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The integrals

F(y) =   (T f(t)K(y,t)dt   or     f f(t)K(y,t)dt
Jo Jo

are evaluated by means of high speed analog computer elements for various

values of y. The variable y is given a sequence of values and by a suitable

switching procedure the values of F(y) are evaluated at a rate of 60 per

second and plotted with a reference value on a cathode ray tube. The func-

tions/^) and K(y,t) for y fixed are obtained by function generators or by

differential analyzer techniques. During the generation of F(y), y which

should remain fixed does actually vary. The error due to this cause and the

errors due to the multiplier and function generator are discussed.

F. J. M.

1164. J.  R. Ragazzini & G. Reynolds, "The electronic complex plane

scanner," Rev. Sei. Instruments, v. 24, 1953, p. 523-527.

A rational function F(z) is supposed given in the form of a quotient of

products of linear factors z — X<. It is required to obtain log | F(jw) \ and

arg F(jw) where j = V— 1 and w is real. Log | F(jw) | is the sum of ± log

| (jw — X,) |. The quantity jw — X¿ is represented as a complex voltage and

log | (jw — X.) | is obtained by a suitable circuit. The argument of F(jw) is

obtained by differentiation using the Cauchy-Riemann equations.

F. J. M.

1165. J. Tadayon, "Measurement of the angle between two curves," Rev.

Sei. Instruments, v. 24, 1953, p. 871-872.

An optical instrument for measuring the angle between two curves on a

graph is based on the mirror principle for finding the normal to a curve.

F. J. M.

NOTES

168.—A Practical Refutation of the Iteration Method for the
Algebraic Eigenproblem. In the second part of my paper on algebraic

eigenproblems2 I have proved that the computation by means of the forma-

tion of the characteristic equation requires less computational work than the

iteration method, and that this holds even when nothing but the first eigen-

value has to be calculated. This advantage grows with every accessory eigen-

value or vector. Further one has no trouble with deflation which requires a

lot of multiplications. Also one can compute every eigenvalue and vector

apart from the others, and do this to any desired accuracy, by the more

powerful methods for algebraic equations. At last, there arise no difficulties

from an unfavorable quotient of the two dominant eigenvalues.

The reason these facts are not yet universally acknowledged is that the

iteration method seems to be simpler and more mechanical in its application.

But one has to consider that iteration does not converge quickly enough in

practice, unless the quotient of the two dominant eigenvalues is \ or less.

This last will be rarely the case. For the eigenvalues must lie somewhere

between two circles around the origin in the complex plane. The radius of
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the inner circle has a value quite different from zero (if the determinant of

the matrix is ^ 0). In this ring can lie only some of the n eigenvalues having

a quotient less than \. The other eigenvalues must cluster around some

circles. In proportion as the situation is more favourable for e.g. the two

dominant eigenvalues, the smaller the room will be for the other ones. There

is no escape from this situation, and sooner or later the then dominant

eigenvalues will lie close together.

That iteration may give trouble in the most simple cases is a well known

fact from numerous calculations. Yet the following example of a symmetric

4X4 matrix, the eigenproblem of which is therefore real, is amazing.

A =

2 13        4
1-315
3 16-2
4 5-2-1

Let p be the dominant eigenvalue. Following Aitken,1 we begin the iteration

with the usual starting vector v = (1,1,1,1)' and so compute vm = Avm-u

The quotient pm of the first components of vm and vm-i yields for p the "ap-

proximations" :

S:   p2 = 7.2, p3 = 7.5, pt = 7.85, p$ = 7.56, p$ = 8.0, P7 = 7.6,

ps = 8.08, pt = 7.667, pw = 8.122, pu = 7.683.

The convergence is not impressive, especially if one considers that the se-

quence 5 converges to about —8 (minus eight) ! On the contrary, S seems to

diverge or to "converge" to two limits.

To analyze the sequence 5 more deeply, all eigenvalues and vectors were

computed from the characteristic equation, the vectors by the method de-

scribed in Bodewig,2 part II, section 3, p. 1-3. These are to 8D

Md) = -8.02857835, m<« = 7.93290472, m(3) = 5.66886436, m(4)= -1.57319074.

x(1) = (1, 2.50146030, -0.75773064, -2.56421169)'

x(2) = (1, 0.37781815, 1.38662122, 0.34880573)'

x(3> = (1, 0.95700152, -1.42046826, 1.74331693)'

(1, -0.90709211, -0.37759122, -0.38331238)'.,(4)

Since 5 does converge to — 8.0.. .the situation seems to be that the p,

diverge in the beginning. The p2i decrease and the pa+n increase, and in order

to converge to —8, the p2i go through zero and the p2i+i through «>. By a

special method the index has been determined where the signs change. This

is the case at the 363rd or 364th iteration.

To demonstrate this conclusion we have computed the values of /*,- which

would have resulted if the iterations had been really effected. The 100th to

102nd iteration would yield the "approximations":

Mioo = 7.28514,    Atioi = 8.64677.

The 200th to 202nd iteration would yield :

M2oo = 5.96936,    Mm = 10.57380.
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The 300th to 302nd would be :

M3oo = 2.86532,    ¿U301 = 22.13220.

Our above conjecture concerning the pu and pu+i is therefore confirmed, as is

also apparent from theoretical reasons. Near the critical point 363 we should

get

MS60 = 0.13587, M36i = 468.66407, p*, = 0.04022, ms = 1583.336,

M364 = - 0.055448, M365 = - 1148.735.

The 400th to 402nd iteration would give

¿two = - 1.75101,    M4oi = - 36.46902,

the 800th to 802nd :

woo = - 7.94348.    M8oi - 8.11356,

and at last the 1200th to 1202nd:

Mi2oo = - 8.02787279,    ¿11201 = - 8.02927758.

Thus 1200 iterations will scarcely yield 4 figures of the dominant eigenvalue!

And this for a simple matrix of order 4.

This amazing conduct can afterwards be explained from the knowledge

of the eigenvalues and vectors. The slow convergence has two sources. Not

only have the dominant eigenvalues nearly the same absolute value, but

also the starting vector v is nearly orthogonal to x(1). In fact writing x(1> in

the approximate form (4,10,-3,-10)', the cosine between v and xa) is only

1/30 which is about cos 88°.
Yet the situation would not considerably improve if another starting

vector, e.g. (1,0,0,0)' would be taken. Nor should we waste time by com-

puting the eigenproblem of matrices of the form A -f- c with varying c's.

The time is better spent by computing the characteristic equation as is

pointed out in Bodewig2 (Part II in "Zusammenfassung"). Even the use of

quadratic equations would not be very efficient in our case as pi3) lies close

to u<2). Nor would this be the case for other matrices if one wants to have

more than the two dominant eigenvalues, and even then the determination

of the vectors is far from agreeable.

We owe to von Mises3 the discovery of the iteration method for finding

the dominant value and vector and to Aitken its application to all compli-

cated cases more or less, and to Hotelling the discovery of deflation. But

times have changed. In our days also the higher eigenvalues and vectors

must be computed and with extra accuracy. A deeper analysis shows that

the iteration method in its present form is not appropriate and that even

in cases when, by exception, the first eigenvalue is furnished quickly the later

eigenvalues present the greater troubles.

So the whole eigenproblem must be considered anew.

E. Bodewig
Borweg 7

The Hague

Holland
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1 A. C. Aitken, "The evaluation of the latent roots and latent vectors of a matrix,"
Roy. Soc. Edinburgh, Proc, v. 57, 1936-1937, p. 269-304.

s E. Bodewig, "Bericht über die Methoden zur numerischen Lösung algebraischer
Eigenwertprobleme," Seminario matemático e físico dell' Universita di Modena, Alii, v. 4,
1949-1950, v. 5, 1950-1951.

3 R. von Mises, "Praktische Methoden zur Gleichungsauflösung," Zeit. angw. Math.
Mech., v. 9, 1929, p. 62-77.

169.—Analytical Approximations. [See also Note 157.] The follow-
ing are approximations for the exponential integral and certain Bessel

functions.

(56) 0<x<l     |e|max = 2 X 10-7

- Ei(-x) + logex =- .57721566 + .99999193x
-.24991055 x2 + .05519968 x3 - .00976004 x4 + .00107857 x6

(57) -3<x<3 |€|m«=10-*
/o(x) = 1 - 2.2499997 (x/3)2 + 1.2656208 (x/3)4
- .3163866 (x/3)6 + .0444479 (x/3)8 - .0039444 (x/3)10
+ .0002100 (x/3)12

(58) 0<x<3    |e|max = 2 X 10-8

Fo(x) - -log,- Jo(x)  = .36746691 + .60559366 (x/3)2
ir   2

- .74350384 (x/3)4 + .25300117 (x/3)6 - .04261214 (x/3)8
+ .00427916 (x/3)10 - .00024846 (x/3)12

(59, 60) 3 < x < »

Jo(x) = x_i/o(3/x) cos {x — <p0(3/x)}

F0(x) = x_i/o(3/x) sin {x — <p0(3/x))

|e|m« = 10-8

/o(3/x) = .79788456 - .00000077 (3/x) - .00552740 (3/x)2
- .00009512 (3/x)3 + .00137237 (3/x)4 - .00072805 (3/x)6
+ .00014476 (3/x)6

| «Im« = 5 X 10-8
v>o(3/x) = .78539816 + .04166397 (3/x) + .00003954 (3/x)2
- .00262573 (3/x)3 + .00054125 (3/x)4 + .00029333 (3/x)6
- .00013558 (3/x)6

0<x<3 je|mM = 5 X 10-9

/!(x)/x = .5 - .56249985 (x/3)2 4- .21093573 (x/3)4
- .03954289 (x/3)6 + .00443319 (x/3)8 - .00031761 (x/3)10
+ .00001109 (x/3)12

0<X<3      |e|max = 5 X lO"8

(61) 0 < x <

(62) 0 < x < 3    | !

2   x
Fi(x) - -log«,- Ji(x)

IT L
z = - .6366198 + .2212091 (x/3)2

f- 2.1682709 (x/3)4 - 1.3164827 (x/3)6 + .3123951 (x/3)8
- .0400976 (x/3)10 + .0027873 (x/3)12

(63, 64) 3 < x < oo

/i(x) = x-i/i(3/x) sin {x — ipi(3/x)}

Yi(x) = - x-»/i(3/x) cos {x - <ci(3/x)\

|e|ma* = 3X 10-8



NOTES 241

fi(3/x) = .79788456 + .00000156 (3/x) + .01659667 (3/x)2
+ .00017105 (3/x)3 - .00249511 (3/x)4 + .00113653 (3/x)5
- .00020033 (3/x)6

|e|max = 8 X 10-8

<Pi(3/x) = .78539816 - .12499612 (3/x) - .00005650 (3/x)2
+ .00637879 (3/x)3 - .00074348 (3/x)4 - .00079824 (3/x)6
-r- .00029166 (3/x)6

E. E. Allen
Shell Development Co.

Houston, 25, Texas

170.—A Sieve Problem on "Pseudo-squares." The following problem
originated by Kraitchik,1 and extended by Lehmer2 by a special sieve, has

recently been further extended by the SWAC. Let p be a prime. Let Np be

the least positive non-square integer of the form 8x + 1 that is a quadratic

residue of all primes ^ p. In this definition, zero is not counted as a quad-

ratic residue so that Np is not allowed to be divisible by any primes ^ p.

Since squares are quadratic residues of any prime, the numbers Nv behave

like squares and may be called pseudo-squares. This fact makes the problem

of discovering pseudo-squares not only a sifting problem but also one of re-

jecting squares. Thus the problem is unsuitable for a high speed sieve alone

since the output would be mostly squares, each of which would have to be

tested by a more elaborate arithmetic unit. The problem is therefore one for

an all-purpose computer programmed for sifting.3

Since for p > 3, Np must be of the form 24x + 1. One may proceed to

exclude values of x using prime moduli between 5 and p inclusive. For every

value of x not excluded the machine is programmed to extract the square

root of 24x + 1. If this is a perfect square, the machine returns to the sifting

program for the next value of x. Fortunately the early part of the program,

where the squares come thick and fast, had already been carried2 as far as

Nn = 48473881 in 1928 so that when programmed for the SWAC the routine
spends most of its time sifting. Actually, for the record, the SWAC was in-

structed to print out every 64th square it produced. The complete table of

Np for p < 83 is as follows.

P       Np p Np p Np
2 17 19 53881 47 9257329
3 73 23 87481 53 22000801
5 241 29 117049 59 48473881
7 1009 31 515761 61 48473881

11 2641 37 1083289 67 175244281
13 8089 41 3206641 71 427733329
17 18001      43 3818929      73 427733329

79 898716289
All Np above are primes except for

Nn = 19-139
N„ = 47-383
Nn = 67-1747
Nn = 643-4987
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The interest in pseudo-squares is heightened by the fact that they may be

used in tests for primality, as shown by Marshall Hall.4 The operation of

the SWAC and the reduction and checking of the output data was done by

John Selfridge.

D. H. L.

1 M. Kraitchik, Recherches sur la Theorie de Nombres, v. 1, Paris, 1924, p. 41-46.
* D. H. Lehmer, "The mechanical combination of linear forms," Amer. Math. Monthly,

v. 35, 1928, p. 114-121.
3 D. H. Lehmer, "The sieve problem for all-purpose computers," MTAC, v. 7, 1953,

p. 6-14.
4 M. Hall, "Quadratic residues in factorization," Amer. Math. Soc, Bull., v. 39, 1933,

p. 578-763.

171.—L. F. Richardson (1881-1953). This English mathematician made
several notable contributions to numerical analysis. A brief account of his

life by P. A. Sheppard appears in Nature (v. 172, 1953, p. 1127-8).

His work on numerical analysis (apart from that appearing incidentally

in his book1) was mainly contained in three long papers:

A: "The approximate arithmetical solution by finite differences of physical

problems, involving differential equations with an application to the

stresses in a masonry dam." Royal. Soc. Phil. Trans., v. 210 A, 1910, p.

307-357.
B: "The deferred approach to the limit"—Part I, L. F. Richardson,

Part II, J. A. Gaunt, Royal Soc. Phil. Trans., v. 226 A, 1926, p. 299-361.
C: "A purification method for computing the latent columns of numerical

matrices and some integrals of differential equations," Royal Soc. Phil.

Trans., v. 242 A, 1950, p. 439-491.

There were minor contributions in

D: "Theory of the measurement of wind by shooting spheres upward,"

Royal Soc. Phil. Trans., v. 223 A, 1923, p. 345-361.

An introduction to some of the material of A, B appeared in

E: "How to solve differential equations approximately by arithmetic,"

Math. Gazette v. 12, 1925, p. 415-421.

and one to some of the material of C in

F : "A method for computing principal axes," British Jn. of Psychology, v. 3,

1950, p. 16-20.

His work is highly individualistic and his language and symbolism pictur-

esque. For instance he introduced the terms "marching" problem, for initial

value problems of the form

y" = ky,   y(0),   y'(0) given,

and "jury" problem for a problem of the form

yvi _ $yiv _|_ $y" _ y = Xy, y = y" = y"' = 0 for X = ± 1.
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yvi   _   ¿yiv  +   ¿y»   _   y   =   \y,  y   =   y"   =   y'"   =   Q fOr X   = ±   1.
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We shall discuss briefly two of Richardson's contributions to numerical

analysis.
Richardson early in his life recognized the importance of the use of

central difference operators in numerical applications, a fact which had been

pointed out somewhat earlier by W. F. Sheppard. The use of central-differ-

ence approximation to derivatives suggested that the (local) difference

between the solution to a discrete problem and that of the continuous prob-

lem would be a power series in h2, h being the mesh-length. Taking account of

the first term only, it is possible by solving the discrete problem for two

values of h, and then eliminating the /^-contribution to obtain a better ap-

proximate solution. This he called the "deferred approach to the limit."

Among his examples were the extrapolation from the perimeter of a square

and hexagon to that of a circle (see MTAC v. 2 1946, p. 114 and p. 223-4)
and the evaluation of e. He also indicated the passage to the fundamental

frequency of a continuous string from that of strings of beads. Richardson is

mainly concerned with applications of his method to the numerical solution

of differential equations ; there are, however, discussions in D of a quadrature

and the solution of a Volterra type integral equation.

In B he examines in some detail the justification of this process, consider-

ing two main questions : (1) Are the odd-powers of h always absent? (2) How

small must h be in order that /^-extrapolation may make an improvement?

We shall not discuss this paper in detail : Undoubtedly the process is a valu-

able practical tool, but there are certainly cases where it is unreliable.2

Richardson was fully aware of the possible failures and difficulties which

might be encountered in its application and discussed various bad examples.

The latter part of A is concerned with a detailed study of the stresses in

a dam, with particular reference to a model of the Assuan dam.

An interesting remark in A concerns the cost of computation about 1910.

The unit operation was the evaluation of

Vy + vw + vs + vE — 4i>o

and for this the rate was w/18 pence where n was the number of digits carried.

An average output in the case n = 3 was of the order of 2,000 correct units

per week, paying about 28 shillings or about 5 dollars at the then current

rate.

The second contribution of Richardson which we shall discuss is an

algorithm for the solution of a system of n linear equations, Ax = b. This is

to choose an arbitrary x(0) = {xi(0)J and then put

X(r+1)   =  x(r)   +(3r{^X(r)   _  fc^

where the factors ßr are to be chosen. Some suggestions for their choice was

given in A; an up-to-date study has been given by D. M. Young.3

The success of this algorithm can be established by expressing the errors

in terms of the characteristic values of A. Following Young we assume that

A has linearly independent characteristic vectors Vi, • • • ,v„ with character-

istic values Xi, • • • ,X„. Then the error vector t(r) = x(r> — x satisfies

e(r-rD   =   e(r)  + fl^e«
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If we expand el0) in terms of the v, as: e(0) = J2 c,v< we find

This gives

where

E(r) = e ciVi n a + ftbX,).
i=l i=l

|eW||2 = L tf||v,-||s     II (1 + ßk*i)2\ ^ ||e«»||W«
i=l I   k—l

AfW = max     JJ (1 + &X¿)2
!<¡<n   I   4-1

For convergence we have to show that MM —» 0. In practice the sequence of

p% will often be taken as periodic and then it will be sufficient if the product

taken over a period, is less than unity. In this case, if we know, for instance,

that
0 < Xr ^ b,    r = 1,2,•• -,«

and choose ßT so that 0 > ßr > — 2è-1, then each factor will be less than

unity and convergence is assured.

It is clear that these ideas can also be used in the practical determination

of the characteristic vectors of a matrix. Suppose we have an approximation

v to a characteristic vector Vi of a matrix A and, for simplicity, assume that

the only contamination is a component of the characteristic vector v2.

Suppose we have v = CiVi + c2v2. Let Xi,X2 be the characteristic values cor-

responding to Vi,v2. Then, for any 0(7^X1)

v(1) =  (A — al)v = Ci(Xi — a)Vi + C2(\2 — a)v2

= (Xi - a)[ciVi + c2(X2 - a)(Xi - oO^Vs].

The strength of the component of v2 will therefore be reduced if | (X2 — a \

< |Xi — a I, i.e. if a is nearer X2 than Xi. If this is so successive repetition of

the multiplication A — ai will purify v. This method is a generalization of the

familiar "power" method for the determination of the characteristic value of

largest absolute value.
In C, Richardson exploits this idea, with a wealth of numerical examples,

including cases when the matrix is unsymmetric or has non-linear elementary

divisors. He discusses the use of purifiers of the form

(A -<xj) (A - a2I)---(A - akI)

and the optimal choice of the a<. It is clear that information about the

location of the characteristic roots is essential for satisfactory choice of the

a,-. Richardson piakes use of the bounds given by Hirsch, Rayleigh's

quotient, and the comparison of the ratios of corresponding components of

Av and v. The latter is used in an intuitive way, no mention being made of

the result of Collatz, that there is always at least one characteristic root

between the greatest and least of the ratios of the components.

J- T.
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1L. F. Richardson, Weather Prediction by Numerical Processes. Cambridge, Eng-
land, 1923. For the following comment on this, I am indebted to G. E. Forsythe, "It is a
monumental attempt to forecast for six hours, from almost no initial condition, and (I under-
stand) a poor balance of At and A*, Ay, Az. It is superbly written and the author has (in
my opinion) the most elegant English style of any mathematical writer of the century.
[See p. 219 of this book, or the first page or two of C] The Preface speaks for itself of the
troubles encountered by the author."

2 Cf. W. Wasow, "Discrete approximations to elliptic differential equations." Zeit. f.
ang. Math. u. Phys., v. 5, 1954.

3 D. M. Young, "On Richardson's method for solving linear equations with positive
definite matrices." Jn. Math, and Physics, v. 32, 1953, p. 243-255. Experiments on the
solution of the Laplace equation by this method, on ORDVAC, have been carried out by
D. M. Young, and C. H. Warlick.

CORRIGENDA

V. 8, p. 93, 1.-3, for \2p = Ms read 12M + M3.

V. 8, p. 106, 1. 8, for Pearcy read Pearcey.

V. 8, p. 121, 1. 20 for +3(2 + i) read -3(2 + i).

Editorial Note. With this issue of MTAC the present Editorial Com-
mittee rounds out its fifth year and resigns. It is a pleasure to thank our

many contributors, reviewers and referees for their cooperative assistance

to the Committee and to MTAC. Future editorial correspondence should be

addressed to

Dr. C. B. Tompkins
Numerical Analysis Research

University of California

Los Angeles, 24

California
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