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From (7) and (9) it is clear that the only essential information contained in

Ei is the set of values i\u and the index rt. Note further that in (8), the suc-

cessive Ei are used with increasing I and it follows from (9) that it is necessary

to know ri before using the r¡n. On the other hand, in (6), the E¡ are used in

decreasing sequence of / but from (7) it is not necessary to know rt until

after the r¡a have been used. The perfect complementarity of the preceding
m

two sentences, together with the fact that £ Vudi can obviously be com-
0

puted starting with i = m as well as with i = 0, makes it clear that (6) may

be computed using the information in the reverse order of that used in (8).

Let Li denote the ordered set of 'words' of information

(10) Li = {ri;r¡oi,vu,---,Vmi\.

Then each change of a column of B will produce a new L¡+í which may be

stored in consecutive order to the previously computed Lt, L2, ■ ■ ■, L¡.

On the CPC, by punching two sets of instructions on each card—one

being, in form, the reflection, in the vertical center line, of the other (with

appropriate adjustments for difference in algorithms (7) and (9))—the

transpose use of the inverse may be accomplished by simply turning the cards

over using the vertical center line of the card for the axis.
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On Modified Divided Differences II

[Continued from MTAC, v. 8, p. 1-11]

Errors of Type (c). A question that presents itself is the extent to which

errors of Type c will mask an isolated error. It will be desirable to approach

the problem from a statistical standpoint, and to introduce the simplifying

assumptions that the errors of Type (c) behave like round-off errors, subject

to the following restrictions :
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(a) The errors ek in the entries uk all have the same, uniform distribution

between —\a-\-c and \a + c, where a and c are fixed constants. Thus if

entries are rounded to a fixed number of decimal places, the assumption is

that the rounding will range uniformly between ±| units of the last place;

that is, c is zero. Or, if the entries are "chopped"—that is, all digits beyond a

fixed decimal place are dropped, without rounding, then the assumption is

that the error in the last place ranges between 0 and unity ; that is, c = \.

It will be shown that the distribution function is independent of c, provided

c is the same for all uk.

(b) The errors in the tabular entries are independent of one another.

The conditions (a) and (b) constitute a useful idealized model.

For the case of equally-spaced arguments the distribution function of the

round-off error in differences of the first, second, and third order has been

given explicitly by Lowan & Laderman1, and the method can be used for

obtaining the distribution function for differences of all orders. A somewhat

more elaborate study has been published by A. van Wijngaarden2. We shall

here follow the method of Lowan and Laderman, based on Fourier trans-

forms. Consider the sum

(2.16) wn = AQe0-\r Aiei-\-\-Anen,

where the coefficients Ak are constants, and all the values of e& are subject to

the restrictions (a) and (b). Let/(w, x)dx denote the probability element of

the distribution ; that is,   I    f(w,x)dx = F(w,t) is the distribution function
J — 00

of w. For the case when c = 0 in condition (a), we have

(2.17) f(ek, x) = -, if — -a < x < ~a;f(ek, x) = 0, if \x\ > -a.

(2.18) f(Aek, x) = ^r, if - -a\A\ < x < ~a\A\,

f(Aek, x) = 0, \x\ > -zaA, for constant A.

The characteristic function g(w, t) associated with a distribution function

F(w, t) is defined by

eitxf(w, x)dx,
CO

and by the Fourier inversion theorem

1 r°°
(2.20) f(w,x)=—\    er^g(w,t)dt.

¿it J-x

It is known that the characteristic function associated with the distribu-

tion of the sum of n independent variables is the product of the characteristic
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functions associated with "the distributions of the n individual variables.

This gives, for w = Aek,

,      . 1     fl<^l    .    ,        sin (\aAt)

(2.21) ^^aWlL.r'^-Ùr1-
Hence for wn defined in (2.16)

^Mfl "sin (igAkt)
(2-22) i(»-.o = n   g^ •

Using (2.20), the frequency function for w„ is given by

If00 -£rSin (èa.d*i)
(2.23) /(«;., *) = — I     e-^LT—rf

¿T »/-»o Jfc_n 2 a-"
dt

aAkt

cos (to)  "sin (\aAkt)1  /*°° cos (to) * sin (

i=0 2a-^*
di.

The probability that wn takes on a value between & and c, c > b, is then

given by

I   f(wn, x)dx

It is to be noted that the integrand in (2.23) is unchanged when Ak is

replaced by — Ak\ it^will therefore be convenient to write

f       ßk\= a\Ak\

\G(x,t) =costo-H-T2-•
L k-0 2P*

Let
G™(x, t) - dkG(x, t)/dtk;    G<°>(x, t) = G(x, t).

Then
G<*»(x, t) = tn+1-kV(x, t),    0 < k < n + 1,

where V(x, i) is bounded for all t. Moreover Gik)(x, =o) is bounded. Integrate

(2.23) by parts. This gives

,1M ..        v       l[-G(x,t)-\-      1  f»&»(x,t)
(2.25)        f(wn,x) = -[-^rf-J0 +;J0 -^r-àt.

The term within the bracket vanishes at both limits and only the integral

remains on the right-hand side of (2.25). Repeat the process of partial in-

tegration until we arrive at

i r°° i G^(x,t) ,
dt.(2.26) f(wn, x) = - f

TT Jo n\       t

By expanding G(x, t) into a sum of sines (or cosines) and performing the

differentiations with respect to t, it can be verified that f(w„, x) = 0 if \x\

> 9 Z)M*|> as it should. In the case where the numbers Ak are the binomial
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coefficients (— 1)'
(;)•

w„ represents the error in the wth ordinary differ-

ence of un, due to the individual errors ek. In the case of modified divided

differences, the numbers Ak represent Mn,k+n in even central differences or

corresponding coefficients in differences of odd order. It should be observed

that in all divided differences, whether modified or not,

(2.27) ¿ZrMhr = 0.

For the coefficients Mk,r are independent of the function uk. In the special

case when uk = 1, the differences must vanish; hence (2.27). As a conse-

quence of (2.27) it is clear that if ek = c + 5k, where 8k is uniformly distrib-

uted with mean zero, the constant c drops out in the sum represented by wn.

Hence even when entries have been "chopped" it is sufficient to study the

distribution functions associated with ok.

For purpose of comparison, the known results for ordinary differences

of orders up to three are summarized below, along with some of the corre-

sponding distributions for modified divided differences.

First modified divided difference:

w ei — eo
wi =-— (d — eo) =

0C\ Xq Cl

(2.28)

[O elsewhere.

If Ci = 1, we have the frequency function for the first ordinary differ-

ence.

Second modified divided difference:

w2 = Mo,-ie-i + Mo.oeo + Afo,i«i

Assume ca < C\

(2.29)

f(w2, t)

2eo 2e\ 2e_i

C\Co      C\(co + ci)      c0(co + ci)'

2a2coCi —    cocí ( -^—z—' j   t2

,   if 0 < |i| <
2a

4<z3 - i i - CirCQ + Ci)

r-\   — \t\coCi(co + ci) + aco + 2ac\  ,

2a
if < \t\ <

2a

(^)T
0 elsewhere.

Cl(Co + Ci)     S   '"'     ä  Co(Ci + Co)

(tCoCi)2 — 4|/|c0Ciö + 4a2

4a3

"}

.,        2a ^ . .   ., 2a
lf    i     .-Ñ <\t\ < —

Co (Co + Ci) coCi
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Thus f(w2, x) consists of five curves, symmetric about the y-axis, two of

those curves being linear. If c0 = Ci = 1, each line shrinks to a point, and

f(w2, t) consists of three parabolas.

Third ordinary difference: The following table is taken from Lowan &

Laderman1 :

at2      8a3",
-f»~ I.    0 < \t\ <a

(2.30)       f(w3, t) =

'}_\W _aP      8a31
a4|_27 ~  9 + 27 J'

1 r    \t\     a~\

1_ r]£|f _ at?      a2]/]      5a3]

a4 L 54       9  +    9   + 27 J '

J/j3      2a¿2

54 +   9

8a2|<j      32a3 "I

9    +   27 J'

la < \t\ < 3a

3a < t < 4a

0 elsewhere.

There are seven curves in f(w3, t), two of them being straight lines. Let

us consider the frequency function for the third modified divided difference,

and write for brevity

3

w3 = S Akek;   Bk = a\Ak\.

Making use of (2.27), we can put A3 = — (A0 + At + A2). If the argu-
ments xk form an increasing sequence, the sign of Ak is independent of the

magnitude of the intervals (xk — xk-i) ; hence the sign will be the same as in

the ordinary third difference, and it is permissible to write

G(x, t) =

\A,\ = \A,\ - Mi| + \Ao\.

cossÇsin (%Bot) sin (\B-jt) sin (%B2t) sin (±(B2 - £t + B0)Q

\_BoB1B2(B2 -Bx + 5o)]/16

By expanding the above into a sum of sines and cosines, it can be verified

that

(2.31) G™(x, t) = CE \h(x + Dky sin [(* + Dk)Q

+ h(x- Dky sin [,(* - Dk)f]\.

In (2.31) C is some constant, bk = ± 1 if Dk ^ 0, bk = \, if Dk — 0, and Dk
assumes the following values :

(2.32) £>i - O.JPt - B» - Bu D3 = Bo, Dt = (B2 - Bi + Bo),

Dh = (Bi - Bo), D6 = Blt D7 = B2, Ds = B2 + B0.

Let us consider the special case when

£>i < D2 < Dz < Di < Di < Dt < D7 < Dg < B0 + Bx + B2,
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and let x be positive. Since

1  C°
(sin bt/t)dt = | if b > 0,     - | if b < 0, and 0 if b = 0,

IT Jo

the terms of (2.31) involving (x + Z>4)3 will contribute, after integration,

terms that have the same sign for all positive values of x between 0 and

(Bo + B\ + B2). On the other hand, the terms involving (x — Dk)3 will vary

in sign, depending on whether x is greater than or less than Dk. Clearly x can

fall into any one of the eight regions separated by the inequalities of (2.32),

and in the most general case when no two Dk are equal, the set of terms of

(2.31) will comprise, after integration, cubic polynomials (or polynomials of

lower degree) with coefficients that will be different in the several regions.

Since f(w¡, x) is an even function of x, the curve comprising the eight arcs

will be reflected through the y-axis, with a common central arc. There will

therefore be 15 arcs to the frequency function for the most general values of

Dk. These shrink to seven arcs in the case of ordinary differences. The labor

of computing the exact distribution seems to be prohibitive, and alternative

approximations will be considered.

It is known that for large enough n, F(wn, t) tends to approach the normal

distribution with mean 0 and standard deviation o-(wn), where

<r(w«) = ( £ A A '(to) = a(i: Ak2/12

In the above, o-(ek) is the standard deviation of ek. It will be instructive to

examine the probabilities that w3, associated with the third ordinary differ-

ence, will fall into certain intervals, and to compare them with the prob-

abilities obtained from the corresponding normal distribution. For w3,

a(w3) = 1.29099a. The following schedule lists some calculations:

Theoretical Probability
Probability Based on Nor-

Range of w3 Based on (2.30)   mal Distribution

2   (r<|w3|<4a .03687 .04350
2.4.7<H< 4a .00612 .01440
2.5cr<|w3|< 4o .00331 .01236

It is to be observed that in the third ordinary difference, the normal dis-

tribution exaggerates the area of the "tail"-end of the distribution. How-

ever, the discrepancy between the two distributions is no worse than by a

factor of 2.4 for the first two ranges of the schedule, and agreement is ex-

pected to be closer in higher differences.

Assuming that the probability of W\ being numerically greater than 2.4tr

is approximately the same in higher differences, it might be reasonable to

tolerate a discrepancy of 2.4<r. Such a discrepancy is expected to occur once

in 163 listings of the third difference, according to the exact distribution, and

if we use the normal distribution as a guide, it may occur once in 69 entries

in differences of high order. It is costly to examine too many doubtful en-

tries; often it is much more advantageous to calculate two added decimal

'
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places in the entries, so that discrepancies with even higher probability can

be passed. Much depends on the problem at hand.

The following schedule lists the value of 2.4(7 in differences of orders n up

to 10. Corresponding values of .4£|^4*-|a are also included ; for some values of

¡ent(j).n, .3E\Ak\a is also tabulated. Ak is the binomial coefficie

n 2.4<7        AzZ\Ak\a     n 2Aa .4£,\Ak\a   .3zZ\Ak\a

2 1.697a 1.6a 7 40.588a 51.2a 38.4a
3 3.098a 3.2a 8 78.598a 102.4a 76.8a
4 5.797a 6.4a 9 152.766a 204.8a 153.6a
5 10.998a 12.8a 10        297.797a        409.6a        307.2a
6 21.060a 25.6a

It should be observed that the simpler function .4£|^ir|a is close in magni-

tude to 2.4<7 if n < 6 and can be used in its place as a basis for a reasonable

tolerance. In differences of higher order .3£|-<4*|a is close to 2.4(7.

To what extent can the above schedule be used as a basis for establishing

a reasonable tolerance for modified divided differences? One way is to com-

pute a few values of Mk, k+r as a basis for estimating a. That may be labori-

ous. Some qualitative estimates can be obtained from the form of (1.12).

Let Ak denote the coefficient of M* in the ordinary difference of order 2«.

Then it is clear that

m..,/a,. ii im-), a (_jí¿j_—y
jà-„ \ pk - pi I      j.tn \ c., + e_i + . . . + C-J

k ft) k ftj

where 5 is the greater of k and j and t is the smaller. Thus in a region where

the values of ck are consistently greater than unity, the standard deviation is

lower than that in the ordinary difference, and the tolerance should be more

stringent than for ordinary differences. On the other hand, if the ck are all

smaller than unity in a region, then a is larger. Whcever the standard devi-

ation for ordinary differences can be used as a basis, the schedule of 2.4cr

offers one means of judging the extent to which an isolated error will be

masked by smaller errors in neighboring entries.

Secondary Effects in Round-off s. When ordinary differences are considered,

all the round-off errors occur in the entires uk, and the process of taking

differences introduces no other errors. In forming divided differences, how-

ever, (modified or not) multiplications and divisions are involved, and the

result is rounded off to a fixed number of decimals. Hence the cumulative

effect of such roundings must be considered, and we must specify the order

in which various operations are to be performed. Let g(k, r) denote for

brevity the rth modified divided difference associated with tu. Then

g(k, r) is formed as follows:

g(k, r) = y(k, r)lg(k + 1, r - 1) - g(k, r - lj],
where

y(k, r) = rw/[tk+ir — i*-|r],    if r is even

y(k, r) = rw/\jk+ur+i) ~ 4-j(r-i)],    if r is odd.
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The differences are useful for interpolation or error detection only in the case

where successive differences fall off in magnitude. hety(k, r) be computed to

the maximum attainable accuracy (depending on the computing machine),

and then multiplied by g(k -f- 1, r — 1) — g(k, r — 1), which in successive

differences is expected to have fewer significant figures than y(k, r) in the

useful case. Thus the error due to carrying an inexact y(k, r) is expected to

be of a lower order of magnitude than the error in g(k, r) and we shall

neglect its consideration. The principalnew error is therefore the rounding

of g(k, r) to a fixed number of decimals. Thus in each successive difference

there is introduced a new rounding p¡, assumed to satisfy conditions (a) and

(b). If wn is the error function in the wth difference with exact operations in

obtaining g(k, r) then the total error due to all types of roundings is

V„  =  Wn + Wn_i + W„_2 + . . . +• Wi + Pn,

where p, replaces e¡ in wn-j, j > 0.

It is necessary to have an estimate of Vn, as compared with wn. Let us

consider the case where the standard deviation of wn is used as an estimate,

and let

4>n = a2ZA k2/12;    an = <b¿.

Then the standard deviation of Vn is

In the special case where the Ak are binomial coefficients (i.e., for the

ordinary difference) it can be verified that

vvn = dnon

where d2 = 1.155, d3 = di = 1.183, and for n ranging between 4 and 10, dn

decreases steadily up to 1.165 for n = 10. Hence if a tolerance of 2.4cr„ is

allowed for ordinary differences, a tolerance of 2.8 <rn should be reasonable

for divided differences. If storage space permits, it is of course possible to

carry two more decimals in the divided differences than in the function, so

as to lessen the rounding error. If that is done, the added tolerance is not

necessary.
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This of course is not true, since the left-hand integral does not exist if n is different from zero.
However, it turns out that the contribution from the region around the origin in a sum of

such integrals vanishes, and the result is right.
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2 A. van Wijngaarden, Afrondingsfouten MR3, Tevens ZW-(1950)-.001. Math.
Centrum Rekenfdeling, Amsterdam (in Dutch). See also A. M. Ostrowski. Two Explicit
Formulae for the Distribution Function of the sums of n Uniformly Distributed Independent
Variables. Archiv d. Math., v. 3, 1952, p. 3-11.

RECENT MATHEMATICAL TABLES

1165[B,F].—H. S.  Uhler,  "On  the  16th and  17th  Perfect Numbers,"
Scripta Math., v. 19, 1953, p. 128-131.

This note contains exact values of 2n_1(2" — 1) for n = 2203 and 2281,

numbers of 1327 and 1373 decimal digits. These are the 16th and 17th per-
fect numbers. Exact values are given also of 2" for n = 560, 2202, 2280 and

those digits of 24405 and 24561 which are not identical with the corresponding

digits of the perfect numbers mentioned above.

The author has informed the reviewer of the fact that the 1023rd digit

was printed incorrectly : for 32633 read 32638. This substitution occurred

between page proof and printing and would have gone undetected by any

author but one having Uhler's indefatigable perspicacitv.

D. H. L.

1166[C].—NBSCL,  Tables of 10*  (Antilogarithms to the Base 10). NBS
Applied Math. Series, No. 27, U. S. Gov. Printing Office, Washington,
1953, viii + 543 p., 19.3 X 26.0 cm. Price $3.50.

The main table in the work is Table I, a 500 page table of 10x for x =

0(.00001)1. These 100000 values are given to 10D. The arrangement is in

four columns of 50 pairs (x, 10x) each so that consecutive entries lie one

under the other making linear interpolation easy. All eleven digits of 10* are

given in each entry. No differences are given. Linear interpolation gives 9D

accuracy. The effect of the second difference on the 10th decimal may be

read from a chart on p. vi. This amounts to at most 7 units in the 10th place.

Table II  is a  15D radix table of 10x. Specifically it gives \QV where

y «*. 10-',    «=1(1)999,    p = 3(3)15.

From this table 14 figure antilogarithms can be found by multiplying five

entries together. The table can also be made to serve as a table of common

logarithms to 15D.

Table II is similar to that of Deprez1 which gives 13D antilogarithms of

x = m- 107r for

m = 1(1)999,    r = 7(3)13

in connection with a basic table for

x = 0(.0001)1.

Table II will be found very useful in connection with any ordinary radix

type logarithm table for very precise work.

Table I is based on Dodson's2 rare table of 1742. The entire Dodson

table was transferred to punched cards and differenced on a tabulator.

After correcting errors the table was checked by summing sets of 50 con-

secutive entries (as a geometric progression). Finally the printed page proof


