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In taking £0 = (1, 1) we have then

(40) |£,| = v2(9/25)'.

Consider on the other hand the over relaxation with the value of g =

10/9. Here the components of the approximating vectors are to be computed

from the equations

«¿H-« = - Xlw/g - 2x2<">/3,    x2<"+» = - X2W/9 - 2x1<"+1>/3.

If we put £„ = (xiw, x2M) and assume again £0 = (1, 1) = |o, we obtain as is

readily verified

Í, = S-2'-1^ - 24k, 3 + 8v) i> m 0,1,.. •).

Here we have

|M ~ 8(10)^9-"/3 (v-yoo).

We give in what follows a table of the initial values of |M and |M-

\l\ IM
1 0.5091 0.8780
2 0.1833 0.2010
3 0.06598 0.03388
4 0.02375 0.005048
5 0.008551 0.0007037

Although the difference between g0 and 1 is very small, in fact 1/9, the

improvement is already observed at £3 and becomes more and more pro-

nounced from there on.
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The Accuracy of Numerical Solutions of
Ordinary Differential Equations

1. Introduction. The present paper describes a general method by which

the random and systematic errors may be estimated of numerical solutions of

any systems of ordinary differential equations. The errors arise from the ac-

cumulation of rounding-off errors, and from the use of erroneous formulas

for performing the numerical integrations. The estimation is based on the

properties of the solutions of the system of equations adjoint to the varia-

tion al equations of the problem, and is applicable to any method of integra-

tion.
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The present method was described by the author at a meeting of the

American Astronomical Society on February 1, 1946 at Columbia Univers-

ity. Development of the method resulted from a conversation with Charles

B. Morrey, Jr., who explained to the author properties of the solutions of

adjoint equations with which the author was not then familiar. The pro-

cedure seems intuitively obvious and straightforward, and it has not been

published earlier both for this reason and because it was understood that

Hans Rademacher was planning to publish a similar and possibly inde-

pendent treatment. It now appears, however, that Rademacher1 was con-

cerned with the accuracy of particular methods of integration, while the

present method is applicable to any integration procedure that may be em-

ployed. There are still other methods for estimating the accuracy of numeri-

cal solutions of special types of ordinary differential equations. For example,

Brouwer2 has made special studies of the accuracy of numerical integra-

tions, by the Crommelin-Cowell method, of the orbital differential equations

of dynamical astronomy.

A virtue of the present method is its generality ; but there are alternative

general methods, possibly just as good, which may not have been published.

The author understands from conversations with L. H. Thomas, that he

has made use of general procedures not involving the adjoint equations.

The main justification for publishing a description of the author's procedure

is his hope that it may help others to select computational procedures, for

numerical integrations, that will yield results of desired accuracy.

2. The Adjoint Equations. Consider the system of n first-order differential

equations

n

(1) Xi = 2~2 <*<,/*> + bi\    i,j = 1,2,- • • ,n
)=i

where the n2 quantities a¿, y and the n quantities &, may vary with the inde-

pendent variable, /. Let X¿ be a set of variables satisfying the adjoint system

of equations

n

(2) — X¿ = Z ai. ¿Xy.
3=1

Since

n n n

(d/dt) Z *¿X¿ = Z ±i\i + Z Xi\i
¿=i i i

(3) =  Z 0-i.iXjXi -  Z »y.iXiXy + Z bi\i
i,i ill i

= Z biki
i

it follows that

(4) £ Xi (A) \i (A) = Z Xi (0) h (0) +  f   Z *A< dt.
i=l i •'O        *

3. Application. From any system of ordinary differential equations there

can be derived a set of variational equations of the form (1) where the x¿(r)'s
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are differences, between the exact solution of the original equations corre-

sponding to the desired initial conditions, and any neighboring exact solution

not subject to the desired initial conditions. If a single error were made in

the course of solving the original system of equations by a scheme of stepwise

integration that was otherwise perfect, the solution would be exact before

the error was made ; for later values of the independent variable the solution

would still be an exact solution of the original differential equations but

would correspond to altered initial conditions. The x/s would all be zero

before the error, and would grow after it in accordance with the equations of

the form (1), with ¿>,'s that were zero for all steps except the one in which

the error was made.

If, because of defective methods of calculation or for any other reason

errors e¿(¿) are introduced into the i'th variable x¿ at a particular step (t — w

to t, say) in the solution of the original system of differential equations,

one may consider the e's to have been introduced by b/s in (1) such that

«<(*) =   f    bi(t) dt
J t—w

and that are zero outside of the interval (t — w,t). One may consider ap-

proximately that

bi(t) = (\/w)u(t)

throughout the interval and therefore approximately that

f    bi(t) Xi(t) dt = u(t) \i(t).
•'¡—10

Thus by (4) the resulting final error (at / = A, say) in a particular variable

(e.g., Xi say) is

Xi(A) = £ u(t) \i(t)
t=i

and if errors are introduced at all steps

(5) Xi(A) =    Z    Î u(t) Xi(t)
all steps i=l

provided that the X's are any solution of (2) satisfying the boundary condi-

tions

\!(A) = 1;    \j(A) =0,   j* 1.

4. Truncation and Rounding Errors. Equations (4) and (5) provide

means for predicting the errors of numerical solutions of systems of ordinary

differential equations. Rough solutions of the equations (2), based on a

rough solution of the original equations, are in practice adequate. Rounding-

off errors of the usual hand-made variety are drawn from populations whose

means are zero, and whose individuals are uniformly distributed from —1/2

to 1/2 in units of the last digit. Their variance is thus 1/12 in such units.

The resulting variance of a final value like Xi (.4) is given by

(6) o-\w = a2 Z W(t) + <r22 £ \22(t) + ■ ■ ■ + a2 £ X„2(f)
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where a? is the variance of the rounding-off errors introduced into the vari-

able Xi at any step, and where the sums are taken over all steps. The preced-

ing equation is general ; if the rounding-off errors are not of the usual hand-

made sort it is still valid. If the rounding-off errors do not come from popula-

tions with zero means, then a bias, or systematic error is introduced whose

final value has the population mean

xi(A) = ZY Mi(t) Xi«)
1       i

where Mi(t) is the population mean of the error e{(t), conceivably a function

of/.
Besides rounding-off errors, "truncation" errors are introduced by the

circumstance that the formulas employed for integrations are erroneous.

Whatever the formulas are, and however they are employed, iterated or not,

any particular method of integration applied to a particular system of differ-

ential equations always corresponds to the exact solution of a system of

difference equations rather than of the original differential equations. The

particular method of integration thus corresponds to an exact solution of a

system of differential equations somewhat different from the original differ-

ential equations. It is always possible to evaluate, approximately, the differ-

ences between the original differential equations and those that the scheme

is exactly solving, then to find the appropriate bi's in the variational equa-

tions of the form (1), and finally to apply (4) to predict the final errors, thus

(7) Xi(A) =   f   Z Ht) MO dt
"0        i

in which, as usual, the X's must be chosen to satisfy the boundary conditions

\i(A) = 1;    \j(A) =0,   j ^ 1.

Alternatively, one can find appropriate truncation errors «,-(<) and then

apply equation (5).

For planning purposes, no great accuracy in the calculations of accuracy

is necessary, and no great accuracy should be sought. Even rough calcula-

tions are expected to suffice to decide how many digits, what size of steps,

and what scheme of integration to employ.

5. Example. An example, suggested by Werner Leutert, will be given

of the use of the preceding method by an application to the non-linear

differential equation of the first order

(8) y = (3/2) / y-w

which can be integrated analytically but which will be treated as though it

can not be. Suppose that one wishes to integrate this equation numerically,

starting with the value

y(i) = l,

as far as y(5); and that one wishes the value y(5) to be accurate "to the

third place" of decimals. One wishes to use the scheme of integration defined
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by the approximate formula

[V       V21
X - g - j^jwy

in which the differences are backward, or ascending, and in which w is the

length of a step. One wishes to determine w, and the number of decimals to

retain in the calculations.

The variational equation corresponding to (1) is

(10) * - - x t y-*13 x

and the adjoint equation corresponding to (2) is thus

(11) X = ^y-^X.

A rough integration of (8) must first be accomplished, and then a rough inte-

gration of (11) to find X. Such integrations have been accomplished by the

aid of a ten-inch slide rule, and the results appear in the first four columns

of the following table :

t y 2.27X X X£>4y

111 .44 .25
2 2.80 1.44 .63 .06
3 5.15 1.76 .78 .03
4 7.95 2.03 .89 .01
5 11.15 2.27 1.00 .01

No attempt has been made to obtain results correct to the second place of

decimals, although two places were retained. The integration for X with the

starting value unity led to a value 2.27 at t = 5 ; the fourth column contains

X adjusted to have the value unity at t = 5.

Consideration of the difference formula (9) shows that it corresponds

substantially to the differential equation

(8')      Dy - (1/24) w3 Di y +   (11/720) vfi Z»6 y -\-= (3/2) t y~1'3

instead of to equation (8), so that approximately

b(t) = (1/24) w3D*y
or

e(t) = (i/24)wiDiy;

these results could have been obtained directly from the term of lowest order

that has been omitted from the right-hand member of equation (9). By

equation (5) or equation (7) the truncation error at t = 5 is

x(5) = (w3/2i)   f  Z>y(/)X(¿)¿/,
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Values of D*y are obtained from equation (8) ; values of D*y(t) \(t) are

tabulated above ; a quadrature furnishes the result

(12) x(5) = w3/120.

It is noticed that a unit error in wy at any stage introduces a unit error in

y when the scheme of integration is (9). Hence by equation (6) the variance

of y (5) arising from rounding errors is

i»„„ = (1/12) z x2W
(=1

= (1/12 w)   f  \2(t)dt

= 1/5 w

by quadratures; very nearly, in units corresponding to the last place retained

in wy.

To obtain a value of y(5) accurate "to the third place" of decimals, one

equates the right-hand member of equation (12) to 0.0005 and solves for w.

It is found that w is .39. One can adopt a value w = .4, if one will tolerate a

bias error of 0.00053 in y(5); this is tolerated, and the value w = A is

adopted. A number fairly rounded to the nearest 0.001 has a rounding error

whose variance is 1/12 in units of the sixth place. It is therefore reasonable

to require that the variance of y(5) from the accumulation of rounding

errors should be smaller than 1/12 in the sixth place. If only three decimals

were retained in the values of wy then the variance of y (5) would be 1/Sw or

1/2 in the sixth place, which is too large to be acceptable. With four decimals,

the variance is 1/2 in the eighth place, or 1/200 in the sixth, which is better

than is needed. Therefore four places of decimals should be retained in

values of wy.
The definitive integration of equation (8) by the scheme (9) was next

accomplished, with steps of 0.4 and with four places of decimals. The value

obtained was

y(5) = 11.1810.

The correct value of y (5), obtained by analytical solution of (8), is

y (5) = 53'2
= 11.18034.

showing that the error of y(5) obtained by the numerical integration is

0.00066, and that y (5) is substantially as accurate as was desired and as was

predicted.
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