The author is indebted to Dr. J. W. Carr III and the staff of the Willow Run Research Center for kindly making the MIDAC available for this study (which is part of Army Ordnance Project DA-20-018-ORD-12332).

Harvey Cohn
Department of Mathematics
Wayne University
Detroit, Michigan

[^0]167.-Cullen Numbers. These are numbers of the form $n 2^{n}+1$ and are remarkable in that they seem to be composite for $n>1$, although there is no a priori reason for this. Cunningham $\&$ Woodall ${ }^{1}$ made a study of these numbers and found them all composite with a small factor for $1<n<141$. No factor of $141 \cdot 2^{141}+1$ is known. I have completely factored the following cases left incomplete by Cunningham. The case $n=46$ is due to R. A. Liénard of Lyons.

n	$n 2^{n}+1$	n	$n 2^{n}+1$
33	$47 \cdot 6031230671$	42	$23 \cdot 43 \cdot 83 \cdot 2250270487$
35	$37 \cdot 32502455213$	43	$3 \cdot 5 \cdot 163 \cdot 2633 \cdot 58752797$
37	$3 \cdot 5 \cdot 339016085231$	45	$11 \cdot 47 \cdot 2437 \cdot 1256655529$
38	$3^{2} \cdot 20879 \cdot 55586743$	46	$5 \cdot 31 \cdot 47 \cdot 139297 \cdot 3189821$
39	$41 \cdot 3433 \cdot 152326961$	47	$7 \cdot 11 \cdot 43 \cdot 3593 \cdot 556021079$
40	$41 \cdot 131611 \cdot 8150491$	48	$7 \cdot 379 \cdot 997 \cdot 5107973329$
41	$13 \cdot 43 \cdot 1291 \cdot 124932557$	66	$5^{3} \cdot 13 \cdot 67 \cdot 107 \cdot 131 \cdot 8353 \cdot 382030403$

N. G. W. H. Beeger

Nicolaas Witsenkade 10
Amsterdam
${ }^{1}$ A. J. C. Cunningham \& H. J. Woodall, "Factorisation of $Q=\left(2^{q} \mp q\right)$ and ($q \cdot 2^{q} \mp 1$)," Messenger Math., v. 47, 1917, p. 1-38.

CORRIGENDA

V. 6, p. 225, 1. 11, for monomial read elementary.
V. 7, p. 34, 1. 6, for 6 read 1.
V. 7, p. 175, 1. 17, for 9 read 8.

[^0]: ${ }^{1}$ Compare D. H. Lehmer, Guide to tables in the theory of numbers. National Research Council, 1941, p. 75-77, O. TAUSSKy, Some computational problems in algebraic number theory. National Bureau of Standards Report (to appear).
 ${ }_{2}$ For theoretical background consult H. Hasse, Arithmetische Bestimmung von Grundeinheit. Berlin, 1950, p. 70.
 ${ }_{3}$ These were taken from a table of minimum positive g for $p<3000$ in I. M. Vinogradov, Osnovy Teorii Chisel [Fundamentals of the Theory of Numbers]. Moscow, 1940, p. 110.
 ${ }^{4}$ The case $p=163$ was discovered through another procedure by E. Artin, according to a private communication.

