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5. Specific Example of Error Bounds on the Approximate Solution. As
yet, no mention has been made of how y should be chosen once D is given.

Generally speaking, the choice would be to minimize k, but this indeed is a

serious problem.1 Without looking for the optimum choice, inspection of D
n

may give some guide. However, a simple choice for y is e = ]T */• For
j'=i

example, with D = (dij), let

It is then seen that

If k < 1, (7) gives

whence from (9)

(10)

Clearly, with the methods presented, many other error bounds such as

(10) are possible.
A. de la Garza

Carbide and Carbon Chemicals Company

K-25 Plant, Oak Ridge, Tennessee

1 The referee makes the following comments:

"If all \dij\ >0, the optimum choice of y is unique and is the eigenvector U\ of a(D)
whose components are all positive, and k is then the dominant eigenvalue Xi of a(D). This
follows from a lemma that, since all g¡ > 0, Xi lies strictly between the minimum and maxi-
mum of the ratios ei'a(D)y/ei'y, unless the ratios are all equal (and hence equal to Xi). The
lemma is a slight extension of Theorem I of Hazel Perfect, 'On matrices with positive
elements,' Quart. Jn. of Math., s. 2, v. 2, 1951, p. 286-290.

"The vector ap(D)e, which is asymptotically a multiple of Wi as p —*■ °o, may be a useful
approximation to y for sufficiently large p."
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1065[A].—H. S. Uhler, "Many-figure approximations for V2, Y3, Vi, and

$9 with x2 data," Scripta Math., v. 18, 1952, p. 173-176.

Values of the constants mentioned in the title are given to 710, 709, 478,

and 478 decimals respectively.

The author reports errata in the values of the cube roots of 2 and 3 as

given by Boorman.1 These are correct only to 198D and 54D instead of the

305D and 241D given.
There is given also data on the distribution of the digits of each of the

four cube roots. Values of x2 and the associated probabilities are given for

the first 50 k digits for k = l, 2, • • •. No unusual distributions are revealed.

D. H. L.

1 J. M. Boorman, "Square-root notes," The Mathematical Magazine, v. 1, 1887, p. 208.

k = max 2~2 I dij \,
i i

fi = max|¿,j|.

e'a(D) ^ ke',

ei'a(D) <C U'.

«(«/•) ^ t4t «'«(*>•
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1066[D, R].—Heinz Wittke, (1) Geodätische Register tafeln. Schnell-Rechen-
tafel. Fünfstellige Winkelfunktionen. 400° mit direkter zweistelliger Inter-
polation und Fehlergrenzen. Goslar-Harz, Selbstverlag, 1952, 60 p.,

16.2 X 24 cm., 9.80 Marks bound. (2) Geodätische Registertafeln Schnell-
Rechentafel. Sechsstellige Winkelfunktionen. 400" zur Maschinenrech-

nungen. Goslar-Harz, Selbstverlag, 1953, 59 p., 16.7 X 25.5 cm., 14.00
Marks bound.

These very neatly prepared geodesy tables, each with many label flap

guides, contain tables of sin, tan, cot, cos, for interval hundredth of a grade,

differences being printed in red. In each is introductory material with

illustrative examples. In (1) are a few useful supplementary tables; and in

(2) are sine and cosine tables for [0(0E.l)100g; 11D].
R. C. Archibald

Brown University

Providence, R. I.

1067[F].—H. Gupta, "A table of values of N,(t)," East Panjab Univ.,
Research Bulletin, no. 20, 1952, p. 13-93.

The table gives for each possible integer t < 20000 all non-negative

integral solutions x, y of

(1) x2 + y2 = t.

There is also given the sum function

N2(t) = ¿ nt(j)

where n2(t) denotes the number of solutions (x, y) of (1), the solutions

(xo, yo) and (yo, x0) being counted as different when x0 ^ yo-

This table is mentioned as existing in manuscript in MTAC, v. 3, p. 22,

and was used to prepare the author's table of N3(t), the number of solu-

tions of
x2 + y2 + z2 < t.

The author states that

(2) 2V2(i)=    £    [(¿-j2)*]
0<j<(}

but this is in contradiction with the definition of N2(t) and its tabulated

values. In fact the terms

1 + [0]

should be added to the right hand side of (2).
The table can be used to find the exact number of lattice points inside

or on a circle of radius r by means of the formula

4N2(r2) - 4r - 3.

Thus the number of lattice points inside and on a circle of radius 140 is

4A72(19600) - 560 - 3 = 61529.

The area of the circle is greater than this by the factor 1.000751.
D. H. L.
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1068[F].—Ove Hemer, On the Diophantine Equation y2 — k = x3. Uppsala,
1952, 101 p., 23.5 X 17.6 cm.

The booklet is primarily concerned with the solutions of the equation

y2 — k = x3

for positive k < 100.
Table 1 (p. 94) purports to give all solutions for 47 of the 59 values of

k < 100 for which solutions exist (10 of these were cases which were known

previously), together with the number N of solutions. For k = 37, however,

N is given as 2, but besides the two solutions which are listed, the solution

(243, 3788) can be read from Robinson's tables, which are on deposit in

the UMT File {MTAC, v. 5, p. 162L and of which the author is apparently
unaware. The discussion pertaining to the case k = 37 (p. 75-78) is therefore

incomplete. In ten of the remaining 12 cases one solution is given and it is

stated that N < 2. In the other 2 cases k = 63 and k = 76, two and one

solutions are given respectively with the remark that "in all probability

there are no more solutions."

There is only a one page discussion (p. 88-89) for negative k. A statement

is made on p. 88 that y2 + 56 = x3 has no solutions. However, Robinson's

table lists (18, 76) which is indeed a solution. Table 2 (p. 95) lists the 44
values of k < 0 for which solutions exist, together with the known solutions

and their number. In 22 of the cases all solutions are known, in the remaining

cases one or two solutions are given. An extra solution can be read from

Robinson's table for - k = 7, 28, 39, 47, 53, 55, 60, and 63.
C5Table 3 gives solutions of y2 ± 21k = x3 for \k\< 50. These were ob-
tained with the help of Cassels'1 table of rational solutions {MTAC, v. 4,

p. 202]. All solutions are supposed to be given, except for 11 values of k.

For k = — 11, however, the number of solutions is given as 8, while a ninth

solution (1362, 50265) can be read from Robinson's table. In two other

cases, k = 24 and 37 which are not complete, Robinson gives an extra

solution.
Table 4 gives the discriminants —D, the fundamental rings and units «

in the cubic field corresponding to 36 square free values of k between 2 and

100. In 10 of these cases e is not "definitely proved to be a fundamental unit."

Emma Lehmer
16556 Chattanooga PI.

Pacific Palisades, Calif.

1 J. W. S. Cassels, " The rational solutions of the Diophantine equation y1 = x' — D,"
Acta Math., v. 82, 1950, p. 243-273.

1069[F].—M. Kraitchik, "On the factorization of 2" ± 1," Scripta Math.,
v. 18, 1952, p. 39-52.

This expository article contains tables giving the complete factorization

of 2n ± 1 for those values of n for which such information was known to the

author. There are four tables. The first is for 2n — 1 and for

n = 1(2)99, 105, 107, 111(2)117, 123, 127, 135.

The second is for 2" + 1 and for

n = 1(2)99,105,111,123,135.
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The third is for 2" + 1 and for

« = 4(4)100, 108, 120.

The fourth is for 2" + 1 and for

« = 2(4)130, 138(4)162, 170(4)190, 198, 210, 222, 234, 250, 258, 270, 330.

The tables separate the algebraic factors from the primitive ones. The

fourth table has column headings for the two factors in

2ik+2 + 1 = (22*+1 - 2*+1 + 1)(22*+1 + 2*+1 + 1).

These two factors are inadvertently interchanged for « = 4k + 2 = 94,

114, and 150.
An additional entry can be given, namely

289+ i = 3.179-6202089-1858477404602617.

The factor 6202089 was discovered by the SWAC. The large factor was
proved prime by A. L. Brown and the reviewer independently.

Other additional entries may be made from Notes 131, 138, 142, and 146.
D. H. L.

1070[I].—J. M. Hammersley, "Lagrangian integration coefficients for dis-

tance functions taken over right circular cylinders," Jn. Math. Phys.,

v. 31, 1952, p. 139-150.
The author considers the problem of evaluating the sixfold integral of

the form

/
t(r)dvidv2/r2

where dvi and dv2 are two volume elements, a distance r apart, in a cylinder

of diameter a and length ca and t(r) is an arbitrary function of r. The

integral is approximated by

I = (a/2yir2(cyi + y2)

where

y2 = f° t(aÇ)h(Ç)!T2d!. + t(ac)k(c).

The auxiliary functions g, and k involve the hypergeometric function

F(a, 1/2; 2;x)        (a = - 1/2, -3/2).

The integrals yi and y2 are to be evaluated by the Lagrangian integration

formulas
yi- E/(^)G(ö,

y2 = E t(alî)H(ï),

the sums being taken over equally spaced points £.
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The author tabulates G(£), —H(%) and (for checking purposes) G(£)

+ H® for

£ = 0(.01)2(.05)3(.25)10;8D

with the last place uncertain.
G. Blanch

NBSINA

1071[K].—T. W. Anderson & D. A. Darling, "Asymptotic theory of
certain 'goodness of fit' criteria based on stochastic processes," Annals

Math. Stat., v. 23, 1952, p. 193-212.

The table contained in this paper (p. 203) gives the argument z to 5D

which satisfies ai(z) = lim Pr («co2 ̂ z) for öi(z) = .01(.01).99, .999. This
n—»oo

is the limiting distribution for large samples of »to2, a statistic attributed to

von Mises for testing the hypothesis that « independent, identically dis-

tributed random variables have a specified distribution function F(x).

w2 is defined by w2 = ,/l"„ [.Fn(x) — F(x)^2dF where Fn(x) is the sample

cumulative distribution function for a sample of size n.
W. J. Dixon

University of Oregon

Eugene, Oregon

1072[K].—Z. W. Birnbaum, "Numerical tabulation of the distribution of

Kolmogorov's statistic for finite sample size," Amer. Stat. Assn., J«., v.

47, 1952, p. 425-441.

Let Xi, X2, • • •, Xn be a random sample from a population having a

continuous cumulative distribution function F(x). Define the empirical

distribution function Fn(x) by Fn(x) = j/N where j is the number of ob-

served values of Xi, • • •, Xn which are less than or equal to x, and let

DN= l.u.b. \F(x) - FN(x)\.
X

Table I (p. 428^130) gives values to 5D of P(DN < c/N) for N = 1(1)100
and c = 1(1)15. Table II (p. 431) gives, for AT = 2(1)5(5)30(10)100, values
to 4D of the 95th and 99th percentiles of the distribution of DN and com-
pares these with the limiting values.

Frank Massey

University of Oregon

Eugene, Oregon

1073[K].—A. H. Bowker & H. P. Goode, Sampling Inspection by Variables.
McGraw-Hill Book Co., Inc., New York, 1952. xi + 216 p., 15.6 X 23.3
cm. Price $5.00.

This book is built around a set of single and double variables sampling

inspection plans of the non-central t type. For normal variables the cases of

known and unknown standard deviation, and two-sided as well as one-sided

specifications, are included. No sequential variables plans are described, for

reasons of incomplete theory and elaborate calculation.
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For roughly corresponding discussion of single, double (and sequential)

attributes sampling inspection plans, see Statistical Research Group,

Columbia University, Sampling Inspection, New York, McGraw-Hill Book

Company, Inc., 1948.
The heart of this book lies in Chapter 11 (pages 125-141) on the mathe-

matics of the plans, and in tables and charts (pages 164-209), together with

a number of other tables and charts scattered throughout the text. In addi-

tion, there is much material on sampling inspection generally, such as the

installation and administration of sampling inspection plans, tightened and

reduced plans, disposition of rejected product, non-normal populations,

control charts in sampling inspection, comparisons of variables and at-

tributes plans.
A few of the principal tables : Table A (necessary for later tables) : for

each of fourteen inspection lot sizes and for each of three inspection levels,

a sample size letter (42 entries, 14 different). Table B: for single sampling,

for each of the fourteen sample size letters (each here corresponding to a

single sample size) and for each of fifteen AQL classes, ranging unevenly

from .024-035 to 8.5-11.0, the value of k to 3D in the acceptance criterion

x -\- ks = U or x — ks = L, where U and L are the upper and lower specifi-

cation limits respectively, and AQL, x, and 5 have the usual meanings.

(The acceptable quality level, AQL, as here used, is the percentage of de-

fective items in an inspection lot such that the inspection plan will accept

95% of all lots submitted containing that percentage of defects.) Table C:

as in Table B, for double sampling, showing ka, k„ and kt, all to 3D, corre-

sponding to k in Table B, but for acceptance on the first sample, rejection

on the first sample, acceptance on the second sample. Table D : for each of

the fourteen sample size letters and for each of the fifteen AQL classes, the

AQL and the LTPD. (The lot tolerance percent defective, LTPD, as here

used is the percentage of defective items in an inspection lot such that the

sampling plan will reject 90% of all lots submitted containing that percent-

age of defects.) Table E (the major table of the book) : for each of the four-

teen sample size letters, the operating characteristic curves of each of from

9 to 16 single and double sampling plans, each pair of plans showing the

AQL class, the AOQL class, and the criteria for acceptance (163 curves in

all). (The average outgoing quality limit, AOQL, is the maximum percent

defective remaining in lots subjected to a plan if all rejected lots are screened,

no matter what may be the quality of the lots submitted.)

This work is a sturdy accomplishment by the authors and a credit to

all who pioneered in this area. Among the latter are H. Romig, H. Dodge,

N. L. Johnson, B. L. Welch, W. J. Jennett, C. C. Craig, W. A. Wallis,
K. J. Arnold, J. Wolfowitz, and the two authors.

H. A. Freeman

Massachusetts Institute of Technology

Cambridge, Massachusetts

1074[K].—K.  Freudenberg,  "Die Grenzen für die Anwendbarkeit des

Gesetzes der kleinen Zahlen," Metron, v. 16, 1951, p. 285-310.

The principal objective of this paper is to determine the smallest sample

size required in order to obtain a given degree of approximation to the
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binomial distribution by means of the Poisson distribution and by means of

the following, so to speak, second order approximating function

<r*X-[        (m - X)2 - ml
(1) 2*m.-   m,  [1- 2i J'

where s is sample size, X = sq is the mean number of occurrences of an

event of probability q in random samples of size 5 ; X is also the mean of the

approximating Poisson distribution and m = an integer. The mean of B\m

is also independent of s, and its variance is X(l — Xs_1). In spite of the fact

that the zeroth moment of B\.m is unity independent of 5, it is not a distribu-

tion, since some of its values can be negative. Since these negative prob-

abilities are, however, exceedingly small, they do not vitiate the practical

usefulness of B\,m as an approximation to the Poisson and binomial distri-

butions. In fact, the B\,m require much smaller sample sizes for equivalent

approximation to the binomial distribution than does the Poisson distribu-

tion. The Poisson and binomial are in this notation denoted as follows:

(2) AXm = *-»X»/m!

*-(:)G)"0-;)~
The following tables are of principal interest: on p. 307 values of s„,a

and sp,B as functions of X = §(§)10, which are respectively lower bounds

for 5 such that the deviations of A\¡m and B\,m from C\,m = p = .001. sp,a

varies from 141.5 to 640.8, where correspondingly sp,b goes from 7.8 to 78.8.

On p. 308 sPia and sp,b are given as functions of q = .01(.01).10, again for

p = .001. Here sp, a varies from 406.0 to 4912.2 while s„, B goes from 0 to 34.1.
Auxiliary tables of some interest are found on p. 292-294. A\,m, B\,m,

C\,m, (A\,m — C\,m), and (Bx,m — Cx,m) are given for j = 50 and 100 and

forX = \,m = 0(1)7, > 7;X = l,\,m = 0(1)10, > 10;X = 2,m = 0(1)11,
> 11; X = 3, m = 0(1)12, > 12; X = 4, m = 0(1)13, > 13.

For the approximation B\, m to be of practical use in sampling, extensive

tables would be required; the present table has limited usefulness. The

reader's attention may be called to errors in formula (11) p. 289 and the

subsequent argument. The right side of (11) should be X and the subsequent

argument can be corrected so as to yield this result. The findings of the

paper are not affected by these errors.
S.  B.  LlTTAUER

Columbia University

New York City, New York

1075[K].—C. H. Goulden, Methods of Statistical Analysis. John Wiley &
Sons, New York. 2nd ed., 1952, vii + 467 p., 15.2 X 23.7 cm. $7.50.

The tables in this volume present no novelty, consisting of areas and

ordinates of the normal curve, percentage points for the Student-Fisher t,

X2, and the variance ratio, values of the bias factor c2 for the standard

deviation in samples from normal, and an extract from the Fisher & Yates

random numbers.
c. c. c.
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1076[K].—A. Hald, Statistical Tables and Formulas. London, Chapman &
Hall; New York, John Wiley & Sons, 1952. 97 p., 27.8 X 21.9 cm., $2.50.

The actual tables are preceded by 22 pages of pertinent formulas, ex-

planations and illustrations. Tables I and II of ordinates and cumulative

frequencies of the normal frequency function has the unusual feature of

giving all values to 4S for the standardized argument u = 0(.01)4.99.

Table III is a 3D probit table slightly abridged from Fisher & Yates.1
The usual percentage points of the Student-Fisher / distribution are re-

placed by "fractiles" (Table IV) which are percentage points of the cumu-

lative distribution. These are taken from the Fisher & Yates tables with the

omission of 55% fractiles and the addition of 99.9% values as well as the

set of values for 50, 80, 100, 200 and 500 degrees of freedom. Table V, frac-
tiles of the x2 distribution, is reproduced from the Hald & Sinkbaek table2

and gives values of xo2 satisfying P(x2 < xo2) = P to ID for lOOp = .05,

.1, .5, 1, 2.5, 5, 10(10)90, 95, 97.5, 99, 99.5, 99.9, 99.95 and the degrees of
freedom / = 1(1)100. Table VI gives fractiles of x2// to 4D for lOOp = .05,

.1, .5,' 1, 2.5, 5, 95, 97.5, 99, 99.9, 99.95 and / = 1(1)100(5)200(10)300(50)-
1000(1000)5000, 10000. Table VII, fractiles of the variance ratio, xiWxffu
is an extension both of the Fisher & Yates tables and of those of M erring-

ton & Thompson.3 Values are given to 3S for lOOp = 50, 70, 90, 99.9, 99.95

with /1 - 1(1)10, 15, 20, 30, 50, 100, 200, 500, » ; /2 = 1(1)20(2)30(10)60,
80, 100, 200, 500, °o and for lOOp = 95, 97.5, 99, 99.5 with /1 = 1(1)20(2)-

30(5)50, 60, 80, 100, 200, 500, » ; /2 = 1(1)30(2)50(5)70(10)100, 125, 150,
200, 300, 500, 1000, 00. Table VIII for fractiles of the range in samples from
a normal universe has been reproduced in part from Tippett4 and Pearson.6

Here values are given to 2D for lOOp = .05, .1, .5, 2.5, 5, 10(10)90, 95, 97.5,
99, 99.5, 99.9, 99.95 and the sample size n = 2(1)20. Values of the mean,
standard deviation and their ratio for the range in samples from normal are

given to 3D for the same set of sample sizes.

The next two tables are devoted to functions useful in the estimation of

the mean, £, and the standard deviation, a, of a one-sided truncated normal

distribution with a known point of truncation according to methods given

in Hald's text6 of which these tables form the companion volume. In the

case only a sample of n from the truncated range is used, for arguments y,

calculable from the sample, z = f(y) gives an estimate of the standard-

ized point of truncation, f; another function, s = xg(z), where x is the

sample mean, estimates a; and x estimates £. Table IX gives z to 3D for

y = .55(.001).91, g(z) with its first differences to 4D for z = - 3(.1)2, and

the variances and covariance of n^x/o and n^s/a to 4S and their coefficient

of correlation to 3D also for z = — 3(.1)2. For a one-sided censored normal

distribution the sample consists of n — a known values falling to the right

of the known truncation point and a of whose values no more is known than

that they fall to the left of the point of truncation. In this case f is estimated

by z = f(h, y) where h = a/n and y is calculated from the known portion

of the sample, <r is estimated from xg(h, z), where x is the mean of the known

portion of the sample and g(h, z) is simply obtained from the tabulated

function \j/'(z) and h, and again x estimates £. In Table X, f(h, y) is given to

3D for h = .05(.05).5 and y = .5(.005).6(.01).8(.05)1.5; 4>'(z) to 5S with
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first and second differences, the same variances and covariances as before to

4S and the same coefficient of correlation to 3D, all for z = — 3(.1)2.

Table XI gives two-sided 95% and 99% confidence limits for the prob-

ability û in the binomial distribution if the sample consists of x occurrences

in » trials. Values are given to 3D for x and n - x = 0(1)20(2)30(5)50, 60,

80, 100, 200, 500, oo. Table XII gives 2 arc sin Vx" to 4D for x = 0(.001)1.
Tables XIII of log (»!) to 4D for n = 1(1)1000, XV of n2 for n = 0(1)999,
XVI of »* and (10»)* for « = 1 (.01)9.99, XVII of m"1 to 5D for » = 1 (.01)9.99,
and XVIII a 4D table of common logarithms are all readily found elsewhere.

But Table XIV of log © to 4D for x = 1(1) ( ^ j and » = 2(1)100 appears

to be an extension of previous tables. And the final Table XIX is a new set

of 15000 random digits compiled from drawings in the Danish State Interest

Lottery.

This is an excellent set of statistical tables containing a good deal of

new material.

c. c. c.
1 R. A. Fisher & F. Yates, Statistical Tables for Biological, Agricultural and Medical

Research. London & Edinburgh, 1948.
SA. Hald & S. A. Sinkbaek, "A table of percentage points of the x'-distribution,"

Skandinavisk Aktuarietidskrift, v. 33, 1950, p. 168-175. [MTAC, v. 7, p. 25.]
3 M. Merrington & C. M. Thompson, "Tables of percentage points of the inverted

beta (F) distribution," Biometrika, v. 33, 1943, p. 73-88. [MTAC, v. 1, p. 78.]
4 L. H. C. Tippett, "On the extreme individuals and the range of samples taken from

a normal population," Biometrika, v. 17, 1925, p. 364-387.
6 E. S. Pearson & H. O. Hartley, "The probability integral of the range in samples

of n observations from a normal population," Biometrika, v. 32, 1942, p. 301-308. [MTAC,
v. 1, p. 105.]

* A. Hald, Statistical Theory with Engineering Applications. New York & London, 1952.

1077[K].—T.  Kitagawa,  Tables of Poisson Distribution. Tokyo, Japan,

Baifukan, 1951, 156 p., 18.7 X 26.0 cm., $3.50.

The integer-valued random variable X is said to have a Poisson distribu-

tion with parameter m if Pr (X = x) = e~mmx/x\ = p(x, m).

The tables give p(x, m) for x = 0(1)- ■ -, m = .001(.001)1 to 8D (Table
\);m= 1.01(.01)5to8D(TableII);andw = 5.01(.01)10 to 7D (Table III).

These tables were prepared directly from their definition. No interpola-

tion methods are suggested.

In the introductory material there is an English translation of a Japanese

article by Kitagawa on the subject of double sampling inspection plans

which illustrates some of the uses of the above tables.

In Table IV 95% and 99% confidence limits are given to 6D for the

population parameter, m, with the sample mean x = .001, .005, .01,

.02(.02).l, .2(.2)1(1)10 and the sample sizes 50(10)100(100)500, 1000,
2000(2000)10000, 20000, 50000, 100000, when large sample theory is

applicable.
Kitagawa prepared his tables before it was possible for him to learn

about Molina's tables.1 In these p(x, m) is given to 6D for m = .001 (.001)-

.01(.01).3(.1)15(1)100 together with P(c,m) = ¿ p(x, m) to 6D for the
X=C

same values of m and c — 0(1)153. Kitagawa's volume does not contain a
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table of either P(c, ni) or 1 — P(c + 1, m). In about one hundred compari-

sons between Molina's and Kitagawa's tables no discrepancies were found.

I. R. Savage

National Bureau of Standards

Washington, D. C.

1 E. C. Molina, Poisson's Exponential Binomial Limit. New York, 1942. [MTAC, v. 1,

p. 18.]

1078[K].—K. Kunisawa, H. Makabe & H. Morimura, "Tables of confi-
dence bands for the population distribution function. 1.," Union of

Japanese Scientists & Engineers, Reports of Statistical Application Re-

search, v. 1, 1951, p. 23-44.

Let (Xi, ■ ■ ■, Xn) be a sample of independent variables with the same

continuous cumulative distribution function F(x), and let A^(z) be the

number of Xk's which are = z. Setting Fn*(x) = N(z)/n, the maximum Dn

of \Fn*(z) — F(z) | is a random variable. Then Kolmogorov,1 who intro-

duced this statistic, showed that nWn has the asymptotic cumulative prob-
oo

ability function L(z) = 1 — 2 2~1 (~ l)'~1er2i'''. This function was tabu-
j' = i

lated by N. Smirnov2 to 6D, for arguments z = .28(.01)3. In the present

paper the authors publish a table of L(z) to 7D, for z = .250(.001)2.299,
tabulating also the first differences.

Z. W. Birnbaum

University of Washington

Seattle, Washington

1 A. Kolmogorov, "Sulla determinazione empírica di una legge di distribuzione," Inst.
I tal. Attuari, Giorn., v. 4, 1933, p. 83-91.

2 N. Smirnov, "On the estimation of the discrepancy between empirical curves of
distribution for two independent samples," Bull. Math, de l'Univ. de Moscou, v. 2, 1939,
fase. 2. 16 p. The table referred to was also reproduced in Annals Math. Stat., v. 19, 1948,

p. 279-281.

1079[K].—F. J. Massey, Jr., "Distribution table for the deviation between

two sample cumulatives," Annals Math. Stat., v. 23, 1952, p. 435-441.

Given two ordered samples of sizes Ni and N2 from cumulatives Fi(x)

and F2(y). Sn¡(x) is the proportion of the members of the sample Nt(i = 1,2)

less than x. Let d = max |5^,(a:) — Sn3(x) |. Table 1 (p. 436-439) presents
all possible values of da and a, for Ni, A7^ = 10, where

a = Prob Id ^ da\Fi(x) = F2(x)J

The table is in terms of Ni, N2, h, and a; A is an integer, such that da = h/l,

where / is the lowest common multiple of Ni and N2 (h Si I); and a is

given to 5D.
Table 2 (p. 440-441) is the same for additional selected values of Ni

and N2 except that h usually is not carried out to I.
R. L. Anderson

University of North Carolina

Raleigh, North Carolina
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1080[K].—J. M. May, "Extended and corrected tables of the upper per-

centage points of the 'Studentized' range," Biometrika, v. 39, 1952,

p. 192-193.
This paper contains tables of the upper percentage points of the 'Student-

ized' range q = (xn — Xi)/s for the 5% and the 1% levels of significance for

« = 2(1)20 and v = 1(1)20, 24, 30, 40, 60, 120, » where s2 is a mean square
estimate of <r2 independent of the range, « is the sample size for the range,

and v is the number of degrees of freedom of s. Most entries are given to 2D.

None contains fewer than 3S. These tables were computed by numerical

quadrature as a supplement to tables computed earlier by Pearson &

Hartley1 with the aid of approximation formulas which were found un-

reliable for small v and large q. The Pearson-Hartley tables did not include

entries for v < 10 and the authors pointed out that entries exceeding 6

should not be considered reliable for v = 10. For additional tables of the

'Studentized' range see the review of Pillai's paper in this issue [RMT1083].

A. C. Cohen, Jr.
University of Georgia

Athens, Georgia

1 E. S. Pearson & H. O. Hartley, "Tables of the probability integral of the 'Student-
ized' range," Biometrika, v. 33, 1943, p. 89-99.

1081[K].—J. Moshman, "Testing a straggler mean in a two-way classifica-

tion using the range," Annals Math. Stat., v. 23, 1952, p. 126-132.

In 1948 Nair1 obtained the distribution of the Studentized extreme devi-

ate from the sample mean, i.e., he obtained the distribution of the sample

statistic
m» = (xn — x)/s,       or       «,' = (x — Xi)/s,

k

where Xi = x2 Si • • • = xk, x = k"1 Z *< and s, is an independent estimate
»=i

of the standard deviation based on v degrees of freedom. In a two-way

classification in the analysis of variance, therefore, s, can be taken as the

residual standard deviation and the above test can be used to judge whether

a row or column mean is high or low relative to the grand mean. In 1950

Patnaik2 published a paper which indicated that the distribution of the

mean range can be approximated with sufficient practical accuracy by a x2

distribution, provided an appropriate scale factor is used and an equivalent

(usually fractional) number of degrees of freedom employed in the conver-

sion. Tables were published in Patnaik's article which give both the appro-

priate scale factor and the equivalent number of degrees of freedom for the

mean range. These two results have apparently led the author of the present

paper to recommend a test for detecting a "straggler" row or column mean

in a two-way classification using in effect the mean range instead of the

standard deviation in Nair's test. As a matter of fact, the test proposed by

Moshman is based on the sample statistic

* r      k

g =

T                                           T             K K                                           J             K

k £ xik - 2~L Z xn r £ xTj - ¿Z Z xn
« = i_«-1J-1 >-i_i-iy-i

Wa,i W.,i
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The numerator of the g statistic hence involves only row or column totals,

the grand total, the number of rows and columns and a function Wk,r of

certain "ranges." This latter factor is in fact the sum of the "column"

("row") ranges of the "row" ("column") residuals. Appropriate tables for

the 1% and 5% significance levels of the statistic, g, are given to 3S in the

article for all cases where the number of rows or columns does not exceed

nine. A quick answer concerning whether a particular row or column mean

in a two-way classification is a straggler can therefore be obtained directly

from these tables. For another method see Tukey.3

F. E. Grubbs
Ballistic Research Laboratories

Aberdeen Proving Grounds, Maryland

1 K. R. Nair, "The distribution of the extreme deviate from the sample mean and its
Studentized form," Biometrika, v. 35, 1948, p. 118-144.

* P. B. Patnaik, "The use of the mean range as an estimator of variance in statistical
tests," Biometrika, v. 37, 1950, p. 78-87.

» J. W. Tukey, "Comparing individual means in the analysis of variance," Biometrics,
v. 5, 1949, p. 99-114.

1082[K].—D. N. Nanda, "Probability distribution tables of the larger root
of a determinantal equation with two roots," Indian Soc. Agr. Stat., J».,

v. 3, 1951, p. 175-177.

Define the distribution function P(x) by

2P(x)7(l, 2m + 2, 2« + 2) = 27(x, 2m + 2, 2» + 2)
- xm+1(l - x)n+1/(x, m + 1, « + 1)

where

I{x, £+1,2+1)=   j    «p(l - u)"du.

The author tabulates P-!(.95) and P-J(.99) to 2D for »i = 0(§)2,« = §(i)10.
These tables provide tests for a number of statistical hypotheses, includ-

ing that of the equality of two covariance matrices of bivariate normal

populations.
J. L. Hodges, Jr.

University of California

Berkeley, California

1083[K].—K. C. S. Pillai, "On the distribution of the 'Studentized' range,"
Biometrika, v. 39, 1952, p. 194-195.

This paper contains tables of the lower percentage points of the 'Student-

ized' range q = (xn — Xi)/s at the 5% and the 1% levels of significance for

» = 2(1)8 and v = 1(1)9, where the notation is that of RMT 1080. All
entries are given to 2D. These results further supplement those of Pearson

and Hartley.1 An editorial note explains that Pillai also computed certain

upper percentage points which were not published separately since his paper

was submitted while May's (see RMT 1080) more extensive program of

computation was in progress. Pillai's upper 5% and 1% points computed

for 1 ^ »» = 4 and 2S» = 8 are included in the tables by May, and ac-
cording to May, agreed with his calculations to within a unit of the last

figure quoted by Pillai. In order to perform the necessary calculations, the
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author determined the distribution of q explicitly in the form of an in-

finite series.

A. C. Cohen, Jr.
University of Georgia

Athens, Georgia

1 E. S. Pearson & H. 0. Hartley, "Tables of the probability integral of the 'Student-
ized' range," Biometrika, v. 33, 1943, p. 89-99.

1084[K].—Alan Stuart, "The power of two difference-sign tests," Am.

Stat. Assn., /»., v. 47, 1952, p. 416-424.

The author considers a distribution-free test of serial independence of N

(unequal) observations with its N — 1 first differences ordered in time, a

test proposed by Moore & Wallis.1

Define D = YJ -D» where Di is unity when the ith difference is positive,
<=i

and zero otherwise. The null hypothesis is that the observations come from

the same continuous population, and under this hypothesis the mean and

variance of D is derived and its asymptotic normality for large N proved.

The alternative hypothesis, assuming the observations equally spaced, is

yic = a + ßk + Xk where x* is a normal varíate with mean ß and variance a2.

The mean, variance, and the asymptotic normality under the alternative

hypothesis is derived. Assuming exact normality of the statistic D under

both the null and alternative hypotheses, the author tabulates the power

of the D-test to 2D_at the 95% level of significance for N = 15, 25, 50, 75,

100 and R = ß/o-^2 = .1(.1).5, 1. He concludes for N S 25, R S .5, and
N = 75, R = .3, that the loss of power as compared with the best available

test is at most 8 percent. He next considers the case of two series of N un-

equal observations in time, and to investigate the correlation between them

defines Z>¿ for the first series as before, and similarly dt for the second series.
N-l

Let d = Didi, and the correlation statistic C = X C<. Under the null
i = l

hypothesis that the N pairs of observations are drawn from the same con-

tinuous bivariate population in which the two variâtes are independent he

finds the mean variance of C and proves its asymptotic normality. The

alternative hypothesis is that the N pairs of observations are drawn from a

normal bivariate population with p ^ 0, and under this hypothesis the mean,

variance of C and its asymptotic normality is derived. The author provides

a table for the power of the C test to 2D against this alternative (under the

assumption again of exact normality) at the 95% level for p = .1(.1).7

and N = 50, 100, 200, and 400. This is compared to the power of the usual

Z test, Z = \ log Í y~ ) at the 95% level for P " -l(-l)-5, A^ = 50, 100,

200, 400, with results given to 2D. For p S .5, N g 100, p S .4, N ^ 200;
or p i£ .3, A^ = 400, he concludes that the use of the C test is satisfactory

since at most 8% of the power is lost.

L. A. Aroian
Hughes Aircraft Company

Culver City, California

1 G. H. Moore & W. A. Wallis, "Time series significance tests based on signs of
differences," Amer. Stat. Assn., Jn., v. 38, 1943, p. 153-164.
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1085[K].—T. J. Terpstra, "A confidence interval for the probability that

a normally distributed variable exceeds a given value, based on the

mean and the mean range of a number of samples," Applied Scientific

Research, A, v. 3, 1952, p. 297-307.

The author employs Patnaik's1 method to find the confidence intervals

described in the title. For / samples of size k each the author gives four charts

from which one can read the central 90% confidence limits on the vertical

axis with the ratio of the numerical difference of the given value from the

mean of the total sample to the average range on the horizontal axis, for

I = 4(2)10 and k = 1(1)5.
c. c. c.

1 P. B. Patnaik, "The use of the mean range as an estimator of variance in statistical
tests," Biometrika, v. 37, 1950, p. 78-87.

1086[K].—J. Wishart, "Moment coefficients of the ife-statistics in samples

from a finite population," Biometrika, v. 39, 1952, p. 1-13.

Tukey1 in order to simplify the problem of finding moment coefficients

of Fisher's ¿-statistics in samples from a finite population introduced the

sample statistic KTS... which has the property that its expected value is the

same function of the N members of the population that kri... is of the »

members of the sample. The author first gives a conversion table for finding

the krs... statistics in terms of the augmented monomial symmetric functions

of David & Kendall2 and vice versa through order 6. Then to facilitate the

derivation of further sampling formulae he gives a complete table of products

and powers of ¿-statistics in terms of the kTt... through order 6. For orders

7 and 8 he gives the 14 and 21 basic formulae respectively, the remaining

results of those weights then being derivable by algebraic substitution.

Illustrations of the application of these tables are given.

c. c. c.
lJ. W. Tukey, "Some sampling simplified," Amer. Stat. Assn., Jn., v. 45, 1950, p.

501-519.
2 F. N. David & M. G. Kendall, "Tables of symmetric functions—part I," Biometrika,

v. 36, 1949, p. 431-449. [_MTAC, v. 4, p. 146.]

1087[L],—British Association for the Advancement of Science, Com-
mittee on Mathematical Tables, Table of Bessel Function, Part II. Cam-

bridge, 1952. xl + 255 p., 21.5 X 28 cm.

This is the long-awaited "second volume." The functions tabulated are

Jn(x), Yn(x), In(x) — i~nJn(ix) and Kn(x) = %irin+1[_Jn(ix) + iYn(ix)~\ for

« = 2(1)20 (the first volume1 gave values of the functions for « = 0, 1) and

for x = 0(.l or .01)10(.1)20 with 82 or 8m2. Tables for Jn are 8D whereas

those for F„, In, and Kn are to 8 figures. In regions where Y, I, or K is

not convenient for interpolation, the functions xnYn, xnKn, erxIn or efKn

are tabulated. Finally Jn, Yn, In, and Kn are tabulated for « = 0(1)20,
x = 0(.1)25, to 10D for /„, 10 figures for F„, In, Kn.

The tables are, in part, based on those of Aldis2 but are very considerably

expanded and reworked. The checking has been carried out with the

scrupulousness typical of this series of tables.
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Bessel functions are like the weather, they nearly always intrude some-

where in any research in theoretical physics or applied mathematics. Like

the weather also, for a long time very little was done about assembling a

set of tables of the functions complete enough to satisfy most needs. Few

of the calculations of acoustical and electromagnetic wave radiation, propa-

gation or scattering can be made with the sole use of Bessel functions of the

first kind, of real argument, so attempts to use the remarkable Harvard

Computation Laboratory3 tables are usually reminiscent of attempts to

skate with only one ice-skate. Here, in the present BAASMTC volume, we

have both solutions tabulated, for both real and imaginary values of the

argument, with enough significant figures and enough range of the argument

and order so that most calculations can be carried through. The Bessel

function Panel responsible for its production—W. G. Bickley, L. J.

Comrie, J. C. P. Miller, D. H. Sadler, and A. J. Thompson—are to be
congratulated. Incidentally, this is the last volume of the BAAS tables;

the Committee has been reconstituted as the Royal Society Mathematical

Tables Committee.
As far as the needs of the theoretical physicist and engineer are con-

cerned, this volume and the earlier one1 will suffice, in the majority of cases.

In a few scattering calculations the functions / and Y for n = 20(1)50 for

x = 0(.1)25 would be useful, for in scattering calculations, orders up to

about twice the argument, still contribute in the result. In some electro-

magnetic and acoustical problems, functions of a complex argument are

required. These are available in the NYMTP tables4 for n = 0 and 1. It

would be useful to have similar tables for n = 2(1)10, but such needs are

not urgent. Tables available and desired for half-integer orders will be dis-

cussed in RMT 1092.
The volume under review here is clearly printed and each page is clearly

marked for ready reference. It is a pleasure to use the volume.
Philip M. Morse

Massachusetts Institute of Technology

Cambridge 39, Mass.

1 BAASMTC, Bessel Functions, Part I. Cambridge, 1937, xx + 288 p.
2 W. S. Aldis, Roy. Soc. Proc, v. 64, p. 203, 1899, and v. 66, p. 32, 1900.
8 Harvard Computation Laboratory, Tables of Bessel Functions of the First Kind for

n = 0 to 135, vols. Ill to XIV, 1947-1951, Harvard U. Press, Cambridge, Mass.
_ « NYMTP, Tables of Jo, Ji and F0, Yifor Complex Arguments, 1943 and 1950, Columbia

University Press, New York.

1088[L].—H. Kober, Dictionary of Conformai Representations. New York,

Dover, 1952. xvi + 208 p., 15.2 X 23.8 cm. Price $3.95.

The book represents a formidable achievement in bringing together a

wide variety of explicit conformai maps useful to physicists, engineers and

computers. Particularly notable are the numerous clear diagrams, which

allow the reader to locate quickly a required mapping. Most of the trans-

formations are by elementary functions, but short theoretical discussions of

the Schwarz-Christoffel transformation and of the Schwarz principle of

reflection indicate in part the derivation of more complicated formulas.

Proofs are altogether omitted due to the dictionary character of the presen-

tation. Mappings are classified according to the nature of the analytic func-



RECENT MATHEMATICAL TABLES 99

tions involved, with chapters on bilinear transformations, algebraic func-

tions, trigonometric and exponential functions, the Schwarz-Christoffel

transformation, and elliptic and modular functions. Although a geometrical

index is listed as topological, almost no reference is made to Riemann sur-

faces. This is particularly to be regretted, since it is quite common in

engineering problems, such as those involving the hodograph method, to

ignore the usefulness and necessity of exploiting simple conformai mappings

onto Riemann surfaces. Accuracy and a notable absence of misprints, of

which the reviewer found only one, should make the handbook of permanent

and growing value to the applied scientist.

P. R. Garabedian
Stanford University

California

[Editorial Note. A preliminary version of this work was reviewed in MTAC, v. 2, p.
296-297, v. 3, p. 103, 368].

1089[L].—N. H. March, "Thomas-Fermi fields for molecules with tetra-

hedral and octahedral symmetry," Cambridge Phil. Soc, Proc, v. 48,

1952, p. 665-682.

Two types of solutions of the differential equation

dx2

are tabulated in this paper. One of these is of the form

<b = 1 + a,iX + a3x* + aiX2 + • • •

and is fully determined once a2 is given. Table 2 (p. 670) gives a3, • • •, au

in terms of a2, and Table 1 (p. 668) values of <b for — a2 — 1.55, 1.56, 1.567,
1.5748, 1.581, 1.5849, 1.5853, 1.5866, 1.58756, 1.58764. x varies from 0 to
10.74. The solutions were started by using the above series and then con-

tinued by numerical integration of the differential equation. Table 1 also

gives in each case the point x0 the tangent at which passes through the origin,

with the corresponding <b(xo). It is suggested that a classification of the

solutions by <b(xo) is more reliable than that based on a2.

The second type of solutions is of the form

* - --»**

v       Xs   V        x°      *2c      *3c /

Table 3 (p. 670) gives expressions of F2, • • •, Fio in terms of Fi. It turns out

that all solutions of this type may be derived from two "master solutions"

in which Fi is, respectively, 1 or — 1. These two master solutions and their

first derivatives are tabulated in Tables 4 and 5 (p. 671, 672) for values of

x which range from .1375 to 20.2 in Table 4 (Fi = 1), and from .5375 to
19.4 in Table 5 (F2 = - 1).

In the paper there are also references to solutions computed previously.1

A. E.

1 R. P. Feynman, N. Metropolis, & E. Teller, "Equations of state of elements based
on the generalized Fermi-Thomas Theory," Phys. Rev., s. 2, v. 75, 1949, p. 1561.

J. C. Slater & H. M. Krutter, "The Thomas-Fermi method for metals," Phys. Rev.,
s. 2, v. 47, 1935, p. 559.
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1090[L, M].—W. Meyer zur Capellen, Integraltafeln. Sammlung un-

bestimmter Integrale elementarer Funktionen. Springer-Verlag. Berlin/

Göttingen/Heidelberg, 1950. viii + 292 p., 23.8 X 16.5 cm.

This book contains probably the largest published collection of indefinite

integrals whose integrands are combinations of elementary functions. It

was undertaken in 1942 and completed in 1944, publication being delayed

by difficulties of the post-war period. There are about 3000 entries, most of

them giving the final answer, and some of them stating recurrence relations

or other auxiliary formulae for the integrals in question. Many special cases

of more general results were included, thus enabling the user to get the final

answer quickly. For instance, in section 2.2.2, there are recurrence relations

for the integral

I xp{a + bx)nlmdx       m, », p integers,

and there is also an explicit formula for positive integer p. Nevertheless,

there are about 7 pages of some eighty particular cases listed, for special

values of m, », p—a great convenience for the user.

Contents. Chap. 1. Preliminaries (5 p.). Rules for differentiation and

integration. Chap. 2. Integrals of algebraic functions (138 p.). 2.1. Rational

integrands. 2.2. Irrational integrands leading to elementary functions.

2.3. Algebraic integrands leading to elliptic integrals. Chap. 3. Integrals of

transcendental functions (80 p.). 3.1. Exponential and logarithmic functions.

3.2. Trigonometric and inverse trigonometric functions. 3.3. Hyperbolic

and inverse hyperbolic functions. Chap. 4. Products of algebraic and trans-

cendental functions (45 p.). Arranged according to the transcendental part,

similar subdivision to that of Chapter 3. Chap. 5. Products of transcendental

functions (11 p.). 5.1. fg(x) In xdx. 5.2. J"exg(x)dx. Addenda (3 p.). Chap. 6.
Supplementary material (9 p.). Constants, expansions, definitions of some

higher transcendental functions. Chap. 7. References (19 items, 1 p.).

The classification and arrangement of such a large number of integrals

presents very formidable difficulties, and only continued and frequent use

of the tables will show the excellence, or the imperfections, of the scheme

adopted here. The author's aim was to provide tables which can be used

with ease by a non-mathematician, and the first impression is decidedly

favorable. There is a very detailed table of contents which enables one to

locate any integral printed in the book within four or five pages. One will,

of course, encounter integrals which are not in the book, yet can be trans-

formed into integrals printed in the book; but a generous duplication of

several forms of the same integral will greatly reduce the number of these

occurrences.

The only drawback the reviewer found in using these tables is the absence

of a list of notations and abbreviations. The user not acquainted with

German books will find out sooner or later that Sin means sinh and ArSin

means sinh-1 (although these symbols are defined on p. 286, 287 under hyper-

bolic functions, meeting them on p. 77 as integrals of irrational functions

gives no clue as to the place where one should look for their definition).

Ad hoc notations are sometimes explained where they occur (for instance,

x on p. 63 in 2.3.1.2.1.3.1) or in a footnote on the same page on which they
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are used (as U, V, W, on p. 68) ; yet sometimes one has to turn several pages

until one finds an explanation (the same V, W, are used on p. 76, and one

has to go back to p. 68 to find a footnote referring one to nos. 2.2.1.1.1 and

2.2.1.1.2 which are then found on p. 73, 74). Also, the numbering of the
entries (samples above) is cumbersome, if systematic, and makes it incon-

venient to give specific references.

In all other respects this is an eminently useful book, and the printing

is excellent.
A. E.

[For errata in this work see in this issue MTE 223.]

1091[L].—NBS Applied Mathematics Series, No. 17. Tables of Coulomb wave
functions. U. S. Government Printing Office, Washington, D. C, 1952.

xxvii + 141 p., 20.5 X 27 cm. Price, $2.00.

Coulomb wave functions are confluent hypergeometric functions, but

the normalisation and notation usual in quantum mechanics differ from the

standard notations in mathematical texts.

The "regular Coulomb wave function," Fl(v, p) is that solution of the

differential equation

d2y      r        2,      L(L + 1) "I

ay + l'-J-^^i^0
which is regular at p = 0 and is so normalised that

Fl(v, p) ~ sin (p — ri In 2p — fLV + <tl)

as p —> =°, where a h = arg T(L -f- 1 + ir¡). The notation

Fl(v, p) = Cl(v)pl+1^l(v, P)

is frequently used, where

C0(V) = [2,n,/(e2*< - 1)]*,    L(2L + l)CL(v) = (L2 + WL-i(v),

and 3>z,(ij, p) is a power series in p.

Coulomb wave functions have been computed by several authors: on p.

152 of the recent tables by Bloch et al (MTA C, v. 6, p. 92), therejare references

to available tables. The volume under review contains the most extensive,

and the most systematic, tables, and it largely (but not entirely) supersedes

the earlier tabulations.

Table I (p. 1-111) gives 7D values of 4>l(t?, p), and of as many reduced

derivatives

1   d"        ,       N

k\W*L(v'p)

as are needed for interpolation. In this table, r¡ = — 5(1)5, L = 0(1)5, 10,

11, 20, 21, and p = 0(.2)5.
Table II (p. 113-127) gives 10D values of the real part of T'(l + in)I

T(l + ¿17), with modified second central differences, for jj = 0(.005)2(.01)
6(.02)10(.1)20(.2)60(.5)110.
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Table III (p. 129-135) gives 8D values of o~o, with modified second cen-
tral differences, for r, = 0(.01)1(.02)3(.05)10(.2)20(.4)30(.5)85.

Table IV (p. 137-141) gives 8S values of C0(y) for v = 0(.01)5(.05)10.
The Foreword contains an account of the applications of Coulomb wave

functions, and the Introduction (by M. Abramowitz) gives definitions of,

and formulas, Bessel function expansions, and asymptotic expansions for,

Coulomb wave functions. The Introduction also describes the method of

computation, and gives instructions for interpolation and for the use of

recurrence relations.
In view of the fact that this volume deserves, and is likely, to become

the principal work of reference for Coulomb wave functions, without en-

tirely superseding some of the earlier tables, it is regrettable that there

is no systematic account of all (although there are references to some)

available tables.
A. E.

1092[L].—Royal Society Mathematical Tables Committee, Short Table
of Bessel Functions 7„+j, Kn+\. Cambridge, 1952, 20 p., 21.5 X 28 cm.

This is a preliminary table of spherical Bessel functions of imaginary

argument. The functions actually tabulated are

x-n-*/n+}(x) for » = 0(1)10 and x = 0(.1)5,

(2/x)xn+iJS:n+è(x) for « = 0(1)10 and x = 0(.1)5,

e~xIn+i(x) for » = 0(1)10 and x = 5(.1)10,
(2/w)exKn+i(x) for » = 0(1)10 and x = 5(.1)10,

in most cases to eight significant figures, together with 5m2, for interpolation

by Everett's formula, when In(x) = i~nJn(ix) and

(2U)Kn+i(x) = (- D^CWx) - /_„-j(x)].

These tables begin the completion of the spherical Bessel functions as

the table in RMT 1087 completes the main tabulation for cylindrical

Bessel functions. The NBS tables1 have covered the two independent solu-

tions, for real values of the argument, for « = 0(1)30 and x = 0(.01 or .1)25

to 8 or 10 significant figures. The present table is a start toward a similar

table for imaginary arguments.

Spherical Bessel functions of imaginary argument are useful in the

quantum mechanical calculation of atomic and molecular properties. In

particular, an atomic wave function for a bound state, about one center,

when expanded about another center, appears as a sum of such Bessel func-

tions, multiplied by spherical harmonics.2 Calculations of interatomic forces

in a molecule have been quite difficult to carry out, chiefly because of the

lack of adequate tables. Now, with the advent of high speed computing

machines, to remove the burden of routine details, such computations

should become relatively easy to perform and our insight into molecular

structure can begin to be satisfactorily complete. Values of In+i(x) and

Kn+i(x) for » ~ 0(1)20 and x ~ 0(.1)20 will be needed as a basis for the

calculation of the component integrals. The present table is a promising
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start in this direction; let us hope that the RSMTC, or some other group,

will carry on.
Philip M. Morse

Massachusetts Institute of Technology

Cambridge 39, Mass.

1 NBSCL, Tables of Spherical Bessel Functions. Vols. land II, 1947, Columbia University
Press, New York.

2 See, for example, N. Rosen, "Interaction between Atoms with s-Electrons," Phvs.
Rev., v. 38, p. 255, 1931.

1093[V].—Aeronautical Research Council, A Selection of Tables for Use
in Calculations of Compressible Airflow. Prepared by the Compressible

Flow Tables Panel (L. Rosenhead, Chairman ; W. G. Bickley, C. W.
Jones, L. F. Nicholson, C. K. Thornhill, R. C. Tomlinson) of the
ARC. Oxford, 1952, viii + 143 p., 21.5 X 27.0 cm. Price $8.00.

The earlier and more familiar tables for compressible flow in this country

are H. W. Emmons' "Gas Dynamics Tables for Air" (Dover publications,

1947, MTAC, v. 3, p. 36) and J. H. Keenan & J. Kaye's "Gas Tables"
(Wiley, 1945, MTAC, v. 2, p. 20). Compared with these tables, the present
publication is certainly more detailed and more accurate. It is stated that

the two earlier tables have numerous errors, mostly affecting the final place

of decimals. As in Emmons' table, the value of the ratio of specific heats, y,

is chosen to be 1.4. The authors try to remedy this limitation in part by

listing the derivatives of a few important quantities with respect to y at

y = 1.4. But nevertheless, this restriction will make the table unsuitable

for calculations of gas flow at higher temperatures, such as the flow in high

pressure compressors and gas turbines.

There are three main groups of tables: The first group is concerned with

isentropic one-dimensional flow. The argument used is the local Mach

number M, the ratio 5 of speed to the critical sonic speed, or the square of

the ratio of speed to maximum speed t. The Af-tables have the ranges

M = 0(.01).5(.001)1; 1(.01)5. TheS-tables have the ranges 5 = 0(.01)2.44

and \6; 1(.005)1.5(.01)2.44 and Vó. The r-table has the range r = 0(.01)1.
The second group of tables is for the solution by the characteristics

method. The argument used is either the angular characteristics variable u

or the Mach angle p.. The ranges of these tables are « = 0°(.5o)100o(lo)130°;

0°(.001°).05°; 0°(.01°)1°, 0°(.1°)30°. p. = 0°(1°)90°.
The third main group of tables gives the ratio of quantities after the shock

to that before the shock. The argument of the tables is either the Mach

number Mi or the speed ratio Si before the shock. For normal shock waves,

Mi = 1(.01)5; Si = 1(.01)2.44 and ^6. For oblique shock waves only the
maximum flow deflection angle and angle for sonic flow after shock are given

for Mi = 1(.01)2(.1)5(1)20.
Other tables in this volume are tables for obtaining Mach number from

the dynamic pressure ratio or the Pitot pressure ratio, tables of pertinent

powers of x and (1 — x2), tables for calculating the Reynolds number, the

pressure coefficient, etc.

H. S. Tsien
California Institute of Technology

Pasadena, California


