
BURROUGHS TRUTH FUNCTION EYALUATOR

An Analysis of a Logical Machine Using
Parenthesis-Free Notation

1. Introduction. Lukasiewicz' parenthesis-free notation1 permits a

simple and easily mechanizable process of truth-table computation. We shall

describe this process and prove some relevant theorems. A 10-variable relay

machine employing this method for a two-valued logic has been constructed

and used by the Burroughs Corporation (see frontispiece) and it is feasible

in the present state of the computer art to construct a 25-variable machine

which would reduce all évaluants of a 250-character formula in a two-valued

logic with monadic and dyadic operators in about an hour. The operation of

such a machine will be described in terms of the manipulations which it per-

forms upon a formal propositional language.

2. The Language. We consider any language L based on a quadruple

(C, W, P, F) whose terms will be characterized in this section2. C is a finite

non-empty set of characters.

(Example 1: The theory will be illustrated from time to time by the use

of a specific sample L whose characters (members of C) are the following :

the functors N (negation), K (dyadic conjunction), A (dyadic alternation) ;

the propositional variables, p, q,r; the truth-constants 1 (truth), 0 (falsity).)

Definition 1: Any finite sequence of characters (including the null se-

quence) is & formula.

'A' will designate the null formula. Except for 'A' and V (to be introduced

later), all lower case and upper case Greek letters (with and without natural

number subscripts) will range over all characters and all formulas respec-

tively. Juxtaposition in the syntax language will be used to denote juxtaposi-

tion in L. We will use the following terminology pertaining to formulas.

Definition 2:
A (length) : £(A) is the number of character tokens in A.

Let A = $■*, then
B (tail): 7\(A) = ^ where i g ¿(A) and L(V) = *', or i > ¿(A) and

* « A-;
C (head) : ¿7¿(A) = $ where * ^ L(A) and £($) = i, or i > ¿(A) and

$ = A.

W is a function assigning to each character (element of C) an integral

weight ^ 1.
(Example 2: N has weight 0, K and A have weight — 1, the variables and

truth-constants have weight 1.)

The following concepts are defined in terms of weight.

Definition 3:
A (character degree) : D(8) = 1 - W(5).
B (formula weight) : W(A) is the sum of the weights of the character

tokens of A ; W(A) = 0.
C (max. weight, tail): WW(A) = Max(fT[r¿(A)]) fort > 0.

53

54 AN ANALYSIS OF A LOGICAL MACHINE

D (min. weight, tail): WMin(A) = Min(W[7\(A)]) for* > 0.
E (positive formula) : A is a positive formula if and only if Wm™ (A) > 0.

F (well-formed formula) : A is a well-formed formula if and only if A is a

positive formula and W(A) = 1.
(Example 3: pKqN is not a positive formula; ApqNr is positive but not

well-formed; KpNq is well-formed.)
Note that the non-recursive definition 3F shows that a single scan of a

formula from right to left is sufficient to determine whether it is well-formed.

P is a non-empty subset of C whose elements are truth-constants. V with

or without natural number subscripts will range over this set. P must satisfy

the condition

(1) W(w) = 1.

F is a function which assigns to each character of degree > 0 a "truth

function"; i.e., which satisfies the conditions

(2a) If D(S) > 0, then F(6vdw -vi)tP;

(2b) F(ir) - jr.

(Example 4: In the sample language P consists of 0 and 1 ; the function

F applied to K gives F(K00) = 0, F(K0i) = 0, F(K10) = 0, F(KU) = 1.)
We can now define the ordinary concept of (propositional) variable.

Definition 4: 8 is a variable if and only if W(ô) = 1 and 5 is not in P.

An important relation between positive formulas and well-formed

formulas which we will need is given by :

Theorem I : (A) A is a positive formula if and only if A can be partitioned

(i.e., divided into a sequence of disjoint segments which exhaust it) into exactly

W(A) ^ 1 well-formed formulas. (B) There is at most one partition of a posi-

tive formula A into well-formed formulas.3

Proof: (A) The "if" part is obvious. The "only if" part is proved as

follows. Let r be the shortest head of positive weight of a positive formula

A. Hence, for any i > 0, WTJT.-(r) J > 0 ; and since r is not null it is a positive

formula. Again, since T is the shortest head of A of positive weight, W_Ha

(r)] g 0 (where a = L(T) — 1) ; and since T is a positive formula, W[ri(r)j

= 1 ; hence W(T) ^ 1. But then W(T) = 1 and r is a well-formed formula.

It follows that WCn(A)] = W(A) - 1, for b = 1(A) - £(r) ; then if Th(A)
is not null it is a positive formula and this process may be repeated until A

is partitioned into W(A) well-formed formulas.

(B) The proof is by induction on L(A). If L(A) = 1, A is a single char-
acter and "B" obviously holds. Suppose "B" holds for all positive formulas

of length < n ; consider a positive formula A with L(A) — n. If there are two

partitions of A, one will have a first (leftmost) well-formed formula $ of

length g the length of the first well-formed formula f>S^ in the other parti-

tion. But W(®k) - W($) = W(¥) = 0 since W($V) - W($) = 1. There-
fore ^ = A, else WMin^y) = 0 implying $^ is not well-formed. If $ = «i^

= A, then "B" has been established for A. Otherwise A = 3>r = «Ê'ïT where

T is a positive formula and L(T) < 1(A). In this case the inductive hypothe-

sis shows that "B" holds for r and hence for $r = A.

Theorem I makes possible the following definition.

AN ANALYSIS OF A LOGICAL MACHINE 55

Definition 5 (partition function) : If A = A/- • ■ Ay • • Ax and each Ay is

well-formed, then P,(A) = Ay.
(Example 5: For A = pKpqNr, Pi(A) = p, P2(A) = Kpq, P3(A) = Nr.)
With the aid of Theorem I and Definition 3A it can be shown that our

formulation of the language L is easily reducible to a more conventional

formulation. For example, A is a well-formed formula if and only if it is of

the form 5Ad(¿>- • -Ai, where each A¿¡ is well-formed. Note that D(8) is the
number of well-formed formulas following 5 in the above decomposition ; if

D(8) > 0, S is an operator of the propositional calculus and D(5) is its degree

in the ordinary sense, while if D(8) = 0, S is well-formed by itself and hence

is a truth-constant or propositional variable.

An interesting property peculiar to the parenthesis-free notation is

given by:
Theorem II : Every formula of a language L is a segment oj some well-

formed formula of L if and only if L contains at least one character of negative

weight.
Proof: The proof of the "if" part is as follows. Let co be a character of

negative weight. For A an arbitrary formula of the language L, ^A$ is well-

formed where $ consists of 1 — Wtiia(A) occurrences of ir and SF consists of a

formula of weight —1 (e.g., co followed by —1 — W(u>) occurrences of t) re-

peated JT(A$) — 1 times. The proof of the "only if" part is as follows.

W(im) = 2, and, since 7rir is a segment of some well-formed formula A, L

must contain a character of negative weight in order that W(A) = 1.

The need for a machine to do truth-table computation occurs only for

languages containing at least one symbol of negative weight and a multi-

plicity of symbols of weight 1.
3. The Machine. With the aid of the two following definitions we can

describe, for any given language L, the construction of a machine to evaluate

formulas of L.
Definition 6 (the set of specification functions) : G is a specification func-

tion if and only if (1) if ô is a variable, G(ô)eP and (2) if 8 is not a variable,

G (8) = S.
(Hereafter 'S' will represent an arbitrary specification function.)

Definition 7 (evaluation function) : ES(A) = A ; if 5 A is a positive formula,

Es(8A) = F(S(8)HD{S)lEs(A)J)TalEs(Anwherea = L[£S(A)] - D(8).
(Example 6: For the formula of Example 5, A = pKpqNr, the recursive

evaluation is as follows: let the specification, S, of the variables be p = 1,

q = 0, r = 0, then ^[^(A)] = JTjSir)] = 0, £s[r2(A)] = F(N0) = 1,
■ • -, £s[r6(A)] = F(K10)l = 01, Es(A) = F(p)01 = 101.)

The following lemma shows that L(HDm[_Es(A)J) = D(8) and hence
that Es is defined for all positive formulas.

Lemma: If A is a positive formula, then ES(A) is of the form x„7r„_i- • -in

where n = W(A).
Proof: That all characters are x's follows directly from the conditions

(2a and 2b) which characterize F. That n = W(A) is established by an in-

duction on L(A).
Note that if A is well-formed, L[£S(A)] = 1 ; it is easy to show that

when A is well-formed, ES(A) is its truth-value relative to S in the ordinary

sense.

56 AN ANALYSIS OF A LOGICAL MACHINE

A number of well-formed formulas may be evaluated concurrently by

juxtaposing them to form (by Theorem I) a positive formula A. Let A =

5¿(A)- • -Si- ■ -8i, let m be the number of truth-constants in the language L

(i.e., L is an jw-valued logic), and let v be the number of distinct variables of

A. The machine makes m" scans of A, one for each distinct specification of

the variables, producing each time ES(A) ; a single complete scan for a given

S with the accompanying computation determines the "5th" major cycle.

Each major cycle is divided into L(A) minor cycles, the ith minor cycle en-

compassing the processing of the ith character 5,-.

The machine consists of two basic components, a Memory and an

Evaluator. The Memory* (e.g., a magnetic drum, an acoustic delay line)

stores A and during each major cycle sends it characters 5/,<¿)- ■ -5i to the

Evaluator in order of ascending subscripts. During the 5th major cycle the

Evaluator realizes the recursive function ES(A) by producing successively the

Es[_Ti(A)2- It does this by means of three parts: a Specifier, a Function

Switch, and a Register.
The Specifier (e.g., an electronic counter with switching gates) effects the

sequence of S functions required by A ; during the ith minor cycle it receives

8i and produces S(S,), and at the end of the 5th major cycle it introduces a

new S. During the ith minor cycle of the 5th major cycle the Function Switch

(e.g., an array of electronic switching gates) receives S(8¡) from the Specifier,

iïD(j<)(£s[7li_i(A)J) from the Register, and produces the new character

F[_S(8í)Hdví)(Es[_Tí-i(A)J¡)']. This new character is sent to the Register

(e.g., an electronic shifting register) which by shifting an amount W(8i) (a

positive value indicates a right shift, a negative value a left shift) substitutes

it (or HDiSi) (EsíT^(A) J).
4. Some Theorems. The following theorem justifies the use of a positive

formula A to compute the truth-values of its well-formed components P,(A).

Theorem III : // A is a positive formula then ES(A) = £S[P^(A)(A)]- • •

EsiPMn
(Example 7: In the formula of Examples 5 and 6, Es(A) = Es(p)Es

(Kpq)Es(Nr) which, for the S of Example 6, evaluates to 101.)
Proof: The theorem follows directly from the fact that, if <$ and Sf' are

positive formulas or null, Es($W) = Es($)Es(ty). This may be proved by an

induction on £(<£). It is obviously true for $ = A. We assume it to be true

for some V and show that it holds for 7l\ By Definition 7 Es(yV^) = F(S(y)
Hfl(7)[£s(r*)]) (7XEs(r*)]), where a = L[£s(r*)] - D(y), and by the
inductive hypothesis Es(yT<S?) = F(S(y)HDM[_Es(T)Es(-i')J)(TbiEs(T)Es
(^)l) where b = £.[£s(r)£s(^)] — D(y). Since 7I1 is a positive formula,

LlEs(T)l ^ D(y) and we have Ea(yT9) = F(S(y)HD{y)lEs(F)J)Hc[_Es
(D]£«(*). where c = I[£s(r)] - D(y); hence Es(yTV) = Es(yV)Es(t).

For a given positive formula A the Register must be able to store a

(positive) formula of length Max [Z,(£s[7\(A)])]. The following two
»=i

theorems show how this quantity depends upon the structure of A.
L(A)

Theorem IV: If A is a positive formula then Max [£(2is[7\(A)J)J =

HW(A).
L(A) =6

(Example 8: In Example 6 it can be seen that Max [L(£S[7\(A)J)J
1 = 1

AN ANALYSIS OF A LOGICAL MACHINE 57

= L[£S(A)] = 3 = H^Max(A). It may be checked that the évaluants of

T3(A) and r4(A) which were not given will not change this maximum.)

Proof: By the Lemma and Definition 3C.
W(A)

Theorem V: If A is a positive formula, then Wm^(A) = Max (Wm&*

CPy(A)]+j-l).
Proof: Consider all the tails of A and note that each complete P,(A) in a

tail contributes a weight of 1.

This theorem shows that, given a set of well-formed formulas to be

evaluated as a positive formula or to be used as arguments for a commuta-

tive operator, a formula of smallest Wm&x may be formed by placing these

well-formed formulas in order of ascending Wm**. from left to right.

In designing a specific machine to carry out our process some decisions

must be made concerning the relative sizes of the Memory and the Register.

Our concluding theorem gives information relevant to this decision.

Theorem VI : Let Mw,d be the set of well-formed formulas ^ such that (1)

the maximum degree of any character of ^ is D > 1 and (2) Wm&x^) = W.

Then (A) for any ^ e Mw,d there is a $ e Mw.d such that £($) iï L^) and

[W - 1
(B) L(^) = W + „ _ . , where {z} is the smallest integer iï z.

Proof: For part (A) consider for any ^ e Mw,d the formula ^i = Sitd- ' •

vfSf, where D(8) = D. Clearly *x satisfies (1). By Theorem V, WM»x(¥i) =
Max(D,W) which equals W since, for any positive formula A, Wu^(A) ^

the maximum degree of any character of A. Hence í'i « Mw.d and ¿(S^i) >

L(^). To establish (B) consider any ^ e Mw,d- By (2) & must contain at

least IF characters of weight 1. Since W(V) = 1 the sum of the weights of

its characters of negative weight is at most 1 — W; by (1) no character of

~9 has a weight less than 1 — D; since D > 1, * must contain at least

W - 1 I
characters of negative weight. Hence ¿(MO 2g W +

W - 1

D - 1D - 1
For a language L containing characters of all degrees between 2 and D

inclusive, if Mw.d is non-empty, it contains a well-formed formula of the

I W - 1 1
minimum length which consists of j -=-T characters of negative weight

followed by W characters of weight 1.
Arthur W. Burks
Don W. Warren
Jesse B. Wright

University of Michigan

Ann Arbor

The writing of this paper and the research which it reports were done under the sponsor-
ship of the Burroughs Corporation.

1 Jan Lukasiewicz, Aristotle's Syllogistic from the standpoint of Modern Formal Logic.
Oxford, 1951, p. 78.

1 In this section we employ the results of Stanislaw Jaskowski, Karl Menger, Karl
Schröter, and D. C. Gerneth. See Paul Rosenbloom, The Elements of Mathematical
Logic. New York, 1950, ch. 4, sec. 1, for a discussion and further references.

8 Theorem I implies that under the operation juxtaposition the set of positive formulas
together with the two-sided identity A is a semigroup which is generated by the set of well-
formed formulas.

* For a description of computer components see Engineering Research Associates,
High Speed Computing Devices. New York, 1950.

