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From the theory of such equations, we find that for large i :

■  Qt = a{h(K + [4 + K2y)}<

Now it is easily seen that the error in any approximation Pí/Qí is of the

order of (Qi)~2 and therefore, per average cycle, the error should decrease by

a factor of 4{K + (4 + K2)*}~2 = 1/9.1 or approximately one decimal

place.
Daniel Shanks

Naval Ordnance Laboratory

White Oak, Maryland

1 See for example, D. Teichroew, "Use of continued fractions in high speed com-
puting," MTAC, v. 6, 1952, p. 127.

2 A. Khintchine, "Zur metrische Kettenbruchtheorie," Compositio Math., v. 3, 1936.

p. 276-285.
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The Product Form for the Inverse in the
Simplex Method

Summary: When a matrix is represented as a product of "elementary"

matrices, the matrix, its transpose, its inverse and inverse transpose are

readily available for vector multiplication. By an "elementary matrix" is

meant one formed from the identity matrix by replacing one column ; thus

an elementary matrix can be compactly recorded by the subscript of the

altered column and the values of the elements in it. In the revised simplex

method,1 both the inverse and inverse transpose of a "basic" matrix are

needed; more significant, however, is the fact that each iteration replaces

one of the columns of the basis. In the product form of representation, this

change can be conveniently effected by multiplying the previous matrix by

an elementary matrix ; thus, only one additional column of information need

be recorded with each iteration. This approach places relatively greater

emphasis on "reading" operations than "writing" and thereby reduces com-

putation time. Using the I.B.M. Card Programmed Calculator, a novel

feature results : when the inverse matrix is needed at one stage and its trans-

pose at another, this is achieved simply by turning over the deck of cards

representing the inverse.

Introduction:

The simplex method is an algorithm for determining values for a set of n

non-negative variables which minimizes a linear form subject to m linear

restraints.1'2"'3 It may be characterized briefly as a finite iterative procedure.

Each iteration produces a new special solution to the restraint equations

involving a subset of m of the variables, only one element of the subset

changing on successive iterations ; the remaining n — m variables are equated

to zero. The vectors of coefficients corresponding to the subset of m variables

are linearly independent and constitute a basis in w-dimension real vector

space. In the original simplex method2" (as coded for the SEAC4 or as found
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in Charnes et al?, it is required that all the coefficient vectors be represented

in terms of the latest basis ; since the changes of basis are step-wise, a simple

recursion relation suffices to alter the representations on each iteration.

The revised simplex method1'6 differs from the original method in that it

uses the same recursion relations to transform only the inverse of the basis

for each iteration. It has been introduced to reduce the quantity of writing

at each step (which it does in general), and is particularly effective for linear

programming models where the original matrix of coefficients is largely

composed of zeros, as for example, in the transportation model2c or dynamic

economic and production models.26 If the original method is used, these zeros

would be replaced by non-zeros in the successive iterations and this greatly

increases the computational effort. On the other hand, the revised method

leaves those zeros intact.

One important feature of the simplex method is concerned with the cri-

teria by which one of the vectors in the basis is replaced by a vector not in

the basis to form the basis of the next iteration. When the constant terms of

the restraint equations are not general, the choice of the vector to drop from the

basis may be ambiguous and an arbitrary selection (as pointed out in unpub-

lished examples by Alan Hoffman and Philip Wolfe) may lead to non-

convergence. Several devices exist, however, for perturbing the constant

terms so as to avoid this difficulty. The earliest proposal along these lines2"

consisted in modifying the vector of constant terms by a specially weighted

combination of the unit vectors. This approach may be used conveniently

both for the revised and original simplex methods1'6. With the original sim-

plex method, there is another natural way to form the pertubation which

consists in adding a weighted linear combination of the column vectors to

the vector of constant terms. This was suggested first by Orden and de-

veloped independently by Charnes3.

Although considerable attention has been paid to the above difficulty

(called degeneracy), it usually does not lead to non-convergence. The type of

problems in which it can cause non-convergence appear to be exceedingly

rare. To date, there have been only two examples and these were artificially

constructed for this purpose. Accordingly, the SEAC code and the RAND

code use an arbitrary selection criteria in case of ambiguity. In these codes,

a deliberate decision was made to use a simple code in lieu of a more complex

one needed to cover a possible case that may never arise in practice.

The present method of using the product form for the representation of

the inverse of the matrix, also makes use of this simplification. Again, pro-

vision could be made for covering the rare non-convergent case, but again,

it does not appear to be worth-while.

We shall now describe a process by which a square non-singular matrix

may be expressed as a product of elementary matrices of the form (2) below.

This is illustratively seen for the simplex process which involves a step-wise

change of basis matrix, that is to say, two successive matrices differ by only

one column. Using a notation consistent with1'6 let 5(i_1) = (Po, P,\,- • •,

P,m) denote the (/ — l)th basis. If, in the next basis, P, is to replace P¡r, then

it is easy to show that

(i) DB'»]-1 = «»»-»>>»,
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where Ei and Er1 are elementary matrices related by

(2)      El   =   [i/o, • • • ,   Ur-l, VI,   Ur+U •••,#.]

=   [i/o,-"-,   Ur-l,   YU   £/,+ !,-•-,   UmJ-1,

where í/¿ is a unit vector with unity in the (i + l)st component, r¡t is a

vector whose components 17,7 are related to components y a of F¡ by

,». 9« = - yu/yn,        ir¿r

*l = l/yn,

where it is necessary that yri t¿ 0 and Yi is defined by

(4) Yt = [S«-1)]-1^.

Successive applications of (1) for I = k,k — 1, & — 2,- • -, 1 yield

(5) (5*)-1 = FÄ-i- • -EiDB«»]-1,

where B(0) is the initial basis. It is usually easy to arrange that the initial

basis .B(0) be the identity matrix so that Z?<0) may be dropped from (5).

Consider the problem of computing a row vector ßo, defined by

(6) 0o = aB~l = a£*F*_i ■■■Ei,

where a is a given row vector (actually a unit vector1'6). Such a vector is

required by the revised simplex method as the first step in determining the

vector P, to introduce into the basis. It is clear that ßo can be obtained by

successive transformations on row vectors, i.e., forming (a)Ek, (a£*)E*_i,

• • •, etc. However, when a row vector A = (ao, a\, • ■ ■, am) is transformed

into a row vector B = (bo, bi, • • •, bm) by multiplying A on the right by an

elementary matrix Ei one obtains simply

bi = ai, i ?¿ ri

br¡ = L Viiüi,
o

where, because r may be different for different I, we have set r = r¡.

Consider next the problem of computing Y by relation (4).

(8) Y = B~lPs = £*£*_!• • -£iP..

It is clear that F can be determined by successive transformations on column

vectors, i.e., forming Ei(Ps),- • -, etc. However, when a column vector C =

{co, C\,• • •, cm\ is transformed into a column vector D — {¿0, d\,■ ■ -, dm\ by

multiplying C on the left by a matrix of the special form E, one obtains

simply

di = Ci + vnCrt, i H r¡

ar¡   = VrfCrp
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From (7) and (9) it is clear that the only essential information contained in

Ei is the set of values r¡u and the index r¡. Note further that in (8), the suc-

cessive Ei are used with increasing I and it follows from (9) that it is necessary

to know r¡ before using the r\u- On the other hand, in (6), the E¡ are used in

decreasing sequence of / but from (7) it is not necessary to know rt until

after the r¡a have been used. The perfect complementarity of the preceding
m

two sentences, together with the fact that JL Vno-i can obviously be com-
0

puted starting with i = m as well as with i = 0, makes it clear that (6) may

be computed using the information in the reverse order of that used in (8).

Let Li denote the ordered set of 'words' of information

(10) Li = {ri;rioi,7]ur--,Vmi\-

Then each change of a column of B will produce a new L¡+i which may be

stored in consecutive order to the previously computed L\, L2, ■ ■ ■, L¡.

On the CPC, by punching two sets of instructions on each card—one

being, in form, the reflection, in the vertical center line, of the other (with

appropriate adjustments for difference in algorithms (7) and (9))—the

transpose use of the inverse may be accomplished by simply turning the cards

over using the vertical center line of the card for the axis.
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On Modified Divided Differences II

[Continued from MTAC, v. 8, p. 1-11]

Errors of Type (c). A question that presents itself is the extent to which

errors of Type c will mask an isolated error. It will be desirable to approach

the problem from a statistical standpoint, and to introduce the simplifying

assumptions that the errors of Type (c) behave like round-off errors, subject

to the following restrictions :


