the moving axes are rotating with an angular velocity ip + jq + kr

di      . dj dk
Jt=jr-kq,        - = kP-ir,        -^ - tq - &.

Substituting these values for the derivatives we obtain

i{h — rm-i + g«i) + j(mx - pni + rh) + k(ñi — qh + pmi) = 0,

which requires that

Zi = rm-i — qn\,

ih\ = pn\ — rl\,

ñ\ = qh — pm\.

A similar treatment of j¡¡ and ko yields similar equations with subscripts 2

and 3, respectively.

4. Identities. Since there were three independent differential equations

involving the Eulerian angles only three of these nine new differential

equations can be expected to be independent of the 21 identities that obtain

for direction cosines. These 21 identities include six expressions for normality

(1) h2 + m¿ + «i2 = 1, etc.,

six for orthogonality

(2) hh + »HWÍ2 + «i«2 = 0, etc.
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and nine of the form

(3) h = mtfii — mtfii, etc.

To choose three independent equations, choose equations all of which do

not have the same subscripts nor do all involve the time derivative of the

same letter. For example

ii = rffii — qn\,

ij = rm2 — qn-i,

ihi = pn2 — rh

is a set of independent equations which, with six of the identities, can be

used to obtain all nine direction cosines. If desired, more than three differ-

ential equations and fewer than six identities can be used. For some applica-

tions, such as analogue computers, the differential equations are more suit-

able than the identities. Even for digital computers the differential equations

may be preferred to identities of the form of equations (1) and (2).

5. Computation Procedure. Before discussing the plan of computation,

it will be well to discuss a fundamental change that must often be made.

Since there is no unity in many modern digital computers, this number

cannot be held in the machine. Indeed, if a direction cosine were computed

correctly to be unity, it would appear in such a machine as zero. To remove

this difficulty, pseudo direction cosines can be introduced, which are M

times the corresponding true direction cosines. For example, with M = 1/2,

the identities are of the form

h2 + mj + ni = §        (6 of these),

hU + m3ffl2 + W3W2 = 0        (6 of these),

h = 2(wî2w3 — OT3W2)        (9 of these).

The first step in the proposed computation procedure is the use of three

differential equations to compute h, m3, n3. Since both curtailment and

round-off errors will gradually cause these parameters to fail to obey the

normality equations, a second step is required to correct this failure.

Let the computed values be 1%, m3', n¿. Define e by the equation:

h'2 + m3'2 + n3'2 = AP(1 + e).

A normalized set of direction cosines is therefore

U = 7—,— ,        mi = —— ,        w32 =
1+í 1+e 1+«

By using two terms in the binomial expansion of (1 + e)_},

h " h' í 1 — « ) " 2¿s' ( 2 ~ 4 ) - similarly m3, n3,

thus avoiding the square root computation.

W, m2', »2' may now be computed from the appropriate three differential

equations. Consider the two vectors,

r3 = il» + jm% + kns,

r2' = Hi + jm¿ + kn¿'.
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The vector r3 has magnitude M. The vector r2 should, but in general

will not, have magnitude M and be perpendicular to r3. Let r2 be turned

through as small an angle as possible to make it perpendicular to r3. To do

this it is necessary only to look for r2 in the plane of r2 and r3, i.e.,

ft " (1 + a)r2 + br3.

The scalars a and b must at the same time make the magnitude of r2

equal to M.
Define ei and «2 by the equations

h'2 + m2'2 + n2'2 = AP(1 + ei),

h'h + m2'm3 + n2'ns = M2e2.

If the errors «i and e2 are small, the corrections a and b will be small; then

it will be sufficiently exact to neglect second degree terms in a, b, ei, t2.

Requiring r2 to have magnitude M leads to

«i
a=~2'

while the fact that r2 is normal to r% yields

b = — «2-

Thus, neglecting second order terms, the corrected values may now be

written

h

m2

n2

The correction involving ei adjusts the magnitude while the correction in-

volving e2 corrects the direction of r2. The results obtained show that to the

first order either correction may be applied first or they may both be

applied together.
There is a second method of orthogonalizing, which is preferable because

it is quicker. In this method the computed values of two of l2, m2, n2 are

assumed correct and the third is adjusted to make r2 perpendicular to r3.

If «3 is greater than either Z3 or m%, for example, only l2 and «¡2 are computed

by integrating their differential equations; n2 is then determined from the

orthogonality condition

l2h + m2m%
n2 =-

— «3

Note that if n2 had been computed from the differential equation, then

hh + m2m3 + n2'n3 = tzM2,

n2'nz - £3M2          ,      e3M2
n2 =- = »2-

«J «3

-v(i-f)-

.„4-f)
—'('-f)

h(2,

niitï,

n¡e2.
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This amounts to correcting n2 by the term

€3M2

M3

Obviously if W had been corrected instead of n2 the correction would be

€3M2

h

To make the correction small, the largest of l3, m3, n3 is made to appear in

the denominator. This also prevents division by zero, which might occur if

»2 were corrected under all circumstances.

After the direction of r2 has been established perpendicular to r%, its

magnitude must be adjusted. The procedure is to alter all components pro-

portionately as for r3 above. Clearly this does not destroy orthogonality.

h, nil, «i can now be computed from equation (3)

m2n% — m3n2

6. Conclusions. The equations of motion of a rotating rigid body can be

formulated directly in terms of the direction cosines. The direction cosines

can be determined as described above in a manner which is thought to be

ideally suited to digital computation. No trigonometric functions of the

Eulerian angles appear, obviating the necessity of referring to a function

table or to a series expansion to obtain the solutions of the equations of

motion. In addition, all quantities are finite for all orientations of the

rigid body.
This work was done in connection with a study performed by the Uni-

versity of Pennsylvania, Moore School of Electrical Engineering, under

Contract N60nr 24913 sponsored by the Office of Naval Research, Special

Devices Center, Port Washington, New York.

H. J. Gray, Jr.
M.   RUBINOFF

H. Sohon
University of Pennsylvania

Moore School of Electrical Engineering

1 Leigh Page, Introduction to Theoretical Physics, Second Edition—Fourteenth Printing,
D. Van Nostrand Company, Inc., New York, Ñ. Y., Introduction, Chap. I, II; 1951.

A Solution of Simultaneous Linear Equations
and Matrix Inversion with High Speed

Computing Devices

In solving several systems of simultaneous linear equations, in which

the coefficients of the unknowns are the same in all the systems but in


