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00 I   X2   \ °° I   X2   \
Jo(x)   =   E  AnTn* (   ÏÔÔ   ) . MX)   =  * E  ̂ nTV Í   — j ,

- 10 < * < 10. - 10 < * < 10.

« T„* (x)
0 1
1 2* - 1

2 8*2 - 8* -f- 1
3 32*3 - 48*2 + 18* - 1
4 128*4 - 256*3 + 160*2 - 32* + 1
5 512*6 - 1280*4 + 1120*3 - 400*2 + 50* - 1

6 2048*6 - 6144*5 + 6912*4 - 3584*3 + 840*2 - 72* + 1
7 8192*7 - 28672*6 + 39424*« - 26880*4 + 9408*3 - 1568*2 + 98* - 1
8 32768*8 - 1 31072*7 + 2 12992*6 - 1 80224*6 + 84480*4 - 21504*3

+ 2688*2 - 128* + 1
9 1 31072*9 - 5 89824*8 + 11 05920*7 - 11 18208*6 + 6 58944*6

- 2 28096*4 + 44352*3 - 4320*2 + 162* - 1

10 5 24288*10 - 26 21440*9 + 55 70560*8 - 65 53600*7 + 46 59200*6
- 20 50048*5 + 5 49120*4 - 84480*3 + 6600*2 - 200* + 1

11 20 97152*11 - 115 34336*10 + 273 94048*9 - 367 65696*8

+ 306 38080*7 - 164 00384*6 + 56 37632*6 - 12 08064*4
+ 1 51008*3 - 9680*2 + 242* - 1

12 83 88608*12 - 503 31648*11 + 1321 20576*10 - 1992 29440*9

+ 1905 13152*8 - 1203 24096*7 + 506 92096*6 - 140 57472*6
+ 24 71040*4 - 2 56256*3 + 13728*2 - 288* + 1.

RECENT MATHEMATICAL TABLES

1202[A,P].—M. L. Clinnick, (a) Gear Ratios No. 43. (b) Gear Ratios No. 59.
Privately printed, 3211 School Street, Oakland 2, California, 1953. Each
book has 84 unnumbered pages 8.9 X 11.4 cm. and 8.26 X 14.0 cm.
respectively, photo-offset from typescript. Price $1.00 each.

These pocket-sized tables are designed for use in selecting appropriate

sprocket gears in motorcycle racing events. They are triple entry tables

giving 2D values of

R = kr/(ec)

for c = 10(1)23, e = 15(1)25, r = 46(1)75, ¿ = 43, 59. Unrealistic values
of R > 15 are omitted. In the intended application r, e and c are the numbers

of teeth in the rear, engine, and countershaft sprockets respectively. The

clutch sprocket is assumed to have 43 teeth or 59 corresponding to certain

popular British and American makes of motorcycle. Instructions are

given in (b).
D. H. L.

1203[A,B,P].—J. K. Lynch, Kilocycle-Radian Frequency Conversion Tables.
Commonwealth of Australia, Postmaster-general's Dept., Research

Laboratories, Report No. 3726. Melbourne, 1953, 24 p. 20.2 X 25.4 cm.

This table gives 6S values of

w m 2000irí"
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and to2, co_1 and co~2 for

F = .1 (.1)100(10)1000,    10* for k = 6(1)11.

This allows the electrical engineer to pass easily from a frequency F in

kilocycles per second to the corresponding angular velocity co in radians per

second, or to its square, reciprocal or reciprocal square.

For example the inductance L and capacitance C for resonance of

frequency F are related by L = ur2/C.

D. H. L.

1204[A,D].—G. E. Reynolds, Conversion Tables of Tangents or Cotangents

to Sines and Cosines of Three Decimals. Air Force Cambridge Research

Center, Technical Report 53-29, Cambridge, Mass., 1953. 26 p. 18.4
X 27.3 cm.

This is a short handy table of sines and cosines as functions of tangents

or cotangents. Values of sines and cosines are given to 3D as consecutive

multiples of 10~3. Corresponding 4S values of tangents and cotangents are

listed alongside. The table is intended to be entered via the more rapidly

moving functions tan and cot to read out corresponding values of sine and

cos without interpolation.

The table is in fact a table of r/(l - r2Y, r - .0005 = 0(.001)1. Appli-
cations are mentioned to the layout of parallel plate surfaces and the path

of a milling cutter.
D. H. L.

1205[B,F].—D. R. Kaprekar, Cycles of Recurring Decimals, v. II. (From
N = 167 to 213 and many other numbers.) Khare Wada, Deolali, India,

1953. Published by the author, iv + 47 p., 24.3 X 16.7 cm. Price
6 rupees.

This is an extension of v. I, reviewed in MTAC, v. 7, p. 238, to the extent

mentioned in the title. Besides the table of cycles there are other tables

as follows.

P. 25. Table of 2" and 5" for « = 1 (1)33
P. 36-41. Table of exponents of 10 (mod p) for all primes p < 13709.

This table is taken from a previous table of Kraitchik.1 This reprint

contains three errata.

p. 36    For P = 669 read P = 659
p. 40   P = 9619, forC=8 read C = 3
p. 41    For P = 12901 read P = 12907

P. 43-47. Table of factors of (10e — l)/p where e is the exponent of

10 (mod p) for 23 primes p mostly less than 100. In connection with

p = 47 the author claims the discovery of the prime

193423597678916827853.

However on the next page two factors of this number are given,

namely 2531 and 549797184491917, the last being misprinted.
D. H. L.

1 M. Kraitchik, Recherches sur la Théorie des Nombres, v. 1. Paris, 1924, p. 131-145.



RECENT MATHEMATICAL TABLES 149

1206[C,D].—Akademiiâ Nauk SSSR. Institut Tochnoï mekhaniki i vychi-
slitel'noï techniki. Matematicheskie Tablitsy. Desiàtiznachnye Tablitsy

logarifmov kompleksnykh chisel i perekhoda ot dekartavykh koordinat k

poltàrnym. Tablitsy funktsiï. [Ten place tables of logarithms of complex

numbers and of the transformation from cartesian to polar coordinates.

Tables of functions] In*, arctg *, § In (1 + x2), (1 + *2)L Moscow,

1952. 116 p. 17 X 26 cm. 10.8 roubles.

There are four 10D tables each at interval .001 and with A2:

A. Inx, 1 < x < 10;

B. | In (1 +*2),0 < * < 1;

C. arc tan *, 0 < * < 1 ;

D. (1 + *»)*, 0 < * < 1.

From such tables In z = In (A+iB) =ln^+|ln [1 + (-BA4)2]-Hare tan (B/A),
\B | < \A |, r = \A | [1 + (B/A)2], d = §tt - arctan (B/A) may be found ;
similar expressions exist for \B\ > \A\, since In (A+iB) =ln i'+ln (B—iA).

Illustrative numerical examples in the use of the tables are given on

pages 4-6, and there is an errata slip with 15 corrections in the following

tables. An interpolation sheet is in a pocket of the volume, of which there

were 3000 copies in the edition.
R. C. Archibald

Brown University

Providence, R. I.

1207[D].—H. E. Salzer, "Radix table for obtaining hyperbolic and inverse

hyperbolic functions to many places," Jn. Math. Phys., v. 32, 1953,

p. 197-202.

These tables are intended to give data from which 18D values of hyper-

bolic functions and their inverses can be found with an ordinary desk calcu-

lator. A similar table for circular functions has been given by the author

in MTAC, v. 5, p. 9-11. As in the previous radix table, the author chooses

the inverse tangent function. In this case it is

Arctanh (¿-lO"*)    ¿ = 1(1)9,    X = 1(1)6.

These values are given to 20D. He also gives 20D values of

tanh ,4 for A = 1(1)24
and

§ In* for* = 1.2(.2)2(1)10.

By using the addition theorems for tanh and arc tanh and approximations to

these functions for small values of the argument any desired value can be

built up. Of course, the other hyperbolic functions and their inverses can be

expressed in terms of the tangent and its inverse.

D. H. L.

1208[F].—Ove Hemer, "Note on the diophantine equation y2 — k = *3,"

Arkivför Matematik, v. 3, 1954, p. 67—77.

This paper contains corrections and additions to the author's dissertation

lMTAC,v. 7, p. 86].
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Tables 1 and 2 of this dissertation are reprinted here with the corrections

called for in our previous review. Table 1 is now supposed to be complete

in the sense that it gives all solutions of the equation y2 — k — x3 for

0 < k < 100, whenever the equation is soluble, together with the number

N of solutions. The largest N = 8 is for the well known case of k = 17

discussed by Mordell, Table 2 for — 100 < k < 0 still contains 22 incom-
plete cases. For these, the coefficients and solutions of the corresponding

cubic forms are given. Table 3 of the dissertation is not reproduced here.

Table 4 is slightly enlarged giving the discriminant —D, the fundamental

rings and units in the cubic field corresponding to all square free values of

1 < k < 50, and for the values of k corresponding to soluble equations for

50 < k < 100. There still remain 7 cases in which the unit is "not definitely

proved to be fundamental."
Emma Lehmer

942 Hilldale
Berkeley, Calif.

1209[F].—D. H. Lehmer, Emma Lehmer, & H. S. Vandiver, "An applica-
tion of high speed computing to Fermat's Last Theorem," Nat. Acad. of

Sei., Proc, v. 50, 1954, p. 25-33.

Kummer defined a prime I to be regular if it does not divide any of the

first (/ — 3)/2 Bernoulli numbers and showed that

xl + yl = zl,    I > 2

is impossible in non-zero integers if I is a regular prime. In this paper, the

irregular primes less than 2000 are tabulated, together with the accompany-

ing least prime p of the form 1 + kl, as well as three other associated con-

stants ; 2a, Qa, Qk. On the basis of this table not only is Fermat's Theorem

established for / < 2000, but data are given which will greatly simplify and

facilitate the study of units and ideals in cyclotomic fields.
B. W. Jones

Univ. of Colorado

Boulder, Colo.

1210[G,K].—F. N. David & M. G. Kendall, "Tables of symmetric func-

tions, Part IV," Biometrika, v. 40, 1953, p. 427-446.

In this set of tables the authors continue a series of fundamental sym-

metric function tables for functions of weight not exceeding twelve. When

the series is complete the user will be able to relate any two of the following

kinds of symmetric functions of *¿ :

( U) unitary, or elementary, a* = E xix2 • • • xk

(S) sums of like powers, Sk = E *i*
(M) monomial, such as (3, 2, 1, 1) = E *i3*22*3*4

(H) homogeneous product-sums h, generated by

n (i - Xityi = e Kf.
i r=0

The first three parts1 have already been published and are described in

RMT769 and 1020 \MTAC, v. 4, p. 146, v. 6, p. 224-5, see also corri-



RECENT  MATHEMATICAL TABLES 151

gendum, v. 8, p. 188]. These relate 5 and M, M and U, and U and H
respectively. The present Part IV relates M and H. Thus one may use the

table of weight 3 to read such results as

hik, = (3)+ 2(2,1) +3(1,1,1)
and

(2, 1) = - 2Äi3 + 5Ä1Ä2 - 3As.

In the arrangement of the tables advantage is taken of Hirsch's law of

symmetry which states that the coefficient of (p, q,r, ■ ■ ■) in the expansion

of hahbhc- ■ ■ is the same as the coefficient of (a, b, c, • • •) in the expansion

of hphqhT- • •. Thus although each expanded symmetric function of weight w

requires w terms each coefficient may be used twice. The whole set of tables

for Part IV occupies no more space than the previously published parts

which are triangular in nature. The printing is in the same small but elegant

type of the earlier tables.

Part V which will relate symmetric functions of types U and S will

complete the set since a Part VI relating H and S would be identical with

Part V except for obvious sign changes.

D. H. L.

1 F. N. David & M. G. Kendall, "Tables of symmetric functions Part I ; Parts II and
III," Biometrika, v. 36, 1949, p. 431^49; v. 38, 1951, p. 435-462.

1211[K].—R. S. Burington & D. C. May, Jr., Handbook of Probability
and Statistics with Tables. Handbook Publishers, Sandusky, Ohio, 1953.
ix + 332 p., 14.3 X 20.3 cm. Price $4.50.

This book is principally a rather complete and up-to-date handbook of

statistical methods and theory which will prove very useful ; reviews con-

cerned with this aspect will be found elsewhere. Scattered through the text

are some 17 tables and at the end 24 tables and a nomogram occupy 62 pages.

The tables in the text, mostly short, begin with four giving ordinates,

areas, and percentage points for the normal frequency function. The follow-

ing four are devoted to the normal bivariate frequency function. The first,

if this function be written/(*, y) = k exp ( — c2/2), gives c to 4S for the P%

probability ellipse for P = 25, 50, 75, 90, 95, 99. The next three deal with
the circular case, giving radii ca of P% probability circles with c to 4S for

P = 25, 39.3, 50, 54.4, 75, 90, 95, 99; the radii Ri to 4D in standard units
of a circular disk centered at the means over which the probability integral

is P for P = 0(.05)1 as well as the integrand evaluated at Ri to 4D; and

values of the same probability integral to 3 or 4D over a circular disk of ra-

dius R/cr centered at the distance d/a from the means for R/a = .1 (.1)1 (.2)3

and d/a = 0(.1)3 (.2)6. The next two tables are concerned with the trivariate

normal frequency function with zero correlations, the first being the exact

analog of the first bivariate table and the second, for the spherical case, the

radius ca (c to 3D) of the sphere within which the total frequency is p for

p = .25, .5, .75, .9, .95, .99.
All but one of the remaining tables in the text are related to sampling

distributions. Those for which credit is given to other sources are here

designated by (R). If s is the standard deviation in a sample of « from a

normal universe with standard deviation <r, the next table (R) gives b

for which P(s > be) = P to 3D for « = 5(1)30 and P = .01, .05, .95, .99.
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If r = rx\n — 1 where rxy is the coefficient of correlation in a sample of n)

from an¡, uncorrelated bivariate normal universe, the following table (R

gives values of rx to 3D for which P(r g rt) « P for P = .001, .01, .05, .1
and m = « - 2 = 1(1)30(5)50(10)100, 120, °°. Then comes a table (R)
concerned with the distribution of ranges, R, in samples of « from the same

(?)
universe. Values of £ I — I are given to 4S for « = 2(1)20, to 3S for « = 30,

50, 75,100, and to 2S for « = 150, 200 and <rRh is given to 3S for « = 2(1)20.
Also R'/a is given to 2D for which P(R g R') = P for P = .001, .005, .01,
.025, .05, .1, .9, .95, .975, .995, .999 and « = 2(1)20. Next the probability
p that the fraction h of any continuous universe is included in the range of

a sample of « drawn from it is tabulated to 2S (more in a few cases) for

h = .8, .9, .95, .99 and « = 5(5)30, 40, 50, 75, 100. The next pair of tables
(R) give equal-tail confidence intervals for the probability of success p in

a binomial universe from which « trials have yielded 5 successes. The end-

points are given to 2D for « = 10, 15, 20, 30, 50, 100, 5 = 0(1)50 and the
confidence coefficients .95 and .99. Then follows a table of Stirling's numbers

of the first kind, Sf, for « = «(1)10 and i = 0(1)9. The final table (R) in
the text gives the numerical coefficients for estimating center lines and

control limits for X and <r or R charts in quality control, both for process

means and standard deviations known or unknown. These are given to 3

or 4S for samples of » = 2(1)10(2)20 for averages and standard deviations

and « = 2(1)10(2)14 for ranges.
The section devoted to tables (p. 247-309) include :

Table I. ( W J px(l - p)n~x to 4D for p = .05(.05).5 and « = 1(1)20.

n   (n\
Table IL  E (     ) Px(l ~ P)n~x to 4D for the same values of p and «

x=x' \ X /

as in Table I.
Table III. p for which the incomplete /3-function, Ip(x,n — * + 1) = .005,

.01, .025, .05, .1 for* = 1(1)15, 20, 30, 60, °o and « - * + 1 = 1(1)6, 10,
15, 20, 30, 60.

C)Table IV. I     J for « = s(l)20 and r = 0(1)10.

Table V. [np(l - p)]» to 4D for « = 1(1)20 and p = .05(.05).5.
Table VI. (pqY to 4D for p = .005(.005).5.
Table VII. e-mm*/x\ for* = 0(1)- • -, to 4D for m = .1 (.1)10(1)20.

oo

Table VIII.   £ e~mmx/x\ for the same ranges of the arguments as in
x=xf

Table VII.

Table IX. 4>(t) = (2^)-^-^, a/2 =  J    ^(r)dr, and <p>(0 to 4D or 4S

for t = 0(.01)4(.05)5 and n = 1(1)6.
p. 275. Selected important constants to 8D and their common logarithms

to 7 or 8D.
Table X(i?). 1% and 5% points of the F distribution to 3 or more S for
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the degrees of freedom 1 (1)12, 14, 16, 20, 24, 30, 40, 50, 75, 100, 200, 500, »
for the larger estimated variance and 1(1)30(2)50(5)80, 100, 125, 150, 200,
400, 1000, oo for the smaller estimated variance.

Table XI (R). 1%, 1% and 5% points of the 2-distribution. (Z = \ In F)
to 4D for the degrees of freedom 1 (1)6, 8, 12, 24, <x> for the larger estimated

variance and 1(1)30, 60, » for the smaller estimated variance.

Table XII(R). The percentage points 100« of the Student-Fisher t
distribution to 3D for « = .001, .01, .02, .05, .1(.1).9 and the degrees of
freedom 1(1)30, 40, 60, 120, ».

Table XIII. The cumulative Student-Fisher t distribution to 3D for
t = 0(.2)5 and the degrees of freedom 1(1)6, 8, 10, 15, 20.

p. 285. A nomogram for 1 - (1 - p)n.

Table XIV. (R)Xo2 satisfying P(x2 ^ Xo2) = e to 3D fore = .001, .01, .02,
.05, .1, .2, .3, .5, .7, .8, .9, .95, .99 and the degrees of freedom 1(1)30.

Table XV. e-1 to 5D for * = 0(.01)3(.05)4(.1)6(.25)7(.5)10.
Table XVI. «! to 5S and logio («!) to 5D for « = 1 (1)100.
Table XVII. T(«) to 4D for n = 1.01 (.01)4.99.
Table XVIII. logio T(«) to 4D for « = 1.01 (.01)2.
Table XIX. re! exact and («I)-1 to 5S for « = 1(1)20.
Table XX. «2 exact and «*, (10«)* and 1000 n~x to 5S for n = 1(1)999.
Table XXI. The natural trigonometric functions and the radian measure

to 4D for the angle a = 0(1°) 90°.
Table XXII. In N to 3D for N = 0(.01).99 and to 5D for JV = 1 (.01) 10.09.
Table XXIII. logio N to 4D for N = 100(1)999.

C. C. C.

1212[K].—J. H. Cadwell, "The distribution of quasi-ranges in samples

from a normal population," Annals Math. Slat., v. 24, 1953, p. 603-613.

Let *i ^ *2 ^ • ■ • ^ *„ be the ordered values in a random sample of

size « drawn from a normal population. The statistic wT = xn-r — xr+i is

called the range for r = 0, and a quasi-range for r 2: 1. The author gives an

approximate, but apparently very accurate, method for evaluating the

probability distribution function of wr. Of interest are the following results :

(1) in section 3, the approximation for the p.d.f. of wr is given ; (2) in section

4, a comparison is made between the exact and approximate values of

E(w0) and E(wi) for « = 2, 8, 20, 30, 60, 100; (3) in section 5, the mean,

variance, skewness, and flatness of the range are given for « = 20 ; (4) in

section 7, there is a brief discussion of the efficiency of roo, roi, and ro2 as

estimators of the population standard deviation <j ; (5) in section 8, a table

of values of moment constants to 3 or 4D and the .1, 1, 2.5, 5, 95, 97.5, 99,

and 99.9 percentage points of «ij are given for « = 10(1)30 to 2D; (6) in

section 9, there is a brief consideration of the efficiency of estimates of a-

based on a linear combination of two quasi-ranges. The paper fills in a gap

between published work for cases where « ^ 10 on the one hand and « large

on the other.

Benjamin Epstein

Wayne University

Detroit, Mich.



154 RECENT  MATHEMATICAL  TABLES

1213[K].—R. E. Clark, "Percentage points of the incomplete beta func-

tion," Am. Stat. Assn., Jn., v. 48, 1953, p. 831-843.

The table presented here gives to 4S the value of

p = P(N, X, a)
defined by

<* = jt ( f ) Pr(l - P)N~r = h(X, N-X + l)

for
N = 10(1)50,    X = 1(1)N,    a = .005, .01,.025, .05,

where IP(X, Y) is Karl Pearson's incomplete beta function. Applications

of the table are indicated.
L. A. Aroian

Hughes Aircraft Co.

Culver City, Calif.

1214[K].—W. J. Dixon, "Processing data for outliers," Biometrics, v. 9,

1953, p. 74-89.

Samples of size N are drawn from a mixture of normal distributions

(1 - y)N(ß, a2) + yN(ß + Xa, er2) and (1 - y)N(ß, a2) + yN(ß, XV), re-

spectively, in which y measures the contamination of the N(ß, o-2) universe.

Comparisons are made between the mean and median as estimates of ß\

range and variance as estimates of dispersion. The bias and the MSE (mean

squared error) for untreated (treatment refers to processing the data in a

sample to remove outliers) samples (Table I), the ratios of the MSE of

the mean and median of untreated data to the MSE of the mean for uncon-

taminated data (Table II), and minimum MSE of four procedures: use of

X after treating for rejection at the significance levels, a = .01, .05, .10 and

the use of median (Table III), serve as a basis for comparing the mean and

median. The appropriate a to remove bias in s2 and range (Tables IV, V, VI,

VII) are used to compare range and variance. For most of the Tables

N = 5, 15; y = .01, .05, .10, .20, X = 0, 2, 3, 5, 7 with some modifications.
The values known to be correct are those for X = 0, the quantities for the

mean in Table I, the results for no contamination in Tables II and III and

the first line in Table V. Other results for N = 5, 15 are based on 100 and

66 samples, respectively. The appendix gives critical values and criteria for

testing for extreme values based on rtj = (XN — Xh-í)/(Xn — X¡+i),

a = .005, .01, .05, .10, .20, .30, N = 3(1)7 for fio, N = 8, 9, 10 for rlu
N = 11, 12, 13 for rn, N = 14(1)25 for r22 to 3D.

Ingram Olkin
Michigan State College

East Lansing, Mich.

1215[K].—Abraham Golub, "Designing single-sampling inspection plans

when the size is fixed," Amer. Stat. Assn., Jn., v. 48, 1953, p. 278-288.

Consider the sample size « fixed for a given single sampling plan. The

problem is to choose an acceptance number s which yields the "best" pro-

tection against misclassifying submitted lots. Two cases are considered :

(1) single sampling-plans for placing a lot into one of two categories defined
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by fraction defectives pi and p2, (2) single sampling-plans for placing a lot

into one of m categories defined by fraction defectives pi, p2, ■ • •, pm. In

case (1), the "best" plans are defined as those which minimize the sum of

the producer's and consumer's risks. In case (2), the "best" plans are defined

as those which minimize the sum of the probabilities of misclassifying

the submitted lots. Given m categories defined by fraction defectives

pi, p2, ■ • •, pm, Tables 1 through 8 provide m — 1 acceptance numbers,

Ci (i = 1,2, ■ ■ ■ ,m — 1) for single sampling-plans based on given fixed

sample sizes 5(5)40, for acceptable lot qualities .01 (.01).20, and for objec-

tionable lot qualities .01(.01).40 respectively. The above tables should be

very useful in quality control applications in which it is desired to divide

the lot quality into more than two categories.

G. W. McElrath
Univ. of Minnesota

Minneapolis, Minn.

1216[K].—E. L. Grab & I. R. Savage, "Tables of the expected value of 1/x
for positive Bernoulli and Poisson variables," Am. Stat. Assn., Jn.,

v. 49, 1954, p. 169-177.

Let X be a random variable having the probability distribution

(a) P{X = k\ = (¿)¿*S"-*tf - F)-\

where k = 1,2, • • ■ ,n; q = 1 — p;0 < p ^ 1;

(b) P{X = k) = e~m(l - e-m)~1mk/k\,

where k ■» 1, 2, •••;«> 0. For case (a) Table I gives the values of

E(l/X\n,p) = (1 - g")-1 £ (¡) kr^q-"

to 5D for « = 2(1)20, p = .01, .05(.05).95, .99; « = 21(1)30, p = .01,
.05(.05).50. The authors give an empirical approximation to (np — q)~l for

certain values of the parameters which is accurate to at least 25. For case

(b) Table II gives the values of

E(l/X\m) = e~m(l - e-*")-1 £ mkk-l/k\

to 5D form = .01, .05, (.05)1 (.1)2(.2)5 (.5)7(1)10(2)20.
Ingram Olktn

Michigan State College

East Lansing, Mich.

1217[K].—F. E. Grubbs & H. J. Coon, "On setting test limits relative to
specification limits," Industrial Quality Control, v. 10, No. 5, 1954,

p. 15-20.

This paper is concerned with the problem of setting test limits when

specification limits are fixed and test measurements are subject to error.

The authors consider test limits established in accordance with the following

criteria : (1) producer's and consumer's risk are made equal ; (2) the sum of
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producer's and consumer's risk is minimized ; and (3) the cost of incorrect

decisions is minimized. As used here, consumer's risk and producer's risk do

not have quite the same meaning that is usually associated with these terms

in connection with sampling inspection. For the purposes of this paper, the

consumer's risk, designated as i, is defined as the joint probability of

selecting a defective unit and judging it acceptable. Similarly the producer's

risk, designated as B, is defined as the joint probability of selecting an

acceptable unit and judging it defective. With specification limits expressed

as ß ± ko-x where ax is the product standard deviation, test limits are ex-

pressed as ß ± (kax — bo-e) where c*e is the standard deviation of the errors

of measurement. For criteria (1) and (2) above, tables of b, A, B, and

A + B are given to 4D with k = 1.5(.5)4, and r = .5(.25)1(1)10, where
r = ax/de. Examples are given which illustrate the use of these tables.

A. C. Cohen, Jr.
University of Georgia

Athens, Georgia

1218[K].—J. M. Hammersley, "On estimating restricted parameters,"

Roy. Stat. Soc, Jn., s.B v. 12, 1950, p. 192-240.

This paper contains a table of solutions of the following distribution

problem: A philanthropist with u coins gives the first beggar he meets a

number of coins which with equal probabilities may be 1, 2, • • -, or u. If

the first beggar receives u — r coins, the next beggar will receive 1, 2, • • -,

or r coins, each number being equally probable. If this is continued until

the coins are exhausted, what is the probability that exactly v beggars will

receive a gift? The probability P(u, v) satisfies the equation

P(u, v) =   E   u-lP(r, v - 1)
T=V-1

with P(u, 1) = 1/w. P(u, v) is tabled for u and v = 1(1)13.
c. c. c.

1219[K].—Hannes Hyrenius, "On the use of ranges, cross-ranges, and

extremes in comparing small samples," Am. Stat. Assn., Jn., v. 48, 1953,

p. 534-545.
A procedure is proposed using ranges, cross-ranges, and lower-extreme-

differences as alternatives to the variance in testing variation homogeneity.

The universe sampled is rectangular. Let sample 1 have Ni items with lower

extreme Ui and upper extreme Vi, and let sample 2 have the corresponding

N¡, Ui, and »2. Designate the samples so that «i ^ «2. The ranges are

Rn = Vi — ui and i?22 = Vt — «2. The cross-range is i?2i = v2 — U\\ and

the lower-extreme-difference is 52i = u2 — ui.

Distributions of the test quotients T = S2i(Rn)~, U = Rn(Ru)~1 and

V = i?2i(i?n)_1 are studied. With means and variances derived, tables are

prepared showing upper 1, 5 and 10 percentage points of T, and showing

upper .5, 2.5, and 5 and lower 95, 97.5 and 99.5 percentage points of U and

ViorNuN, = 1(1)10 to 2D.
T.  A.   BlCKERSTAFF

Univ. of Mississippi

University, Miss.
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1220[K].—R. Latscha, "Tests of significance in a 2 X 2 contingency table :

Extension of Finney's table," Biometrika, v. 40, 1953, p. 74-86.

Consider a 2 X 2 contingency table arranged so that the sum of the two

values in the first row is A and the sum of the two values in the second row

is B where A = B. Let a be value in the first row and first column while b

is the value in the second row and first column. For given A, B, a, b, the

table presented is entered in the section for A, the sub-section for B and

the line for a; then the main body of the table shows in bold type the

appropriate significance points for b. If the observed value b is equal to or

less than the bold-faced integer in the column headed .05, .025, .01 or .005
(only values considered), then a/A is significantly greater than b/B (single-

tail test) at these probability levels. This same condition on b furnishes a

two-tail test of whether a/A differs from b/B at twice the probability value

heading the column. A dash or absence of entry for specified A, B, a indi-

cates that no 2 X 2 table in that class can show a significant effect at that

level. The true significance level is at most equal to the probability value

heading the column and in some cases may be noticeably smaller. For each

table entry considered, the true probability value is given to 3D in small

type next to the bold-faced integer with which b is compared. The table

presented in this article covers the cases A = 16(1)20, B = 2(1)A, A = a

^ (smallest integer not yielding all dashes). Previously Finney1 obtained

a similar table for A = 9(1)15.
J. E. Walsh

U. S. Naval Ordnance Test Station, Inyokern

China Lake, California

1 D. J. Finney, "The Fisher-Yates test of significance in 2 X 2 contingency tables,"
Biometrika, v. 35, 1948, p. 145-156 \_MTAC, v. 3, p. 359].

1221[K].—M. Masuyama&Y. Kuroiwa, "Table for the likelihood solutions
of gamma distribution and its medical applications," Union of Japanese

Scientists and Engineers, Reports of Statistical Application Research,

v. 1, 1951, p. 18-23.

For the T-type frequency function,

fM _ (O/flO^exp (- y/a) dy\aT(p)]~l   if   y = 0
J{y)      \0 if   y < 0

the maximum likelihood estimates, p and â, of the two parameters, p and a,

are the solutions of the equations,

In p-^(p) = In (AIG) = g(p)

â = Alp

in which yp is the digamma function and A and G are the arithmetic and geo-

metric means of the sample respectively. To facilitate the approximate

solution of the equations, the authors have tabulated * log (A/G), g(x),

log (A/G) and A/G to 8S or 7D for * = .1 (.05)3(.1)5(.5)10, 15, 20(10)50.

For large samples of N, —— and Nop2 are given to 8D for the same values of *.
a

c. c. c.
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1222[K].—NBSCL Probability Tables for the Analysis of Extreme-Value
Data. NBS Applied Math. Ser. No. 22. U. S. Gov. Printing Office,
Washington, D. C, 1953. iii + 32 p., 22 X 20 cm. Price $0.25.

There are many engineering and scientific problems in which the random

variable being observed is a largest (smallest) or more generally m'th largest

(m'th smallest) value. The 15 page introduction by E. J. Gumbel, who

pioneered in the field of extreme values, is a succinct and excellent survey of

current knowledge in the field. In the first 9 pages of this introduction he

sketches the theory and carries out the analysis of a problem in detail. The

remainder of the introduction is devoted to listing the functions tabulated,

giving a history of the genesis of the tables, and describing methods of

computation. A useful bibliography completes the introduction.

If one carries out a suitable transformation on the largest value in a

sample one gets a random variable which is called the reduced largest value.

The asymptotic distribution of this reduced largest value is (for a wide class

of common distributions such as the exponential, normal, and chi-square

distributions) given by the cumulative distribution function $„ = exp ( — er")

and associated probability density function <py = 4>¡/ be exp (— y — erv).

Table 1 gives $„ and ^„fory = - 3(.l) - 2.4(.05)0(.1)4(.2)8(.5)17 to 7D.
Table 2 gives the inverse of the cumulative probability function of ex-

tremes y = - loge (- loge$«) for $„ = .0001(.0001).005(.001).988(.0001)
.9994(.00001).99999 to 5D. Table 3 gives the probability density function <py
as a function of the cumulative distribution function <&y\_<py = — 3>y log $y]

for 4>„ = 0(.0001).01(.001).999 to 5D. The reduced m'th largest value
/*j/m      mm

has   associated   cumulative   distribution   function   f>m m -.—_   ,.

X exp ( — my — me~y)dy. Table 4 gives probability points ym for the reduced

m'th largest value, ym = ym($m), for m = 1(1)15(5)50; 4» = .005, .01, .025,

.05, .1, .25, .5, .75, .9, .95, .975, .99, .995 to 5D. Tables 5 and 6 deal with an
appropriately reduced range R. The cumulative probability distribution

function y(R) is given by ^(R) = 2e~iRKi(2e~iR) and the probability den-

sity function ¿(R) = ^'(R) is given by ^(R) m 2e-RKo(2e~*R). K0 and Ki

are the modified Bessel functions of the second kind of orders 0 and 1, respec-

tively. Table 5 gives <¡r(R) and f(R) for R = - 4.6(.l) - 3.3(.05)11(.5)20
to 7D. In Table 6, the reduced range R is considered as a function of ^, i.e.,

as the solution of the equation ^ = 2e~iRKi(2eiR). This is given in Table 6

for * = .0001(.0001).001(.001).01(.01).95(.001).999(.0001).9999 to 4D, ex-
cept for ^ = .0001 and =■ .999 to 3D.

The tables are the fruits of the painstaking labors of many people.

Chief among these are E. J. Gumbel who took part in the detailed planning,

J. Arthur Greenwood, Julius Lieblein, and H. E. Salzer. The prepara-

tion of the tables in their final form was carried out under Salzer's direction

at the Computation Laboratory of the National Bureau of Standards.

Lieblein assisted in the preparation of the Introduction.

Benjamin Epstein
Wayne University

Detroit, Mich.
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1223[K].—NBSCL Tables to Facilitate Sequential t-Tests. NBS Appl. Math.
Ser. No. 7. U. S. Gov. Printing Office, Washington, 1951. xix + 52 p.

Price $0.45.

The sequential /-test is designed to test the hypothesis that the mean of

a normally distributed varíate with unknown mean and unknown variance

has a given value. The present tables are designed for use with a probability

ratio test based on the likelihood ratio for the non-central t to the central t,

which thus differs from the one originally proposed by Wald.1 However by

a simple adjustment of the parameters these tables can also be used for

Wald's test.

The test criterion after the «-th observation is Zn = [ E (xa — U) ]2
n a=l

X [E (x* — U)2]~l in which l0 is the value of the mean specified by the
a=l

null hypothesis. The critical values of Zn are solutions of the equation

(82Z \      no2
w/2, §; — j — — in which F(a, b;x) is the confluent hyper-

geometric function,

» T(b)T(a+j)x'

hr(a)T(b+j) jl'

8 is the amount in standard units by which the mean under the alternate

hypothesis differs from h and L is either In {(1 — ß)/ct} or In {/?/(! — a)}

in which o: and ß are the risks of errors of the first and second kinds respec-

tively. Values of Zn are given to ID for S = .1, to 2D for 8 = .2(.1).5 (to

3D forL < Oand 8 = .2) and to 3D for 8 = .6(.1)1(.2)2, 2.5 for ± L = 2,
In 19, 3, 4, In 99, 5, 6, 7 and » = 1(1) á 200. (Values of « are carried as far

in each case as is judged likely to be useful in practice but never beyond

200.) There are some smaller auxiliary tables. One of these gives the values

of a and ß to 3S for the L's listed ; others are to assist in reaching a decision

if « goes beyond the values in the table ; and still others give approximate

upper bounds for the error in linear interpolation with respect to L or 5.

C. C. C.
»A. Wald, Sequential Analysis. New York, 1947, p. 204-207.

1224[K].—B. M. Seelbinder, "On Stein's two-stage sampling scheme,"

Annals Math. Stat., v. 24, 1953, p. 640-649.

Stein1 has proposed a two-stage plan for sampling from a normal popula-

tion of unknown variance a2 in order to estimate the expectation with a

confidence interval of preassigned length 2d and confidence coefficient 1 — a.

The experimenter sets the size «i of the first sample, while the size « — «i

of the second sample depends on the variability observed in the first. The

present paper is concerned with the problem of choosing «i with an eye to

minimizing E(n). Seelbinder tables E(n) for some of the following values :

a = A, .05, .02, .01 ; d/a = .01 (.01).1 (.1)1 ; »i - 1 = 5, 10(10)60, 80, 120,
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240. An approximation based on the normal distribution is found to be

adequate.
J. L. Hodges, Jr.

Univ. of California

Berkeley, Calif.

1 Charles Stein, "A two-sample test for a linear hypothesis whose power is independent
of the variance," Annals Math. Stat., v. 16, 1945, p. 243-258.

1225[K,N],—H. Steinhaus, Table of shuffled four-digit numbers. Rozprawy
Matematyczne, No. 6, Warsaw 1954, 46 p. The introduction is in Polish,

Russian and English.

This table of 10,000 random 4-digit numbers differs from the usual

random number lists in that no two 4-digit numbers are equal. In other

words the table, when read in the usual order, gives one of the 10,000!

permutations of the numbers 0000-9999. This feature allows the list to be

used in problems in which samples are drawn without replacement. One

may also read the digits vertically by fours and obtain samples which are

drawn with replacement.

The table was produced by hand. To begin with a table of 10,000 four-
digit numbers Un(n = 0(1)9999) was produced by

Un = 4567í/„_i (mod 10,000)

with Uo = 0000. This table was arranged in a square 100 X 100 and then
subjected to a number of randomizing transformations fully described in

the introduction. Whether the 25 pages which finally resulted pass any

of the standard tests of randomness is not indicated. Apparently the author

has made no tests whatever. The reviewer subjected the first page to a

frequency test which gave a x2 with a probability of only 2 percent.

The list could be useful for ordering the retirement of bonds.

D. H. L.

1226[K].—G. M. Thompson, "Scale factors and degrees of freedom for

small sample sizes for x approximation to the range," Biometrika, v. 40,

1953, p. 449-450.

Consider m independent samples of size « from a normal population,

mean ß, variance a2. Let <o be the range of a sample, ¿m,„ the mean range.

Patnaik1 found the approximation

¿>m,n   =   C\V~^0-

where c is a scale factor, v the degrees of freedom for x- Evidently um,n/c

is equivalent to the usual standard deviation estimator with v degrees of

freedom. Thompson tables c and v to 4D for m = 1, « = 2(1)10. He also

gives the 95% confidence limits on ß using u, i.e. X ± k.osu to 4D, for

« = 2(1)10. Agreement with results obtained by the use of Student's / is

excellent.
H. A. Freeman

Mass. Inst. of Technology

Cambridge, Mass.

1 P. B. Patnaik, "The use of mean range as an estimator of variance in statistical tests,"
Biometrika, v. 37, 1950, p. 78-87.
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1227[L].—F. DiMaggio, A. Gomza, W. E. Thomas & M. G. Salvadori,

"Instabilità laterale di travi inflesse e compresse," Accad. Naz. dei Lincei,

Atti Rend., s. 8, v. 12, 1952, p. 524-529.

This paper summarizes the results of a number of technical reports

published by the Dept. of Civil Engineering, Columbia University. The

critical loads for the lateral buckling of several types of beams and loadings

are given. These are the lowest eigenvalues of 8 V = 0, where

V = \B  P (ß")2dz + \Dh2  P (ß")2dz + \hV (ß')2dz
Jo Jo Jo

+  r Mßß"dz - \P f   (ß')2dz.
Jo Jo

B, D, h, H and P are constants. Table 1 gives the results for I-beams under

unequal end moments, tabulates eigenvalues K = Mil/(BCr to 2D as a

function of l2/a2 = 2l2C/h2D = .1 (irreg.) =o and r = Mi/M2 = - 1 (.1)1,

where H = C - PIJA, M(z) = M2[r + (1 - r)z/l], Mi = rM2, ß(0)
= ß"(0) =ß(l)= ß"(l) = 0, 0(0) = ß"(0) =ß(l)= ß"(l) = 0. Table 2
gives the solution of rectangular beams under bending and compression,

corresponding to D = 0, ß(0) = ß(l) = ß"(Q) = ß"(l) = 0, ß(0) = ß(l) = 0.

K = MzlKBH)* given to 2D for p = Pl2tr2/B = 0(.2)1 ; and r = Mi/M2
= — 1 (.1)1. Table 3 gives solution to rectangular cantilever beam with

shear and axial load at the free end corresponding to D = 0 ; r = 0 ; M(z)

= Qz = Mailand ß(l) = ß'(l) = ß"(0) = Bß"(0) + Pß'(0) + Qß(0) = 0,
ß(l) = ß'(Q) = 0, q = Ql2/ (4.013 (BH)*) given to 4D for p = APl2v-2/B
= 1(— .2) — .4, — 1. Solutions of this problem (originated by Prandtl

and Michell) for many other end conditions have been discussed in

Timoshenko.1

Y. C. Fung

Calif. Inst. of Technology

Pasadena, Calif.

1 S. Timoshenko, Theory of Elastic Stability. New York, 1936.

1228[L].—Stig Ekelöf, "Theory of electromagnetically delayed telephone

relays," Ericson Technics, v. 9, 1953, p. 141-224.

On p. 221-224 there is a 4D table of the functions

sinh *      3 cosh *      3 sinh *      2 (cosh * — 1)
cosh *,        -     , — -¡      , — ,

vv *V *V »V

12 sinh *      24(cosh * — 1)

for * = 0(.01)1 -5. Graphs of these functions (in the same range) are given

on p. 161.

A. E.
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1229[L].—Ernst Glowatzki, "Tafel der Jacobischen elliptischen Funktion

<j> = am (mK/n)," Bayer. Akad. Wiss., math.-naturw. KL, Abhand-

lungen, Neue Folge, heft 61, 1953, 27 p.

3D tables of am (m, k) in degrees for u = mK/n, k — sin 6, « = 2(1)12,
« = 1(1)« — 1, 6° = 0(1)90. First differences are also given. The entries

were computed from Legendre's tables, and were checked against the

Smithsonian Elliptic Function Tables (see MTAC, v. 3, 1948-49, p. 89,
RMT 485).

A. E.

1230[L].—Louis Robin & Alfredo Pereira-Gomes, "L'antenne bi-
conique, symmétrique, d'angle quelconque," .4««. d. Télécommunications,

v. 8, 1953, p. 382-390.

The authors discuss the equations

P„(cos0) + P„(-cos0) = 0    or        F (- ^ , ^yl; § ; cos2 0j = 0

/ 1 — M   « + 2 \
P„(cos0) - Pn(- cos0) = 0    or    F I —y- , —j-; f ; cos2 i ) = 0

where Pn is the Legendre function, F the hypergeometric series, 0 is given,

and « is to be determined.

On p. 390 they give tables (mostly to 3D) of the first nine roots of the

first equation, and of the first eight roots of the second equation, when

0 = x/12, v/6, it/4, t/3, 5x/12.
A. E.

1231 [L].—M. Rothman, ''The problem of an infinite plate under an inclined

loading, with tables of the integrals of Ai(±*) and Bi(±*)," Quart. Jn.

Mech. Appl. Math., v. 7, 1954, p. 1-7.

For the definition of the Airy integrals Ai(*) and Bi(*) see MTAC, v. 1,
1944, p. 236.

Table 1. 7D values of   f Ai (t)dt for * = 0(. 1)7.5 with 8m2. 7D values
Jo

of  I    Bi(t)dt for * = 0(.1)2 with 5m2 and y\
Jo

Table 2. 7D values of  f Ai(-t)dt for * = 0(.1)10 with 8m2 and y\
Jo

Table 3. 7D values of  f  Bi(-/)d/ for * = 0(.1)10 with 8m2 and y4.
Jo

A. E.

1232[L].—F. G. Tricomi, "On the statistical distribution of mutant

bacteria," Bull. Mathem. Biophysics, v. 15, 1953, p. 277-292.

The author gives 5D tables of

«       i       tn ¡tri rt

G« = 5i2-^T«n- G'^ = -d-f *<*>-J>e: )du



RECENT  MATHEMATICAL TABLES 163

for / = — 2 (.1)2. Graphs are given of G(t), and also of the curve represented

parametrically by

* = G(t),   y = [¿^)]*exp la[_G*(t) - tG(t)]\

for o; = 1 and a = .01.
A. E.

1233 [L].—E. F. M. van der Held, "The contribution of radiation to the
conduction of heat. II. Boundary conditions," Appl. Sei. Research A,

v. 4, 1953, p. 77-99.

The Appendix (p. 92-99) contains a collection of formulas and some

numerical tables concerning the function

,(*) = fKn(x) =   I    t-"e-xtdt

which is closely related to the complementary incomplete gamma function.

Table VII gives values of Klt K2, 2K3, 3Kit 4K6 to 4D or 4S for
* = 0(.01).2(.02)2(.5)5(1)8.

Table VIII gives values to 2 to 4S of

/•oo f*x

I    trier*'log t dt,     I    Kn(x - t)K2(t)dt,    n = 1(1)5

for* = 0, .01, .05, .1, .25(.25)1(.5)5(1)8.
Table IX gives values to 2 to 4S of

|   Kn(D - x + t)K2(t)dt,     |    Kn(x + t)K2(t)dt,   D = 2,4,   « = 2(1)5
Jo Jo

in varying ranges, and at varying intervals, of *.

V. Kourganoff (see MTAC, v. 3, p. 307, RMT 569) has tabulated
K2, 2K3, i - 2Ki, |* + iK6 for * = 0(.02)2. Earlier tables of Kn(x) are

listed in FMR Index, sec. 14.83.
A. E.

1234[S].—Otto Emersleben, "Das elektrostatische Selbstpotential äqui-

distanter Ladungen auf einer Kreislinie," Math. Nachr., v. 10, 1953,

p. 135-167.

If 2« charged particles are equally spaced on a circle of radius r with a

charge ( — 1)* at Pk, 1 < k < 2«, then the self-energy of the system is given

by the finite sum
n (")

2»* = -E (-)»C8CÍirV»).
' *=i

where («) indicates that the last term must be multiplied by \. In a unit lat-

tice « = irr and the power series for the cosecant leads to the decomposition

„$ = „?o + B*l,

where „4>o comes from the first term of the power series and is similar to

the potential of a linear configuration. Both expressions „3>o and „$1 involve
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(B)

the sums E ( — )kk~' for various integer values of j and their asymptotic

behavior for large w is studied. The term „$i arises from the curvature of

the circle and is 0(n~l) as n —► », while „<3?0 = — (2 log 2)« + 0(«_1). The

0-term of n4>o is also analyzed in somewhat more detail and a table of „$o

is given for « = 1(1)12.

Similar results are obtained for the problem of « equally charged and

equally spaced particles on a circle. The self-energy in this case is

« n—i

B* = 7" E csc (irkIn),
4r k=i

and a table is given for « = 1 (1)30 when « = 2xr.
e»

The alternating sums E ( — l)hkm reduce to polynomials in « with ra-
i=l

tional coefficients when m is an integer. These are given explicitly for

m — 0(1)7. Finally, the graphs of the seven sums E ( — l)kk", « = 1(1)7,

are plotted as functions of 5 for — 2.6 < s < 3.

Tom M. Apóstol
Calif. Inst. of Technology

Pasadena, Calif.

MATHEMATICAL TABLES—ERRATA

In this issue references have been made to errata in RMT 1205.

239.—NBSCL, Tables of 10*. (Antilogarithms to the Base 10.) Applied Math.
Ser. No. 27. Washington, 1953.

In working with 10-figure logarithms recently, I noticed a discrepancy

between a value given in this new table of 101, and a value from Guillemin.1

Since Guillemin gives 13 figures for 10* for* = 0(.0001).6999, and 12 figures
for * = .6999(.0001).9999, and Deprez2 gives 14 places 1(1)9999, every
tenth value in v. 27 may easily be checked directly from these tables.

In checking every tenth value for the block from * = .40000 to .50000,
I find 128 values in error in the last figure; 127 values should have the last

figure raised by one, and one value, that for .49270, should have the last

figure reduced by one.

It seems rather surprising that a corps of experienced computers, working

with the most modern calculating instruments, should spend the amount of

time and labor represented by this table simply to smooth out a 200-year-old

table without even checking the accuracy of that table. Only the expenditure

of a very little extra time would have been necessary to use the Sundstrand

machine to subtabulate Deprez's table to tenths and thus to get a 14-place

table of 10*, which, if rounded to ten places would yield a table far superior

to Dodson. Reference is made in the introduction of this volume to the

Deprez table, so it is certainly known and available to the personnel of the

laboratory.
In line with this reasoning, by using the Deprez values for the block

.4680 to .4700 in conjunction with Comrie's simple, accurate, and very


