
A Generalization of the Method of Conjugate
Gradients for Solving Systems of Linear

Algebraic Equations

It is the purpose of this note to establish a slight generalization of the

method of conjugate gradients for solving linear equations. The generaliza-

tion will then be used to provide a unified theory for two rather different

algorithms which have been proposed for the case in which the matrix of the

equations is not symmetric. The corresponding formulas for the determinant

of the matrix will also be developed, although they are probably without

much practical interest.

We shall use capital letters for matrices, Greek letters for vectors, and

lower case Roman letters for scalars. All matrices will be real and of order

n X n, and all vectors will be real and of dimensionality n. We denote the

transpose of a matrix or a vector by a prime.

Let 5 be a positive definite matrix. The method1 of conjugate gradients is

based upon the construction of two sequences of vectors 70, 71, • • -and So, Si,

• • -, and a sequence of scalars ao,ai,- ■ ■. The sequences are constructed by

repeated substitution into the following formulas :

(1) 7o = áo,

(2) aN =     ,g   ,    N=*Q,l,--'VM - 1,
o.v o<w

(3) 7.V+1 = 7iv — aNSSN,    N = 0,1, •••,» — 1,

(4) bN = --,-,    N = 0, 1,- • -, n — 2,
In 7jv

(5) SN+i = 7jv+i + bffSif,    N = 0, 1, • • •, n - 2.

To avoid discussing exceptional cases, we adopt the convention that if
Sn = 0 for some value of N, say N = No, then 5jv0+i, • • •, 5n-i and 7at0+i, • • •,

7„ are to be defined as being zero vectors.

Hestenes & Stiefel1 proved a long series of interesting results concern-

ing the sequence of vectors generated by (l)-(5). In particular, they showed

that the vectors 70, 71, • • •, 7«-i are orthogonal (or zero) and the vectors

So, Sii — 1 Sn-i are 5-orthogonal or conjugate with respect to S. Moreover,

they show that the scalars Ojv given by (2) are identical with the coefficients

in the representation of 70 by a linear combination of the vectors SSv. That

is,   N

»-i

(6) 70 = ¿Z akS8k.
0
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From this it can be deduced that the two quadratic forms yf/'S~1yN and

(5_17jv)'(5'-17^) are reduced in value at each step.
Hestenes & Stiefel also mention without a specific proof that det S =

(flo Or • -fln-i)-1, where det 5 stands for the determinant of 5. This relation

is valid only if 70 and 5 are such that & ^ 0, A g m — 1. A proof of this
relation can be given as follows : Let A be the matrix whose columns are 80,

• • ■, 8n-i, and let G be the matrix whose columns are 70, • • •, 7n-i. Then by

the 5-orthogonality of the vectors 8x, it follows that A'5A <■ D, where D is

a principal diagonal matrix whose principal diagonal elements are 5o'550,

81 Sou • • •. 8n-i'S8n-i. But from (5) it is seen that 8n is the sum of yN and a

linear combination of the vectors 70, 71, • • •, ys-u Therefore by an elemen-

tary property of determinants, det A = det G. Since the vectors 7^ are

orthogonal, G'G is a principal diagonal matrix whose diagonal elements are

7o'7o, 7i'7i, ■ • •, 7'n-i 7n-i- Putting these facts together, we get

,     „ detD det£> det I»
(7) det 5 -

det A' det A      det A'A      det G'G

^8k'S8k 1
~~ LI „, /

w Ti Ti        ö0Oi---Oii-i

We now consider the applicability of the construction given by (l)-(5)
to the problem A% = 77, where A is an arbitrary non-singular matrix, 77 is a

given vector, and £ is an unknown vector.

Choose an initial estimate £0 of the solution A~lr) of At, = 77. Choose any

positive definite 5. Let B be an arbitrary non-singular matrix. Construct the

sequences given by the algorithm with 70 = 50 = B(r\ — A%o). Then by (6)

n-l

B(v - Alo) = Z dkS8k,
0

or

A-1* - £0 + Z akA-lB-lSbk.
0

To apply this result, it is advantageous to express 5 in the form

5 = BATA'B',

where T is a positive definite matrix. Then the solution of A~lri is given by

A-ht, = £0 + Z akTA'B'8k.
k-0

The solution can be expressed iteratively, if desired, by the recursion

relation

(9) àv+i = 6v + aNTA'B'8N,    A = 0, •■•,«- 1.

From (7), we see that the absolute value of the determinant of A is given

by
1

I det XI =
(a0flr • -a„_idet r)*|det5|



generalization of method of conjugate gradients 191

For some purposes it might be convenient to rewrite the relevant parts

of the algorithms (l)-(6) in terms of the residual vectors ¿V = 77 — A £at.

To do this we notice that (9) and (3) imply that

tf-i

B(v - A&) = BPN = Bpo - £ akBATA'B'Sk = yH.
k-0

Thus we have only to replace y^ by BpN in (l)-(5) to obtain the desired

modification. The new relations are

(1)' So = Bpo,

,„v (BpffYBpn
(2) aN = Sn'BATA'B'Sn'    T-<*••■*.■»-*.

(3)' PN+i = pn - ayATA'B'Sw,    N - 0,- • ,n - 1,

HY/ J. (Bpy+i)'BpN+i
(4) ^=lWrW~'    AT = 0,--,n-2,

(5)' «ar+i = BpAr+i + M*,    /Y = 0, • • •, w - 2.

These formulas, together with (9), represent the generalization of the con-

jugate gradient algorithm for the problem A £ = ij which was promised in the

first paragraph.
We shall now specialize T and B so as to obtain algorithms useful in

practice.
Case 1. B = I, T = A-1, A positive definite. The algorithm (l)'-(5)',

(9), assumes the standard fundamental form given by Hestenes & Stiefel.1

Case 2. B = A',T = (A'A)'1. The formulas (l)'-(5)' become:

ôo = A'po,

(A'pnYA'pn
a» - (ApNy(Ap„y  tf-û,.--,«-i,

Pn+i = pn — aNASN,    N = 0, • • •, n — 1,

{A'pN+l)'ApN+l

b»=   (A'pnYApn '  ?-*••;.«-».

Sn+i = A'pN+i + bNSN,    N — 0, •••,« — 2.

The iterations (9) for the solution vector £ = -4-1»; are given by

frr+i = fev + aN8x,    N = 0, • ■ ■, n — 1,

and
|det/l| = (a0aj-•-an-i)-1.

This is the method of solution for the case of an arbitrary non-singular A

proposed by Hestenes & Stiefel.1 The algorithm constructs a set of A'A-

orthogonal vectors Sn.
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Case 3. B = I, T = I. The formulas (l)'-(S)' or (l)-(S) (there is no
difference in this case) become :

So = Po,

Pn'pn ..

py+i — tot — aNAA'8tr,    N = 0,- • -, n - 1, .

, Pjy'+iPy+i
6¡v =-;-,    N = 0, • • •, n — 2,

Pn Pn

Sif+i = Pat+1 + bwbii,    N = 0, •■•,« — 2.

The iterations for the solution vector £ = .4~"t7 are given by

(s+i " &r + aNA'ôy,    N = 0, - • -, n - 1.

The formula for the determinant is again

|det4 | = («oar • -an-i)-K

The algorithm constructs a set of i44'-orthogonal vectors 8y instead of a

set of A 'A -orthogonal vectors, as in Case 2.
This method of solution for the case of an arbitrary non-singular A was

proposed by Craig.2 The author learned of this method through a communi-

cation from Dr. Craig dated May 22, 1953, in which an algorithm essentially

equivalent to the one given above was stated, but with py calculated at each

step from the relation py = tj — Ai-y. It has an obvious advantage over the

Hestenes-Stiefel proposal in that the number of arithmetic operations re-

quired is slightly smaller.
To be specific, if we measure the amount of computing work only by the

required number of multiplications, assuming no zero elements, and count-

ing a division as two multiplications, the count for the first step of the Craig

method is 3«2 + 5« + 4, whereas that for the Hestenes-Stiefel method is

4»2 + 6« + 4. The detailed breakdown is as follows. First, for the Craig
method, po is n2 multiplications, A'8o is then n2, a0 is 2n + 2, £i is n, pi is n2,

PiPi is w, ¿»o is 2 (we already have computed po'po for ao), Si is n ; total 3n2 +

5» 4- 4. With the Hestenes-Steifel method, p0 is n2, 80 is n2, A8o is n2, a0 is

2« + 2, £i is «, pi is n (it is true that we already have computed A80, but not

¿ivlponor./4ao8o),.4'pi is«2, (A'pi)'A'piisn, ¿>i is 2, Si is n ; total 4w2 + 6w + 4.
We are obviously assuming full storage of all vectors computed in the previ-

ous step at each point in the computation. The detailed breakdown is given

here because the author has encountered a number of apparent discrepancies

in similar counts published elsewhere (not necessarily relating to the methods

discussed here) ; these discrepancies doubtless arise largely from different

orderings of operations and different assumptions as to what will be stored

after computation.
After the first step there is little to choose between the two methods from

the standpoint of the number of multiplications theoretically required. In

the Craig method, each step after the first and before the last takes 2n2 4-

4»+ 4.
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In the Hestenes-Stiefel method, the corresponding count is 2n2 + 5ra + 4.

In the latter method, if p„ in the last step were to be computed from the

recursion relation, the method would win back the n2 multiplications which

it lost to the Craig method in the first step ; but it would hardly be reasonable

to calculate the last residual in this way.

We note that since the algorithm in either case will very probably last

for n steps unless a peculiarly fortunate choice of £o was made, the total

number of multiplications to be expected is of the order of 2n3. The eventual

justification for the use of conjugate gradient methods in preference to the

most economical direct methods (which theoretically require only «3/3 +

0(n2) multiplications) must rest on definitive a priori studies of round-off

error, and on the peculiarities of individual computing machines, and on

special characteristics of the matrix A. But it seems quite probable at this

writing that no final recommendations will ever be formulated as to the

"best" ways of solving linear equations.

There is a further practical use for the algorithm (l)'-(5)' other than

the applications represented by the specializations described above. It may

be possible under some circumstances to find a matrix B such that pre-

multiplication of the equation A% = r¡ by B will improve the "condition"3

of A. Then (l)'-(5)', with T chosen conveniently, say T = (A'A)~l, might
give an advantageous algorithm to use. (With T — (A'A)~X the algorithm

would be the same as that of Case 2 but with A replaced by B'.)

In conclusion, we note that Hestenes & Stiefel1 assert (p. 424-425) that

the most general cg-algorithm for any linear system is obtained from (1)'-

(5)' by assuming that BA is positive definite and T = (A'B')~l. Neverthe-

less without this specialization, the generality of (l)'-(5)' seems to exceed

the limits specified by Hestenes & Stiefel, because here B is an arbitrary

non-singular matrix. The disagreement, if it may be called that, seems to lie

in the fact that their characterization of generality is derived from a certain

generalization of the method of conjugate directions, and this generalization

does not include all the possibilities represented by the algorithm given here.
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On the Estimation of Quadrature Errors for
Analytic Functions

1. Introduction. The present paper sets forth a complex variable method

for the estimation of errors which arise when approximate rules of quadrature

are applied to analytic functions. In contrast to the usual real variable

methods, this method does not involve the use of the higher derivatives of

the function, but uses only a knowledge of the size of the function in the

complex plane. It is therefore of practical value when dealing with situations


