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2 A. van Wijngaarden, Afrondingsfouten MR3, Tevens ZW-(1950)-.001. Math.
Centrum Rekenfdeling, Amsterdam (in Dutch). See also A. M. Ostrowski. Two Explicit
Formulae for the Distribution Function of the sums of n Uniformly Distributed Independent
Variables. Archiv d. Math., v. 3, 1952, p. 3-11.
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1165[B,F].—H. S.  Uhler,  "On  the  16th and  17th  Perfect Numbers,"
Scripta Math., v. 19, 1953, p. 128-131.

This note contains exact values of 2n_1(2" — 1) for n = 2203 and 2281,

numbers of 1327 and 1373 decimal digits. These are the 16th and 17th per-
fect numbers. Exact values are given also of 2" for n = 560, 2202, 2280 and

those digits of 24405 and 24561 which are not identical with the corresponding

digits of the perfect numbers mentioned above.

The author has informed the reviewer of the fact that the 1023rd digit

was printed incorrectly : for 32633 read 32638. This substitution occurred

between page proof and printing and would have gone undetected by any

author but one having Uhler's indefatigable perspicacitv.

D. H.  L.

1166[C].—NBSCL,  Tables of 10*  {Antilogarithms to the Base 10). NBS
Applied Math. Series, No. 27, U. S. Gov. Printing Office, Washington,
1953, viii + 543 p., 19.3 X 26.0 cm. Price $3.50.

The main table in the work is Table I, a 500 page table of 10x for x =

0(.00001)1. These 100000 values are given to 10D. The arrangement is in

four columns of 50 pairs (x, 101) each so that consecutive entries lie one

under the other making linear interpolation easy. All eleven digits of 10* are

given in each entry. No differences are given. Linear interpolation gives 9D

accuracy. The effect of the second difference on the 10th decimal may be

read from a chart on p. vi. This amounts to at most 7 units in the 10th place.

Table II  is a  15D radix table of 10*. Specifically it gives I0y where

y = n-10"",    w = 1(1)999,    p = 3(3)15.

From this table 14 figure antilogarithms can be found by multiplying five

entries together. The table can also be made to serve as a table of common

logarithms to 15D.

Table II is similar to that of Deprez1 which gives 13D antilogarithms of

x = m- I0~r for

m = 1(1)999,    r = 7(3)13

in connection with a basic table for

x = 0(.0001)1.

Table II will be found very useful in connection with any ordinary radix

type logarithm table for very precise work.

Table I is based on Dodson's2 rare table of 1742. The entire Dodson

table was transferred to punched cards and differenced on a tabulator.

After correcting errors the table was checked by summing sets of 50 con-

secutive entries (as a geometric progression). Finally the printed page proof
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was subjected to additional differencing. No list of errata in Dodson is given.

Table 1 is a handy companion to a table of 10 place logarithms since in-

verse interpolation is avoided in the usual passage from numbers to loga-

rithms and back to numbers. However since interpolation is only linear (at

least for 9D work), inverse interpolation presents no greater problem than

direct interpolation, especially if one has even the smallest type of desk

calculator. From this there are two alternative inferences : (a) One needs

no table of antilogarithms; (b) one needs only a table of antilogarithms.

Perhaps this table will appeal most to those who want to do no interpolation

whatever.

This useful volume is the result of work done by the old New York

Mathematical Tables Project.

D. H. L.

1 F. Deprez, Tables for Calculating, by Machine, Logarithms to 13 Places of Decimals.

Berne, 1939.
2 J. Dodson, Antilogarithmic Canon. London, 1742.

1167[C].—NBSCL.   Table of Natural Logarithms for Arguments Between
Zero and Five to Sixteen Decimal Places. NBS Applied Math. Series, No.

31, U. S. Gov. Printing Office, Washington, 1953, [Reissue of MT 10],
x + 501 p., 20.1 X 25.9 cm. Price $3.25.

The original NYMTP Table 10 [v. 3 of the original 4v.] x = 0(.0001) 5
is hereby reissued to meet a continued demand. The preface promises also a

reissue of the fourth volume for x = 5 (.0001) 10. Although the Introduction

states that there has been no revision of the tabular content, there has been

a change in the rule for the indication of the signs of the logarithms. Thus in

the original edition the logarithm of .0184 is given as 3.995 . . . , the fact

that this number is actually negative being understood. Now the minus

sign is printed explicitly. This improvement is carried out with a single ex-

ception and this occurs at the very first real entry of the table where the

logarithm of .0001 is given as 9.21034.  .  . .

One further change may be noted and this refers to the last entry in the

table. The reader who is familiar with the NYMTP tables will recall that
arguments are given at the bottom of the page without the corresponding

functional values. This tantalizing procedure is followed in the present

volume except at the very end where the editor has relented and has given

In 5.0000 = 1.6094379124341004.

Apparently there are no errata known in this monumental table of 1941.

D. H.  L.

1168[F].—E. S. Barnes & H. P. F. Swinnerton-Dyer, "The inhomogene-

ous minima of binary quadratic forms," Acta Math., v. 87, 1952, p. 259-

320.

Let f{x, y) = ax2 + bxy + cy2 be an indefinite binary quadratic form

with real coefficients and discriminant D = b2 — 4ac > 0. For any point P :

(#0, Jo), where Xo, y o are real, define M(f;P) to be the lower bound of

|/(x + xo,   y + yo) I
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taken for all points P and call M(f) the upper bound of M(f;P). Let C be
the set of points P for which M(f;P) = M{f) and M2(f) the upper bound of
M(f;P) over all P not belonging to C. Clearly M2(f) < M(f). If the strict
inequality holds, M(/) is called an isolated minimum.

The authors list in their table [p. 315-317] the values of M(f) for forms
x2 — my2 for all square-free m = 2 or 3 (mod 4), m < 101, except m = 46,

67, 71, 86, 94 and many corresponding values of Mz(f). In many cases com-

plete sets of incongruent (mod 1) points are given for which M(f;P) =

M(f) or M(f;P) = M*(f). All minima given in the table are isolated minima.

A corresponding table is given for forms / = x2 + xy — \(m■ — l)y2

where m = 1 (mod 4), m is square-free and not greater than 101, except

m = 57 and 73.
Sources for the results listed, many in the accompanying paper, are given.

B. W. Jones

Univ. of Colorado

Boulder, Colo.

1169[F].—A. Gloden, Table des Solutions de la congruence x4 + 1 = 0

(mod p) pour 600000 < p < 800000. Luxembourg, 1952, published by
the author, rue Jean Jaurès, 11, Luxembourg, 22 p., 29.8 X 21.0 cm.,

mimeographed. Price 120 francs beiges.

This table is identical with that described as UMT 158, MTAC v. 7, p.
108 except that the appended factorizations there referred to are wanting.

1170[F,L].—A.  van Wijngaarden.   "On  the coefficients of the modular

invariant J(t)," K. Ned. Akad. v. Wetensch. Proc, s.A, v. 56, 1953, p.

389-400.

Klein's fundamental modular invariant J(t) has an expansion in the

form

123/(r) = x-1 + 744 + 196884* + 21493760a:2 H-

50

=   X! c{n)xn
n=—1

in which x = q2 — e2"lT. These coefficients are positive integers whose prop-

erties have only recently been investigated. The present paper gives a two

page table of c(n) for n = — 1(1)100. These values are quite large, c(100)

having 53 digits, and the table represents a relatively large amount of com-

puting. Previous tables are those of Berwick1 for n < 7 and Zuckerman2

for n < 24.

The intimate connections between J(t) and other elliptic functions pro-

vide a variety of methods for the computation of c(n). That none of these

methods can be too easy is pointed out by the author who remarks that "the

coefficients grow very rapidly with n and the digits have to come from some-

where."

Zuckerman exploited a connection between c(n) and the number of parti-

tions of 25m. This becomes ineffective for n = 25 since Gupta's3 tables of the

partition function extend only to n = 600.
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Lehmer4 had proposed the formula

E   c(k)r(n - k) = 720{91(71i(«) + 600r(rc)¡/691
fc=-i

and van der Pol5 the more elegant formula

(1) E   kc(k)r(n - k) = 24<r1,(»).
*=—I

These  formulas are based  upon  the  connection  between  J(t)   and   the

Weierstrassian discriminant

E r(n)xn = x JJ (1 — *")24
n=l n=l

whose coefficients, known as Ramanujan's function, are now tabulated6 to

n = 2500. Formula (1) was used by the author up to n = 50. At this point

another more elaborate method based on the relation

27J(r)  = 2(028 + 038 + <?48)(02-8 + Ö3"8 + 04"8)

between J(t) and Jacobi's theta functions, was used to recompute and ex-

tend the table to « > 100. Various congruence properties of c[n), including

an interesting new one modulo 71, were used to check the calculations.

The table should be a valuable tool for further research on Klein's in-

variant.

D. H. L.

1 W. E. H. Berwick, "An invariant modular equation of the fifth order," Quart. Jn. of
Math., v. 47, 1916, p. 94-103.

2 H. S. Zuckerman, "The computation of the smaller coefficients of J(t)," Amer.
Math. Soc, Bull., v. 45, 1939, p. 917-919.

3H. Gupta, "A table of partitions, I, II," London Math. Soc, Proc, v. 39, 1935, p.
142-149, v. 42, 1937, p. 546-549.

4 D. H. Lehmer, "Properties of the coefficients of the modular invariant J(t)," Amer.

Jn. of Math., v. 64, 1942, p. 488-502.
6 B. van der Pol, "On a non-linear partial differential equation satisfied by the loga-

rithm of the Jacobian theta-functions, with arithmetical applications, I, II," K. Ned.

Akad. v. Wetensch., Proc, s.A, v. 54, 1951, p. 261-284.
6 See MTAC, v. 4, 1950, p. 162, UMT 101.

1171 [I].—H. E. Salzer, Tables of Coefficients for the Numerical Calculation

of Laplace Transforms. NBS Applied Math. Series, No. 30, U. S. Gov.
Printing Office, Washington, 1953, ii + 36 p., 20.1 X 25.9 cm. Price 25
cents.

These tables are intended to be used in the approximation of the trans-

form

HP) =   I    e-vf(t)dt
Jo

by means of the sum

F(p) = ZAtfd)
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where

Ai = Ai^(p)

depend on both p and n, the number of ordinates. The main tables are ar-

ranged by n which takes the values 2(1)11. The values of p are .l(.l)w — 1

up through n = 7. For n = 8 and 9 the interval is .2 and for n = 10 and 11

it is 1. Values of the A's are given to 9S. There are auxiliary tables as follows.

Table II (p. 27-36) gives values of nl/p»+l for n = 0(1)10, p = .1(.1)10
to 8s. This function is the Laplace transform of t" and the table is intended

for use in transforming polynomials up through those of degree 10.

The function (n — \)\pnAi{n)(p) is a polynomial in p with integer co-

efficients. These polynomials are listed in the introduction (p. 7-8) together

with the corresponding Lagrange interpolation coefficients (polynomials in /)

for m = 2(1)11.
Four explicit examples are worked out including one in which the error

is estimated.

These tables should be quite useful in dealing with functions whose

Laplace transform is unfamiliar or intractable.

D. H. L.

1172[K].—Hirojiro Aoyama, "On a test in paired comparisons," Tokyo

Inst. Math., Annals, v. 4, 1953, p. 83-87.

Let each of n persons, no two of which have the same occupation, rate his

own occupation in comparison with each of the others. This gives rise to k =

(n\
II paired comparisons, to which we assign the following scores: +1 in

those cases in which each subject in a pair rates his own occupation higher

than the other, — 1 in those cases in which each subject rates his own occupa-

tion lower than the other, 0 in all other cases. Let S be the total of the k

scores. This is proposed as a test criterion for the null hypothesis that each

subject is as likely as not to rate his own occupation higher than any other

of the n occupations. Under this model for k throws of a pair of coins, 5 is

the excess of the number of cases of both heads over the number of cases of

both tails. A tableis given for Pr(|5| ^ So) for « - 3(1)9 to at least 4D
always giving at least 2S.

c. c. c.

1173[K].—Joseph Berkson, "A statistically precise and relatively simple

method of estimating the bio-assay with quantal response, based on the

logistic function," Amer. Stat. Assn., Jn., v. 48, 1953, p. 565-599.

This paper sets forth very clearly and succintly the author's "minimum

logit chi-square" method in bio-assay. To facilitate the necessary computa-

tions three tables are provided. Table 1 gives / = In \_p/{\ — p)~\ to 5D for

p = .001 (.001) .999. Table 2 inverts Table 1, giving p to 5D for I = 0(.01)-
4.99. Table 3 gives the weights needed in the logistic calculation, namely

p(l - p) and p{\ - p)l, to 4D, for p = 0(.001)1.
J. L. Hodges, Jr.

University of California

Berkeley, California
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1174[K].—K. N. Chandler, "The distribution and frequency of record

values," Roy. Stat. Soc, Jn., s.B, v. 14, 1952, p. 220-228.

The frequency and interval of occurrence of record values is of con-

siderable interest whether we are dealing with weather data or sampling

other types of populations. The lowest record value at any given time is de-

fined as that member of the sample which is less than or equal to all previous

members and the greatest record value similarly is defined as that value

which is greater than or equal to all previous values. In this paper Chandler

considers the random series xu,u = 1,2, 3, etc. with the first record value X\

equal to Xi. Let X, be the first occurring value of x which is less than X¿_i,

i = 2, 3, etc. Then Xr is called the rth lower record value (similar considera-

tions apply to the higher record values). Assuming that the distribution

function of x is either normal or rectangular, Chandler derives the probabil-

ity distribution of the rth lower record value XT (or rth higher record value),

the distribution of the serial number, ur, of the lower record value and also

the probability distribution for the interval of occurrence (number of ob-

servations) between the rth. lower record value and the (r — l)st lower

record value.

Table 1 and Table 2 of the paper give the .005, .01, .1, .5, .9, .99 and .995
probability points for the distribution of Xr for the normal distribution in

standard units to 3D and for the rectangular distribution to 4S for r =

2(1)9 in both cases. Table 3 gives the probability that the serial number,

ur, of the lower record value, will be Sn to 6D for r = 3(1)9 and n = 3(1)

30(5) 60(10) 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000,
200000, 500000, 1000000. Table IV gives the probability that the interval
of occurrence, ur — M,_i, the number of observations between the rth lower

record value and the (r — l)st lower record value ^ n to 6D for r = 2(1)9

and the same set of values of n as in Table 3. The serial numbers ur, and their

differences, ur — wr_i, do not have finite means and are independent of the

parent population provided it has finite or zero probability density at all

points!

F. E. Grubbs
Ballistic Research Laboratories

Aberdeen Proving Ground, Md.

1175[K].—W. J.  Dixon,  "Power functions of the sign test and power

efficiency for normal alternatives," Annals Math. Stat., v. 24, 1953, p.

467-473.

The two sided sign test has long been used as a non-parametric test of

significance. In using such a test one generally compares the number of

changes in sign that occur in his observations with the expected number

under a given hypothesis. In using such a non-parametric technique, one is

interested in its power as well as how this power compares with the power of

corresponding parametric tests. This paper contains tables which help the

research worker answer such questions.

Tables I and II give respectively the power of the sign test to 5D for the

5% and 1% level of significance for sample sizes N = 5(1)20(5)50(10)100
in testing the null hypothesis that the proportion of objects in the population

is .5 against varying proportions, p = .05(.05).95 in the alternative popula-

tion.
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To compare the power of the sign test with normal alternatives the

author introduces a power efficiency function which gives the power effi-

ciency of the sign test as compared with the normally based test for each

alternative. Tables for selected values of the parameters and representative

curves of this power efficiency function are given. The results exhibited by

this function are compared with various asymptotic and approximate

efficiency estimates that have been obtained by various authors in the past.

C. F. Kossack
Purdue University

Lafayette, Indiana

1176[K].—Benjamin Epstein & Milton Sobel, "Life testing," Amer.
Stat. Assn., Jn., v. 48, 1953, p. 486-502.

For a characteristic X with density function

/(*;«) = (exp (- x/e))/e

the maximum likelihood estimate of 9 based on the first r order statistics of a

sample of n is

Kn =  Otn H-h *r,n +   («  ~ >*)*r.»]/f.       (f  ^ «)

Furthermore, 2r0V, „/0 is distributed as x2 with 2r degrees of freedom. Since

this result is independent of n, an appreciable saving of time can be made in

situations, such as life testing, where the observations become available in

order by basing the estimate of 0 on the first r available results from a larger

sample. Table I tabulates to 2D the ratio E{Xr,n)/E(XT,r) of the expected

time to obtain the first r results from a sample of n to the expected time to

obtain all r results from a sample of r for r = 1 (1)5, 10 and n = 1 (1)5(5)20.

A simple derivation of previously known forms for E(Xr,n) and Var(Xr,„) is

given.

It is also shown that the region of rejection for the best test of Hi(6) = 0i

against the alternative H2(0) = 02 < 0i is given by 0r,„ < C. Table II
tabulates for 0i/02 = 1.5 (.5)3 (1)5 (5)10 ; a, ß = .01 and .05 the minimum
value of r, and the corresponding upper and lower limits for C/Q\ to 4D, such

that the errors of Type I and Type II will be less than a and ß, respectively.

This table represents a rearrangement and, in some respects, an extension of

tables published by Eisenhart1 which (in the notation of the present paper)

gives for fixed r, a, and ß the maximum value of 0i/02 such that the test con-

ditions are satisfied. It is also directly related to other tables dealing with

the operating characteristics of the one-sided tests of a hypothetical variance

(To2 against the alternatives a2 < ¡to2.

C. A. Bennett
General Electric Company

Hanford Atomic Products Operation

Richland, Washington

1 C. Eisenhart, M. W. Hastay, W. A. Wallis, editors, Selected Techniques of Statistical
Analysis. New York and London, 1947, ch. 8, p. 267-318.

1177[K].—H. L. Jones, "Approximating the mode from weighted sample

values," Amer. Stat. Assn., Jn., v. 48, 1953, p. 113-127.

This paper presents a method of estimating the population mode by a

weighted sum of the order statistics of a sample. The derivation of the values
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of the weights is based on an approximation to the maximum likelihood solu-

tion. The parametric form of the population is assumed to be known. The

method is of a general nature but does not necessarily yield a reasonable ap-

proximation to the mode unless certain favorable conditions are satisfied.

The case of a ¿-distribution with varying degrees of kurtosis is analyzed to

illustrate application of the method. Table 1 contains weights to 2D to be

used in approximating the mode of a /-distribution for n (sample size) =

3(1)10 and a4 = M4/W = 3(.5)5, 6, 9, ».
J. E. Walsh

U. S. Naval Ordnance Test Station, Inyokern

China Lake, California

1178[K].—R. Kamat, "On the mean successive difference and its ratio to

the root mean square," Biometrika, v. 40, 1953, p. 116-127.

Given a sequence of n normal variâtes  {#;} with common mean and

variance. The mean square successive difference is

d= (n- l)-i£ \X<- Xi+1\.
¿=i

Table 1 presents the standard deviation, ßi and /32 of d/c, for n = 3(1)

10(5) 30, 40, 50 to 4D. Table 2 presents approximate upper and lower .5, 1,

2.5 and 5% percentage points of d/cr, to 2D, using a Pearson Type I curve;

exact results are given for n = 3.

The ratio W = d/s, where s is the sample standard deviation, is also

considered. Table 4 presents the mean to 4D, the standard deviation to 4D,

ßt to 3D and ft to 2D of W for n = 5(5) 30, 40, 50. Upper and lower 0.5, 1,
2.5 and 5% points for Ware given in Table 5 for w = 10(5)30(10)50 to 2D.

R. L. Anderson
North Carolina State College

Raleigh, North Carolina

1179[K].—Tosio Kitagawa, Teisuke Kitahara, Yukio Nomachi &
Nobuo Watanabe, "On the determination of sample size from the two

sample theoretical formulation," Bulletin Math. Stat., v. 5, 1953, p.

35-46.

The authors consider a two-sample procedure alternative to that of

Stein1'2 for determining a confidence interval of fixed length 2d for the mean

of a normal population with unknown variance. They give a table for the

following function connected with the probability distribution of the second

sample size :

/•fc(ns) /*c(m)

7(«2 ;wi|¿2o-2,a,/3) =   I 0„, (si ;o-)dsi I <¿>nj(s2;<r)dí2,
J6(n2 — l) Jo

where

b(n) =dni{ /„_! (a)} -1 {P£\ (ß)} ~»,

c(n) = d«i{<»-i(a)}-\

tn-i(a) is the lOOa-percentage point of the /-distribution with n — 1 degrees

of freedom, Fn~-\ (ß) is the 100/3-percentage point of the F-distribution with
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n — 1 and «i — 1 degrees of freedom,

(Si = »i- I)-1 E (*,•;-S<)2   .    í = 1,2,
í-i J

is the square root of the unbiased estimate of the population variance given

by the first, respectively, second sample, of sizes nx and «2, and <¿>n¿ (^i ;c)

denotes the density function of s,. The tables are for only the selected com-

binations of the arguments «i = 10, 15, 21, 25, 31 ; ra2 = 3(1)60; a = .01,
.05; ß = .01, .05; dV"2 = .75, .5, .25.

Julius Lieblein
NBSSEL

1 W. G. Cochran, Sampling Techniques. New York, 1953, p. 59-60.
2 B. M. Seelbinder, "On Stein's two-stage sampling scheme," Ann. Math. Stat., v. 24,

1953, p. 640-649.

1180[K].—J. Lefèvre, "Application de la théorie collective du risque à la

réassurance 'Excess-Loss,' " Skandinavisk Aktuarietidskrift, v. 35, 1952,

p. 161-187.
This paper contains a table of values of

Uu) = joBn(u) =   \    te-iud<pM(t)

in which <j>(t) is the cumulative normal frequency function in standard units.

Values are given for n = 0, 3, 4, 6 for u = 0(.1)3 to 5D.

C. C. C.

1181[K].—Jack Moshman, "Critical values of the log-normal distribu-

tion," Amer. Stat. Assn., Jn., v. 48, 1953, p. 600-609.

The three-parameter log-normal distribution function may be written as

m - £^i)exp r ¿(iog^)T

In terms of parameters a, b, and c, the mean, variance and skewness (third

standard moment) of this distribution may be expressed as p = bu* + a,

a2 = ¿>2co(ü> — 1), and et3 = ± (co — l)*(w + 2) where œ = exp c2 and as

takes the same sign as b. The author tabulates selected critical values rß of

the standardized log-normal variate such that P(t ^ t$) = ß, where r =

(x - n)/<r. Tabulations are to 3D for ß = .005, .01, .025, .05, .10, .90, .95,
.975, .99, and .995 with 03 = 0(.05)3. Accuracy to within one or two digits

in the last decimal is claimed for all table entries and the author indicates

that three point Lagrangian interpolation will give similar accuracy for

intermediate values of 03.

A. C. Cohen, Jr.
University of Georgia

Athens, Georgia
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1182[K].—K. R. Nair, "Tables of percentage points of the 'Studentized'

extreme deviate from the sample mean," Biometrika, v. 39, 1952, p.

189-191.

Let x,(v = 1(1)«) be the vth ordered variate in a sample of size n taken

from a normal population with unknown standard deviation u. If an estimate

sr of a is available with r degrees of freedom, independent of the sample, the

author suggested the use of the Studentized extreme deviation (xn — x)/sr

or (x — xi)/sr as a test criterion for a single outlier. In a previous paper1 he

gave the lower and upper 5% and 1% points of this deviate. These tables

have now been extended to cover four more percent points, namely 10, 2.5,

.5 and .1%. Table 1A gives the 6 lower percentage points mentioned to 2D

for n — 3(1)9 and r = 10, 15, 30, ». Table IB gives the same six upper per-

centage points to 2D for n = 3(1)9 and r = 10(1)20, 24, 30, 40, 60, 120, ».
E.  J.   GUMBEL

Columbia University

New York, New York

1 K. R. Nair, "The distribution of the extreme deviate from the sample mean and its
Studentized form," Biometrika, v. 35, 1948, p. 118-144.

1183[K].—E. S. Pearson & H. O. Hartley, "Charts of the power function

for analysis of variance tests, derived from the non-central F-distribu-

tion," Biometrika, v. 38, 1951, p. 112-130.

Let Ui(i = 1, 2,- • -, v) be v normally distributed independent variables

with unit variance and zero mean and let ffl,-(t = 1, 2, • • •, v) be v fixed con-

stants, then the distribution of

x" - ¿ («i + ai)2,

which is a Bessel function, is called the non-central chi-square distribution
v

with v degrees of freedom and X = E a? is called the non-centrality param-
i

eter. If xi'2 is such a value with v\ degrees of freedom and X22 another inde-

pendent central chi-square with v2, then F' = (xi"vi)/(xí*>'i)j called the non-

central variance ratio, has a known distribution. Its numerical values are

obtained with the help of the incomplete ß functions. The probability ß(\ \ a,

vi, Vi) = Pr (F' > Fa) regarded as a function of X is the power function of

the analysis of variance test with significance level o;. On the basis, mainly,

of Tang's table1 eight charts are given corresponding respectively to vi =

1 (1)8 for ß at the levels a = .05 and a = .01. Here the non-centrality param-

eter ¡p = (\/(vi + 1))* is used as the abscissa instead of X on a linear scale.

Each chart gives two families of eleven power curves corresponding to v2 =

6(1)10, 12, 15, 20, 30, 60, » for the two values of a. The use of a logarithmic
scale for the Ordinate ß straightens the curves and expands them in the re-

gion of high power .80 £$£ .99. The 0grid, .1(.1).5(.05).7(.02).90(.01).99,
and the <p grid of .2 for a = .01 and of .1 for a = .05 are sufficiently fine to

allow interpolation by sight. The calculation of <p is shown for the one way

classification into k groups with n observations in each, for double classifica-

tion with one observation in each cell and for the latin square arrangement.
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The use of the charts is explained for the analysis of the effect of machine

variations on the standard deviation of manufactured bulk product and of

the effect of personal factors introduced in routine tests.

E.  J.   GUMBEL

Columbia University

New York, New York

1 P. C. Tang, "The power function of the analysis of variance test with tables and
illustrations of their use," Stat. Res. Memoirs, v. 2, 1938, p. 126-157.

1184[K].—Frank Proschan, "Confidence and tolerance intervals for the

normal distribution," Amer. Stat. Assn., Jn., v. 48, 1953, p. 550-564.

The author presents an excellent summary of confidence and tolerance

intervals for the normal distribution for the various combinations of known

and unknown mean and standard deviation. Let x be normally distributed

with mean p and standard deviation a. Define

X = Ê Xi/n,   s2=í (Xi - X)2/(n - 1).
<—i <-i

Let m represent either /iorX; let s.d. represent either <r or s. Then either

confidence interval statements or tolerance interval statements may be

made about m ± k s.d., where the value of k depends on the particular type

of interval and whether or not p and a are known or unknown. All tables of

ki, i = 1(1)9 are given for n = 2 (1) 30, 40, 60, 120, », to 3D.
Given a known, the 50% confidence interval for p is given by X ± k\ <t,

k\ = .6745/'V» ; if both p and <r are unknown, the 50% confidence interval is

given by X ± k2s ; if both p and a- are unknown, ATX ± k^s provide 50% con-

fidence interval for the second sample mean X2, when «i = n2.

The next ki, i = 4(1)7, refer to tolerance limits. If both p and a are known

p ± kt<r, ki = .6745 provide tolerance (probability) limits such that the

proportion p of the population included by the interval is .50. In case p and

a are unknown the factors k¡,a in the tolerance limits X ± ks,as are given for

a = .50, .75, .95, .99, .999, i.e. the average p contained inï± kb,as will be a.

If p is unknown and a known, tolerance limits are found by use of X ± kea,

and ka is tabulated for a = .50; for p known, <r unknown, tolerance limits

are given by p ± fas and fa is tabulated for a = .50.

The final cases ks and ko refer to confidence statements about tolerance

limits. Bowker1 has tabulated the values of k such that the probability is y

that X ± ks will include p or more of the population. In Bowker's tables p

and 7 are listed for all combinations of .75, .90, .95, .99 and .999, p and a

unknown. The author assumes p known and a unknown and gives values of

ki for p = 7 = .50 ; and p unknown, a known, ka for p = y = -50.

L. A. Aroian

Hughes Research and Development Laboratories

Culver City, California

1 C. Eisenhart, M. W. Hastay, W. A. Wallis, editors, Selected Techniques of Statistical

Analysis. New York and London, 1947, ch. 2 by A. H. Bowker, p. 102-107.



86 RECENT  MATHEMATICAL TABLES

1185[K].—S. Rushton, "On sequential tests of the equality of variances of

two normal populations with known means," Sankhyä, v. 12, 1952,

p. 63-78.
Tables are given for sequential tests of the equality of variances in two

samples from normal populations using sums of squares (a) about population

means, (b) about sample means and using ranges of four and eight observa-

tions. U is the ratio of sums of squares from the two samples. Sampling is

continued unless U ^ U' (accept o-\ = <r2) or U ^ U" (accept a = 5a2).

Tables list U' and U" for degrees of freedom n = 1(1)10(2)20,25,30 and S =
1.5, 2.0, 3.0 for all combinations of a and ß = .01, .05, .10. The test using
ranges is based on Rn, the ratio of sums of ranges from the two samples. The

tables list Rn' and Rn" for the test as above and for the same range of param-

eters except that a and ß are restricted to .01 and .05 and n refers to the

number of ranges of 4 or 8 observations so that the sample sizes are 4« and

8«.
W. J. Dixon

University of Oregon

Eugene, Oregon

1186[K].—E.   S.   Smith,   Binomial,   Normal  and  Poisson  Probabilities.
Published by the author, Box 224C, RD2, Bel Air, Md., 1953. 71 p.,
21.6 X 27.9 cm. $2.50.

This is a small set of tables and charts, centering on the cumulative

binomial distribution, with extended discussion of actual (some novel) as

well as alternative methods of computation. Many of the tables shown are

obtainable from larger tables constructed by others (referred to in the text).

Tables are :

(1) Maximum Poisson probabilities pi(x, a) for various a (x, of course,

= 0, a, a — 1), a monotone function falling from .999001 (at x = 0) for

a = .001 to .039861 for a = 100 to 6D

(2) n\ and log «!, n = 0(1)200 10S and 10D
respectively

(3) log«, n = 1 (.01)10 10D

(4) Cxn and log Cxn, n = 1(1)50 5S and 5D

respectively
(5) er', x = 0(.001)1 (1)100 10D

(6) B(c,n,p), n = 1(1)20; p = .01 (.01)5 5D
n

where B(c,n,p) = E Cx"px(l - p)n~x
x=e

(7) Normal (Gaussian) integrals I (¡>(y)dy, density functions <¡>(t), second

derivatives <j>m(t), t = 0(.01)4, to 5D.

(8) p(c,a), c=l(l)22; a = .001 (.001).01 (.01). 1 (.1)2(1)10 and - =.1(.1)2.2;
0

a = 10(10)100 to 5D,

00

where p{cta) = J^e~aax/xl
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The cumulative binomial probabilities are obtained (a) directly, (b) from the

Poisson cumulatives (singly or the two-term Gram-Charlier Type B), (c)

from the normal (singly or the two-term Gram-Charlier Type A, with or

without remainder modifications) depending on the ranges of the binomial

parameters. There are a number of useful charts, not, to my knowledge, to be

found elsewhere. These include (1) the probability of n successes in n trials,

with constant probability of success in single trial, (2) the expected number

(np) of binomial successes, (3) (most useful of all) a set of charts, some

expressed in terms of correction factors, comparing the normal, binomial, and

Poisson probabilities for various ranges of the parameters.

H. A. Freeman
Massachusetts Institute of Technology

Cambridge, Massachusetts

1187[K].—H. Theil, "On the time shape of economic microvariables and

the Munich business test," Inst. International Stat., Revue, v. 20, 1952,

p. 105-120.
This paper contains a table giving the frequency distributions of the

difference between two independent random variables each obeying Poisson

distributions with means m and p respectively. Values are given to 3D for

m,p = |, 1, 2, 4.
C. C. C.

1188[K].—H. Uranisi, "The distribution of statistics drawn from the Gram-

Charlier Type A population," Bull. Math. Stat., v. 4, 1950, p. 1-14.

From the expansion of a frequency function in Gram-Charlier Type A

series, the author obtains early terms of a similar expansion of the distribu-

tion of the /-statistic for a sample of n. For both the one-tailed and two-

tailed cases, four coefficients of this series are tabled to 6D for n = 5, 10, 15,

21 for values of the argument m = (1 + t2/[n - l])-1 = .05, .1(.1).9, .95, 1.
With the aid of these tables it is possible to estimate the tail probabilities

for given values of ßi, ß2, ß3, and ßi, and this is done for several examples.

The results are not entirely comparable with those of Gayen,1 in that the

latter employed the Edgeworth series.

J. L. Hodges, Jr.
University of California

Berkeley, California

1 A. K. Gayen, "The distribution of 'Student's' t in random samples of any size drawn
from non-normal universes," Biometrika, v. 36, 1949, p. 353-369.

1189[K].—J. Westenberg, "A tabulation of the median test with com-

ments and corrections to previous papers," K. Ned. Akad. v. Wetensch.,

Proc, v. 55, s.A, 1952, p. 10-15.

Let Xi, ■ ■ ■, Xn1 and F1? • • •, Ynz be samples of N\, and N2 observations

drawn at random from populations having continuous distribution functions

Fi(x) and F2(y) respectively. Let ô be the number of observations belonging

to one of the samples that lies between the median of that sample and the

median of the combined sample. The hypothesis Ho that F\ m F2 is rejected
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when ô exceeds a critical value 5o. Tables of 5o to ID are given for significance

levels .001, .005, .01, (.01), .05 when considering two-sided alternatives to

Ho and .0005, .0025, .005, .01, .015, .02, .025 when considering one-sided
alternatives to H0 for Nu N2 = 6, 10, 20, 50, 100, 200, 500, 1000, 2000.

Cyrus Derman
Columbia University

New York, New York

1190[K].—J. W. Whitfield, "The distribution of total rank value for one
particular object in m rankings of n objects," British Jn. of Stat. Psy-

chology, v. 6, 1953, p. 35-40.

The problem considered is, essentially, that of the distribution of the

sum of m independent random variables, each with uniform distribution on

the integers 1, 2,- • -, n. The distributions, of course, are symmetric about

\m(n + 1). Three pages of tables give the lower halves of the cumulative

distribution functions to 5D for m — 2 (1) 8 and n = 3 (1) 8.
Leo Katz

Michigan State College

East Lansing, Michigan

J191[L].—C. Domb, "Tables of functions occurring in the diffraction of

electromagnetic waves by the earth," Advances in Physics, v. 2, 1953,

p. 96-106.
The tables given in the paper are related to the Airy integral

/*0O

Ai(z) = ir"1  I    cos (J/3 + zt)dt

in the complex plane.

The numbers — an being the zeros of Ai (2), the author puts

. , * f. !  r  * \      Ai[- gn + ;yexp (ir¿/3)]
fn(y) = exp (Xn + feO =     A., (_ an) exp (w/3)    ;

the numbers bn being roots of the equation

Ai(2) = /Ai'(2) exp (- 5«'/12),

in which / is a parameter, he also puts

£n + ir\n = bn exp («'/6)

and

exp (T„ + iSn) = ¿Tr-iexp (- M/Uhlfiï(fJÏ+
X [1 -/2&„exp(-57r¿/12)]-t.

Tables of the Airy integral for real argument have been reviewed in

MTAC, v. 2, p. 302-305, RMT 413, and for complex argument, in v. 2, p.

309, RMT 420.
The author tabulated the functions/„(y) for n = 1(1)5 in 1942, under

the guidance of J. C. P. Miller. These tables were subsequently checked,

corrected, and sub-tabulated by the Mathematics Division of the National
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Physical Laboratory of Great Britain. Photostatic copies are available from

H. M. Nautical Almanac Office, Great Britain. The computations of

Admiralty Computing Service are described in M TA C, v. 2, p. 35, RMT 260.
Table 1 of the present paper gives 3D values of X„ and pn for n = 1(1)5,

y = 0(.2)3 (1)10 and 3D values of X„ and pn + fy* for n = 1(1)5 and y =
10(10)100.

Table 2 gives 3D values of £„ and 7j„ for n = 1(1)5, / = 0(.1)1, /_1
= 1(-.1)0.

Table 3 gives 3D values of yn and 5n for n = 1(1)5 and for / ranging

from 0 to » ; the number of selected values of / varies with n.

There is a brief description of the computations, and an indication of the

application of the functions tabulated here.

A. E.

1192[L].—M. Mashiko,  Tables of Generalized Exponential-, Sine-, and
Cosine Integrals Ei (x + iy), Si (x + iy), Ci (x + iy). Numerical Compu-

tation Bureau, Tokyo, Japan, Report No. 7, March 1953, 43 p.

Let

I(z) =  J    rle-'dt.

For z = &ia (0 < £ < 5) put

/CN*0 = C..CÖ - *S«(i)-

For z = - efot(i7 < 0.2) put
V

I (-**") = e—A«(*l) exp(i*a(v))-

The report contains values of

(a) C(£) + log £ and Sa(H) to six decimal places with second differ-
ences for £ = 0(.05)5.00, a = 0°(2°)60o(lo)90o.

(b) Aa(r¡) to six decimal places, $0(17) to five decimal places, each with

second differences, for the above range of a and 17 = 0(.01).20. In defining

the ranges, the reversals of the inequality signs are presumably misprints.

The present table is therefore concerned with the exponential integral

for complex argument, not the generalized exponential-integral which has

been tabulated by the Harvard University Computation Laboratory

\_MTAC, v. 4, p. 92-93]. It breaks new ground in covering, for complex

arguments in polar form, the whole first quadrant.

No statement is made as to the accuracy of the table. Spotchecking a

few values against the forthcoming NBS Tables of Exponential Integrals for

Complex Arguments (cartesian form) did not reveal any discrepancy.

Everett's interpolation formula involving second differences gives the

maximum attainable accuracy in both directions. In order to facilitate inter-

polation, a four decimal place table of Everett second-order interpolation

coefficients for arguments at intervals of .01 is also given.

I. A. Stegun
NBSCL
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1193[L].—NBSCL,  "Struve function of order three-halves," NBS, Jn.
Research, v. 50, 1953, p. 21-29.

Tables of

h(x) = (^) #,(*)

2       2 /  . cos x \
= 1 + —,-I sin x H-I,

x2      x \ x    /

to 10D, with second central differences, modified when necessary (modifica-

tion being indicated by a letter C placed after the entry); x = 0(.02)15.

"The values are expected to be correct to within one unit of the last place."

The entire computation of this table was done on the SEAC, under the

supervision of Ethel M arden, by Kathryn Christoph, Anne Futter-

man, Renee Jasper, Sally Tsingou, and Bernard Urban.
The table is also available on IBM cards.

A. E.

1194[L].—Herbert E. Salzer, Ruth Zucker, & Ruth Capuano, "Table
of the zeros and weight factors of the first twenty Hermite polynomials,"

Jn. Research, NBS, v. 48, 1952, p. 111-116.
The definition of Hermite polynomials used in this paper is

Hn(x) = (-l)»e*2£;(e-*2).

XiM is the i-th positive zero of Hn (x),

a.(n) = Tri2»+in\lHn'(xWy2

is the corresponding Christoffel number, and

ß.M = axn) exp [(jc,.<»))*3.

The present paper gives 15D values of XiM and 13S values of cti(n) and

j3i(B) for n = 1(1)20, i = 1(1)«. A list of references (28 items) is appended.

Other tables of zeros of Hermite polynomials are referred to in MTAC,

v. 1, p. 152, RMT 131; v. 3, p. 26, RMT 466; v. 3, p. 416, RMT 619; v. 3,
p. 473, RMT 641 ; v. 6, p. 232, RMT 1034. The present tables were compared
with those of Reiz [RMT 466], Greenwood & Miller [RMT 619] and
Kopal [RMT 641], and with the Harvard tables [RMT 1034].

A. E.

1195[L].—K. M. Siegel, J. W. Crispin, R. E. Kleinman & H. E. Hunter,
"Note on the zeros of (dPmi^(x)/dx)\x^Xt," Jn. Math. Phys., v. 32, 1953,

p. 193-196.
The authors apply the identical technique of a previous paper to obtain

approximate values m( such that dP(1)mi(x0)/dx = 0 and values of

V xo[_Pmiw(x)Jdx
Jxo

[see MTAC, v. 7, p. 183]. Again, the theory is demonstrated for xo =
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cos 165°. For this case, the first 15 approximate values of mt and correspond-

ing values of the integral are tabulated.

Yudell L. Luke
Midwest Research Institute

Kansas City, Missouri

1196[L].—N. B. Slater, "Gaseous unimolecular reactions: theory of the

effects of pressure and of vibrational degeneracy," Roy. Soc. London,

Philos. Trans., s.A, v. 246, 1953, p. 57-80.

Table 3 (p. 71) gives values to 2 or 3S of

In(6) = [r(w-r-l)]-1  I    xme~x(l + e-1xm)~1dx       m = (n + l)/2

for n = 3(2)13 and some of the values logio0 = — 2(1)8.
Table 4 (p. 71) gives 2 or 3S values for n = 3(2)13 of 06 and 06o such that

I»(9s) = -95, 7„(Ö6o) = .50, and also 06/06o.
A. E.

1197[L].—R. C. T. Smith, "Conduction of heat in the semi-infinite solid,
with a short table of an important integral," Australian Jn. Phys., v.

6, 1953, p. 127-130.

Table 1 (p. 128-129) gives 5D values of

I
v

(1 + m2)-1 exp [-«(1 + u2)~)du

fora = .1 (.1)2 and U = .1 (.1)2, 2.5, 3, «, and also for a = 2.5, 3, 4, 5 and
a shorter range of U.

A. E.

1198[L].—Michael Tikson,  "Tabulation of an integral arising in the

theory of cooperative phenomena," NBS, Jn. Research, v. 50, 1953, p.

177-178.

Table 1. Values of the coefficients c2m in the expansion

Uo(x)J = E c2mx2m
0

for m — 0(1)20. Here Io(x) is the modified Bessel function of order zero.

Table 2. Values of

Cr  C*  CT

1(b) = w~3  I [36 — (cosx + cosy + cosz)~\~ldxdydz
Jo  Jo   Jo

= E (2m) ! c2m (3Ö)-2—1
0

to 5D for b~l = .01 (.01)1. For ô_1 < .8, the expansion in powers of b~l was

used to compute 1(b), at most 21 terms of this expansion being required. The

remaining values of 1(b) were obtained by numerical integration.

A. E.
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1199[L,V].—C. Truesdell, "Precise theory of the absorption and dispersion

of forced plane infinitesimal waves according to the Navier-Stokes

equations," Jn. Rational Mech. and Analysis, v. 2, 1953, p. 643-741.
Tables (p. 723-734) computed by Harrison Hancock. Graphs (p.

735-741).

These tables give results on the calculation of the propagation of plane

infinitesimal pressure waves (sound waves) in a uniform fluid governed by

the Navier-Stokes equations. The fluid is characterized by the viscosity co-

efficients p and X, the coefficient of heat conduction k, and the specific heats

cp, and c„. The tables are divided according to the two parameters, the ratio

of specific heats

y = cp/c,

and the thermoviscous number Y,

K

Y =
(X + 2p)cp

Tables given are for (7, Y) of the following values (1, F) (piezotropic fluids) ;

(1.10, .5), (1.10, .8), (1.25, .25), (1.25, .5), (1.25, .8), (1.40, .25), (1.40, .5),

(1.40, .8),   (|-25),   f|,.5j,   (|-ó),   (I .s),   (| 105),   (I1.25),

(1.8, .3), (1.8, .5), (2, .3), (2, .5), (2.2, .3), (2.2, .5) (weak and moderate
conductors); (1.10,20), (1.10,30), (1.10,40), (1.15,10), (1.15,20), (1.15,
25), (1.15,30), (1.15,35), (1.15,40), (1.20,20), (1.20,30), (1.20,40), (1.50,
50) (strong conductors). In each table, the various dimensionless quantities

characterizing the speed, the absorption and the dispersion of a plane sound

wave of circular frequency to are listed against the argument X, the frequency

number

(X + 2p)
X =

~fp

where p the undisturbed pressure of the fluid. The ranges of argument is

X = .1(.2).7, 1(.5)5.
H. S. Tsien

California Institute of Technology

Pasadena, California

1200[L].—G. Zartarian & H. M. Voss, "On the evaluation of the function

fr(M, w)," Jn. Aeron. Sciences, v. 20, 1953, p. 781-782.

9D table of the coefficients

(2M)-2'
a2n(M) - E

j-0

bin(M) = Ê

,tr„(i!)2[2(«-i)]!'

(2M)-2'

=o(i02[2(«-j) + l]!

for « = 0(1)6, M = 5/4, 10/7, 3/2, 5/3, 2, 5/2. These coefficients occur in
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the expansion

1}   \X + 2« + l      toX + 2« + 2/W  '

and may be used for computing the integral.

A. E.

1201 [Q].—H. Wood, (a) Kepler's problem, Roy. Soc. of New South Wales,
Jn. and Proc, v.  83,  1950, p.  150-163;   (b)  Kepler's problem—the
parabolic case, v. 83, 1950, p. 181-194; (c) Tables for nearly parabolic
elliptic motion, v. 84,  1951, p.  134-150;  (d)  Tables  for  hyperbolic
motion, v. 84, 1951, p. 151-164; (e) Five figure tables for the calcula-
tion of ephemerides in parabolic and nearly parabolic motion, Sydney

Observatory Papers No. 16, 1951. (a), (b), (c) and (d) are also Sydney

Observatory Papers Nos. 10, 11, 14 and 15 respectively

The first four papers give the theory and seven-figure tables which are

especially applicable to the problem of calculating  the  ephemerides of

comets in parabolic or nearly parabolic orbits about the sun. The fifth paper

gives five-figure tables which are sufficiently accurate for finding purposes.

Some of these tabulations may be of more general mathematical interest.

The two body problem was solved (kinematically) by Kepler with the

enunciation of his three laws of planetary motion. The problem of finding the

coordinates of a planet, or comet, in the plane of its orbit in unperturbed

motion is Kepler's problem. If M, E and v are the mean, eccentric and true

anomalies, respectively, and e the eccentricity, then: M = E — e sin E,

where tan E/2 = ((1 — e)/(l + e))1 tan v/2. This equation is Kepler's

equation ; the necessity for its frequent, accurate solution, and the difficulties,

both numerical and analytical which it presents, have kept alive interest in

the equation for the past 300 years. In general, e is quite small for the orbits

of planets, asteroids and most binary stars and there are numerous satis-

factory methods of solution. Cometary orbits, on the other hand, are very

often parabolic, or nearly so, and are sometimes even hyperbolic because of

planetary perturbations, or fictitiously hyperbolic because of observational

errors. If e is close to unity and E small, special methods must be devised to

solve Kepler's equation accurately. Wood writes the equation as follows :

D = 124 (1 + e)*q-H = Up + m3(1 + e)6

where k is the Gaussian gravitational constant, q the perihelion distance, /

the time (/ = 0 at perihelion), « = (1 — e)/(l + e) and p = yo/q where xo

and yo are the rectangular coordinates in the orbital plane with the #o-axis

directed towards perihelion.

For e = 0 (e = 1) we have the parabolic case and

D = 12/t = p*,   where p = 2 tan v/2.

Table 1 in (b) gives p to 7D for D = 0(0.1)100; to6Dfor£> = 100(1)1000.
For D > 1000 use p = £>* - 4/Z>* + R. Table 2 in (b) gives R to 6D for

e~iuuJo(uu/M)uxdu

E(-
n-0

(sin-M¿t — e*/x \
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4/D* = 0(.01)0.41. Previous tables are useful only up to D = 88 and Wood
states that there have been 36 comets observed outside this range of D, with

the probability that the future will see an increasingly higher percentage of

such observations.

The above tables are also useful in the nearly parabolic case. For e ¿¿ 1,

D is redefined as:

D = 12fe(l + e)*q-kt = \2co- + cV,
and

p = -{J-hK + R\,

where c2 and h are certain power series in t, and / and K are certain power

series in to-2. The coefficients of the last terms used in the K and h series have

been adjusted so that R is negligible in the seventh decimal place, a is

defined by the top equation and ca can be evaluated from Table 1 in (b).

c is tabulated to 7D and h to 5D for e = 0(.001)0.100 in Table 2 in (c)
(ellipse) and for a(=- e) = 0(.001)0.100 in Table 2 in (d) (hyperbola).
J and K are given to 7D for eV = 0(.001)0.600 in Table 3 in (c) and sim-
ilarly for a*(r in Table 3 in (d).

Other useful quantities tabulated by Wood are of the form :

A=6
sin-1tt> — w

vr
1 = 6

l-VT
w2^!- -IV'

and/y=2
1-Vl-w2

vf

where w = t*p for the ellipse and :

A = 6
w - sinh~

w3
7 = 6

VT+w¿

î^VÏTw ?}■
and N=2

Vl+w2-l

w2

where w = aV for the hyperbola. If we define D\ as:

D1 = (1 + e) 6p + Ap3,
dD,  '

then -~ = 6(1 + e) + ii27.
dp

A and 7 are useful in the iterative computation of p and of velocities. The

other rectangular coordinate in the orbital plane is X = x0/q = 1 — p2N/2

(1 + e). This becomes X = 1 — ¿i2/4 for the parabolic case. Appropriate

formulae are given to calculate the equatorial heliocentric coordinates x, y

and 2, from N and p.

A and N are tabulated to 77> and 7 to 4D for «V = 0(.001)0.600 in
Table 1 of (c), and similarly for aV = 0(.001)0.600 in Table 1 of (d).

Paper (e) gives 5D tables applicable to the three cases considered. There

has been some slight rearrangement of the formulae and tabulated quantities

but the details are probably not of sufficient general interest and will not be

given here. The author states that, in general, the tables have been calcu-

lated to two extra decimal places. A very useful bibliography will be found

in paper (a).

John B. Irwin
Goethe Link Observatory

Indiana University

Bloomington, Ind.


