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1 G. Frobenius, Preuss. Akad., Berlin, SitzBer., 1900, p. 516. A list of Frobenius'
relevant papers may be found in ref. 4 or 5.

2 F. J. Murnaghan, Am. Journal of Math., v. 59, 1937, p. 437. See also the paper of
Littlewood & Richardson.»

8 D. E. Littlewood & A. R. Richardson, Roy. Soc, Phil. Trans., v. 233A, 1934, p. 99.
4 M. Zia-ud-Din, London Math. Soc. Proc (2), v. 39, 1935, p. 200; ibid., v. 42, 1937,

p. 340.
K. Kondo, Phys. Math. Soc. Japan, v. 22, 1940, p. 585.

6 D. E. Littlewood: The Theory of Group Characters, 2nd edition.    Oxford, 1950.
8 F. J. Murnaghan: The Theory of Group Representations.    Baltimore, 1938.
7 The partition conjugate to (X) is obtained by interchanging rows and columns in the

Ferrers-Sylvester graph of (X).
8P,(») = P(n) - 2P{n - 2) + 2P{n - 8) - 2P(n - 18) H-.   This  was   pointed

out to us in a private communication from Professor N. J. Fine.
9 The following question is of some practical interest : given n, for what partition (X) does

(9) take its largest value, and how does this value vary with »? The authors have been unable
to find any discussion of this problem in the literature.
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1234FJAJ.—M. Lotkin & M. E. Young, Table of Binomial Coefficients.
Exact Values. Ballistic Research Laboratories Memo. Report No. 762

Aberdeen Proving Ground, 1954, 49 p., 21.6 X 27.9 cm. Mimeographed
from typescript.

This table is a sequel to RMT 1123. It gives exact values of the coeffi-

cients

»!

r\(n — r)l

for r< (n + l)/2 and n = 0(1)100, whereas the previous table rounds

these values to 20 figures. This new table will be of use in studies involving

congruence properties and other theoretical properties of binomial coeffi-

cients.
D. H. L.

1235[C,D,E].—R. A. Hirvonen, "Nutshell tables of mathematical func-
tions for interpolation with calculating machines," 23m//. Géod. No. 30,

1953, p. 369-392.

The tables presented here are one page tables. Interpolation is by means

of Taylor's development which the author writes in the nested form

f(a + th) = {{(Dt + C)t + BJ + A\t+f (a)

so that

A =hf'(a),    B = h2f"(a)/2\,...

The tables therefore give the functions at coarse argument intervals together

with the coefficients A,B,C,D. The tables are as follows:

lnxforx = 1 (.02)1.6; 10D
e*forx = 0(.01).2; 10D

sin x for x = 0°(2°)90°; 10D
arctan x for x = 0(.02)1 ; 8D.
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The latter table is in decimal parts of a degree. Three special geodesic tables

are used to illustrate Taylor interpolation.

D. H. L.

1236[F].—H. Gupta, M. S. Cheema & 0. P. Gupta, "On Möbius Means,"
Panjab Univ. Research Bulletin No. 42, 1954, 16 p.

The table occupying all but the first page of this work was computed in

order to study conjectures of V. Brun and C. L. Siegel regarding the second

numerical integral of the Möbius function p(n), the multiplicative function

for which

n(Pa) = - [I/«]-
If we define

n n

Mi(«) = ¿Z p(k)    and    p2(n) = £ Vi(k),
t=i *-i

then the conjecture of Brun is that "on the average"

p2(n - 1) = - 2» + 12 + ßn-1

where ß = — 18. Siegel considered the value

ß = - 2ir2/f (3) = - 16.42119.

The authors tabulate

F(n) = T0(n) = np2(n - 1) + 2n2 - 12»

whose average value should be ß, and the successive means Tk defined by

n

nTk(n) = Y. Tk-i(v)
»=i

for k = 0(1)5, n = 1(1)750. Exact values of T0(n) are given. The other T's
are given to 3D. Graphs of T3, Tt and Tb are given. For 375 < n < 750, Tb(n)
descends nearly monotonely from —14.3 to —15.0.

D. H. L.

1237[K].—J. H. Caldwell, "Approximating to the distributions of meas-
ures of dispersion by a power of x2>" Biometrika, v. 40, 1953, p. 336-346.

It is assumed that all observations are from normal populations. If the

measure of dispersion is u, then for suitably chosen c and X, cux has approxi-

mately the x2 distribution with v degrees of freedom. Table 1 of this paper

gives values of v, X, log c for the range and mean deviation for sample size

n, n = 2 (1)20 and for the first quasi-range with n = 10(1)30. k is given to 2S,

X and log c to 5S. The first quasi-range is the difference between the largest-

but-one and the smallest-but-one observations in a sample of n. Table 2

contains the same constants for the mean of m ranges m = 2(1)5 and n =

2(1)10, where n is the size of each of m samples. Tables 3 and 4 give the ap-

proximate upper 5% and 1% points of the ratio of maximum value to mini-

mum value in a set of k independent ranges (each range for a sample of size

n from the same population). Values are given to 3S for k = 2(1)12 and

« = 3(1)10,12, 15, 20. Tables 5 and 6 give to 3S approximate upper 5% and
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1% points for the ratio of maximum to minimum mean deviation for k =

2(1)12 and n = 3(1)10, 12, 15, 30, 20, 60, «*>, Tables 3 through 6 are based
on the approximate distribution of Table 1 and the fact that the ratio of two

independent x2's has an F-distribution. Adequate indications of accuracy of

the approximation are stated.

W. J. Dixon
University of Oregon

Eugene, Oregon

1238[K].—E. J. Gumbel, Statistical Theory of Extreme Values and Some
Practical Applications. NBS Applied Math. Series, no. 33, U. S. Gov.
Printing Office, Washington, 1954, viii + 51 p., 20.1 X 25.9 cm. Price
40 cents.

This booklet contains four lectures given at the Bureau of Standards

which are an excellent account of the theory of extreme values and their ap-

plications by the leading expert in this field. For the exponential type of dis-

tribution law for extreme values there is tabled (p. 29) for samples of N =

15(5)50(10)100(50)300, 400, 500, 750, 1000, extremes, the expected mean of
the reduced (standardized) extremes, the ratio of these to the population

mean, their standard deviation, and the ratio of this to the population

standard deviation, all to 5D. Interpolated values for the means and stand-

ard deviations for N = 20(1)49 to 4D are also given (p. 31), these values

being obtained from an empirically established linear relationship.

c. c. c.

1239[K].—H.  C.  Hamaker,  " 'Average confidence'  limits for binomial

probabilities," International Stat. Inst., Review, v. 21, 1953, p. 17-27.

Given a random sample of n from a binomial population with true per-

centage of defectives, p. If k items are defective, the usual upper and lower

(1 — a) confidence limits for p are computed so that

(1) Pr \pk' < P < fa) >   1 - a,

where the equality holds for only a few isolated cases and the confidence prob-

ability is generally greater than 1 — a. The limits are computed from in-

complete Beta or 27-tables, so that the upper limit is

(2) Pk = 100viF/(v2 + ViF),

where Vi = 2(k + 1) and v2 = 2(n — k) are the degrees of freedom for F.

A similar result holds for pk.
This article shows how the confidence probability varies as p changes,

for « = 25 and a = .20 (Figures 3A and 5B')- Another set of confidence

limits is then presented for which the confidence probability is generally less

than 1 — a (Figures 3B and 5A'). In this case the upper confidence limit is

simply pk-i.

The author proposes to use as average confidence limits :

puk = (pk + pk-i)/2;   plk = (pk' + p't-i)/2

(3) puo = 100 - pin = p»i/2 = (Px - Po)/4:

pl0 = 100 - pun = 0.
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Tables of ptk and puk to ID are given for n = 5(5)30, 40, 50, 75, 100(100)
500; a = .02, .10, .20; k = 1(1)20, unless n < 20, when k goes to n. These
confidence limits give confidence probabilities which do not fluctuate much

from 1 — a ; however, the confidence probability will sometimes be less than

1 -a.

It should be mentioned that Simon1 presents a Bayesian method of

averaging the probabilities; his limits are even narrower than those in the

present article. It would be desirable to compare the true confidence prob-

abilities for various p, using (2), (3) and the Simon charts.

R. L. Anderson
North Carolina State College

Raleigh, North Carolina

1 L. E. Simon, An Engineer's Manual of Statistical Methods. New York, 1941.

1240[K].—N. L. Johnson, "Some notes on the application of sequential

tests in the analysis of variance," Annals Math. Stat., v. 24, 1953, p.

614-623.

In the analysis of variance one often desires to test a linear hypothesis

in some systematic model and such hypotheses are usually composite in

nature. This paper considers the applicability of certain basic work by

Barnard1 and Cox2 in sequential tests for composite hypotheses to such

cases. Such a sequential situation could be encountered if one treated the

number of observations taken in each class as a random variable or if the

number of classes studied in an experiment could be increased in a sequential

fashion. In order to obtain a sequential test a restriction upon the manner of

increasing the number of observations is needed. With such restrictions one

can evolve a sequential test which is in a form similar to the usual sequential

type, but the lack of adequate tables of required distributions makes it

difficult to apply the theory in the general case.

As a special case illustration the author considers a random model in

one-way classification, namely

xa = a + Ui + zti

in which the u's are normal variables, each with 0 means and standard de-

viations or. Here the hypothesis is concerned with the value of S = o-2r/ct2.

If one is interested in a sequential test based on 8" > 8' = 0, such a test

exists, but to determine appropriate intervals for the tests, values of the

criteria GR and Gr are required. With the number n of groups of size k as the

variable, Table la gives values of GR and Gr to 3D for 5" = 1, S' = 0,
a = ß = .05 and k = 2(1)12, 15, 20, 30, 60, °o and n = 2(1)12, 15, 20, 30,
60. Table lb is similar but with a = ß = .01.

C. F. Kossack

Purdue University

Lafayette, Indiana

1 G. A. Barnard, "The frequency justification of certain sequential tests," Biometrika,
v. 39, 1952, p. 144-150.

1 D. R. Cox, "Sequential tests for composite hypotheses," Cambridge Philos. Soc, Proc.
v. 48, 1952, p. 290-299.
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1241 [K].—Rand Corp., Offset Circle Probabilities. Santa Monica, Calif.,
1953, 18 p., 16.5 X 24.1 cm.

Consider a circle of radius r¿ with center located a distance D from the

origin in the x,y-plane. Let q represent the probability that a sample value

from the normal bivariate distribution with px = py = 0, ax = <ry = <r, p = 0

falls outside this circle. 3D values of q are tabled as a function of D/a and

(n - D)/o-. Here D/a = 0(.1)6(.5)10(1)20, °o and (rd - D)/<r = - 3.9
(.1)4. This table was obtained from an unabridged 6D table of q which was

computed jointly by the Institute for Numerical Analysis, National Bureau

of Standards, and the RAND Corporation. Card copies or printed listings of

the unabridged table may be obtained by writing to the RAND Corporation.

J. E. Walsh
U. S. Naval Ordnance Test Station, Inyokern

China Lake, California

1242[K].—S. Rosenbaum, "Tables for a nonparametric test of dispersion,"

Annals Math. Stat., v. 24, 1953, p. 663-668.

Given a sample of n values of a continuous random variable X, these

tables give the upper 5% and 1% points for m,n = 1 (1)50 of the distribution

of the number of values in an additional sample of m values which lie outside

the extreme values of the original sample. This distribution was obtained by

Wilks1 in connection with the problem of two-sided distribution-free toler-

ance limits. The suggested use in this paper is as a non-parametric test of

dispersion, which places the emphasis on smaller values of m and n. How-

ever, if neither the sample nor the unsampled portion of the population

exceed 50, these tables can also be used to establish the level of tolerance

limit provided by the extreme values of the sample.

An approximation to the distribution for large and approximately equal

values of m and n is also obtained. Since there is an apparent discrepancy

between the 5% and 1% values obtained from this limiting distribution, and

the values given by Wilks1 for m = n = 100 (Table II, p. 406 ; n and N in
Wilks notation), the reviewer computed exact values of the 5% and 1%

points for m = n = 10(10)200(100)900. From these results it was noted (a)

that the values given by Wilks are in error, and (b) that, while the 5%

point of the limiting distribution is correct ior m = n = 25 (as can be seen

from the tables), the exact 1% point does not reach that of the limiting

distribution until at least m = n > 170.

C. A. Bennett
General Electric Company

Hanford Atomic Products Operation

Richland, Washington

1 S. S. Wilks, "Statistical prediction with special reference to the problem of tolerance
limits," Ann. Math. Stat., v. 12, 1942, p. 400^09.

1243[K].—Herbert Solomon, "Distribution of the measure of a random

two-dimensional set," Annals Math. Stat., v. 24, 1953, p. 650-656.

N(= 1,2) random circles of equal radius W are dropped according to a

bivariate distribution with circular symmetry specified by the parameter a

on a fixed circle of radius T with an aiming point at distance R from its
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center. The measure of interest is the ratio of the covered area to the total

area of the fixed circle. The author calculates for TV = 1 the probability Pc

of getting at least C/ W fraction coverage for specified values of T, R, N, a-.

Until now only the first two moments were known.

Fig. 1 gives for N = 1 the contours of equal probability Pc = .05

(.05).95 as a function of R for given values of W + aT, both in <r units.

The factor a is eliminated by the use of the second figure, which shows the

relation between coverage 0.05 to 1.00 and the factor a( — .1 < a < .1)

for fixed values of the quotient W/T = .5, .6, .75, .85, 1, 1.2, 2, 3, 5, 10, «>.
Thus the two figures represent the probability Pc of coverage C for given

values of W, T and R (in a units).

Four short tables give for N = 2 the lower and upper bounds Pc = 1 —

(1 - Pc)2 and Pc = P(ci + c2 =- C) to 3D. Table I holds for W/a = 1,
T/o- = 1, R = 0 and C = .1(.1).9. Tables II and III deal with median
coverage for W = T and W = 2T respectively. Table IV holds for W =

.57", C = .2. The graphs and tables demonstrate that a realistic decision

can be made without resorting to random number devices.

E. J. Gumbel
Columbia University

New York, New York

1244[K].—G. Taguti, "Tables of 5% and 1% points for the Polya-Eggen-
berger's distribution function," Union of Japanese Scientists and Engi-

neers, Reports of Statistical Application Research, v. 2, no. 1, 1952, p.

27-32.

Table I gives to 3S the minimum values of h such that

F(k;h,d) = £ (l/n$h(h + d)---(h+ (n - l)d)(l + d)-»+««w

is> a, where a - .95 or .99, h/d = .5(.5)15, 20, 30, 60, °° and k = 1(1)25.
Table II gives to 3S the maximum values of h~l such that

F(k;h,d) ^a

where a = .95 or .99, d/h = 2., 1., .5(-.l).l, .05, Oand k = 25(5)40(10)60,
75,100,200,500, «.

The method of preparing the tables and their accuracy is not given.

I. R. Savage
National Bureau of Standards

Statistical Engineering Laboratory

1245[L].—Admiralty Research Laboratory, "Tables of f(q,a)," A.R.L./
T.3/Maths. 2.7, 13 p., Teddington, Middlesex, England.

4D tables of

T(m/2 + 1)
exp(-£^){l.(*2)+2£[

T(m + 1)

X uml2iFi(m/2 ; m + 1 ; — u) Im(kq) cos ma   \
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for u = 0, 1, oo, k = .5 (.5)3, a = 0(10°) 180°, q = 0(.2) g0 where q0 varies

between 2 and 6 and is so chosen that the tabulation covers in each case the

whole significant range of q.
A. E.

1246[L].—D. R. Bates, Kathleen Ledsham & A. L. Stewart, "Wave
functions of the hydrogen molecular ion," Royal Soc. London, Phil.

Trans., v. 246 A, 1953, p. 215-240.

When the variables are separated in the Schrödinger equation for the

electronic wave functions of H2+ in elliptic coordinates, there result the two

differential equations

(1)
d_

dp (1
2,dM

V t (A2 - 1)
dA

dX

+ j - A + p2p2 -

+ \A +2R\- p2\2 -

»r

m'

X2 - 1

M = 0

A = 0.

In the above, A is a separation constant, and

(3) p2 = - \R2E,

where R is the distance between the nuclei in atomic units, and E is the

electronic energy in Rydbergs.

Equation (1) is the familiar (oblate) spheroidal wave equation which has

been studied.1 Corresponding to a countable set of eigenvalues A(l,m,p)

equation (1) has a solution of the form

(4) M(l,m,p;p) = Z'fÁhm,p)PZ+s(p),

where PZ+b(p) is the associated Legendre function and 5 is either always odd,

or always even. Tables of the eigenvalues A and the coefficients/» have been

published in l as functions of p. The authors give corresponding tables for

the parameter R, which are presumably of direct interest to researchers in the

field, and the tables are arranged in such a manner that the various orders of

the eigenvalues are directly identified with the "united atom designations."

Ten such "states" are given in the tabulation, namely

nscra n = 1,2,3;    npau,    n = 2,3,4;    3do-g,    4fo-u,    2pxu,    and    3dir0

All ten correspond to parameters m = 0,1; / = 0,1,2,3. Corresponding to

these states, the authors tabulate the functions p, a, —A', and —E, for

R = 0(.2)5 (.5)9 or 10; 5D (Table 1), and the coefficients/, (Table 2). The
latter are given to five significant figures for the dominant coefficients, and to

six decimals (usually) for the others. According to the authors, these were

obtained by interpolation from the tables in1. The parameters A' and <r are

defined below.
The authors also tabulate eigenvalues and coefficients corresponding to

equation (2). Following Jaffé,2 the authors write

(5) A(X) = (X2 - 1)>»'2(X + l)'exp (- p\)y(K)
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with

»-?-»-'l;    f = (X - 1)/(X + 1)
P

A' = A - p2.

The solution is written in the form

(6) y = t gtV-
í=0

The solution exists corresponding to the eigenvalues of a, for given p, m,

and A'. In Table 3, the authors give the coefficients gt for the same range of

R as in Tables 1 and 2 ; four decimals are given in the tabulation. The paper

also contains contour diagrams of H2+, as well as some comparisons between

the exact solution for certain of the wave functions and the "L.C.A.O"

approximation.
For theory and some tabulation relating to the general spheroidal wave

function in the more accessible publications, see also references 3'4,5.

Gertrude Blanch
Consolidated Engineering Corp.

Pasadena, California.

1 J. A. Stratton, P. M. Morse, L. J. Chu & R. A. Hutner, Elliptic Cylinder and
Spheroidal Wave Functions. John Wiley and Sons, Inc., New York, 1941.

2 G. Jaffé, Zeit. Phys., v. 87, 1934, p. 535 (author's citation).
3 A. Leitner & R. D. Spence, "The oblate spheroidal wave functions," Franklin Inst.,

Jn., v. 249, no. 4, 1950, p. 299-321.
4 J. Meixner, Lamé's Wave Functions of the Ellipsoid of Revolution, translated by Mary

L. Mahler, NACA, June, 1944.
6 C. J. Bouwkamp, "On spheroidal wave functions of order zero," Jn. Math. Physics,

v. 26, 1947, p. 79-92.

1247[L].—S. Chandrasekhar & Donna Elbert, "The roots of  Y„(\r¡)
/n(X) - Jn(\ri) Tn(X) = 0," Cambridge Phil. Soc, Proc, v. 50, 1954,

p. 266-268.
The authors tabulate to 5D the first root, Xi, of the equation mentioned

in the title, together with 7 to 9D values of

Jn(\l),   Yn(\l), Jn(\lV),   YnfrlV), 2*27T2X

Jn2(My)   _

Jn2(\l)

for v = .2, n = 1(1)5; v = -3(.1).5, n = 1(1)6; r, = .6, n = 1(1)8; and
Tj = .8, n = 1(1)12. For rj = .5, n = 1(1)6 they also give the corresponding

quantities for the second and third zeros.

A. E.

1248[L].—Ch. Vital Dunski, "Les fonctions de Bessel d'argument com-

plexe ícVj et les fonctions de Kelvin d'ordre zéro et 1," Soc. Roy. Sei.

Liège Bull., v. 23, 1954, p. 52-59.

Table I gives ber x, bei x, ker x, kei x, beri x, beii x, kerx x, keii x, and

Table II gives the real and imaginary parts of Jo(xi*), H0{1) (xi*), ¿* Ji(xi*),

i* iTi(1) (xi1). Each of the two tables occupies one page. The entries have been

computed, to various degrees of accuracy, from the asymptotic expansions

for 25 values of x ranging from 10 to 72.
A. E.
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1249[L].—Carl-Erik Fröberg & Philip Rabinowitz, "Tables of Cou-
lomb wave functions," NBS Report 3033, 1954, 3 + 40 p., 20.5 X 27 cm.

F and G being the regular and the irregular Coulomb functions as defined

in RMT 982 {MTAC, v. 6, p. 92], in this report

Ao(n) = [(1 - e-2^)/(2rV)y,    AL(V) = faL2 + v2)~* AL-i(v)

Fl.,(p) = AL(r,)pL+ifL„(p)

GL„(p) =AL(r,)p^gL,,(p).

The report contains tables of/,/', g, g' and of the first five "reduced" deriva-

i a*
tives—,—¿of these quantities for L = 0, 5, i\ = 1(1)10, p = 1(1)10. For

other NBS tables of Coulomb wave functions see RMT 1091 {MTAC, v. 7,
p. 101-102]. The present table was first announced as UMT 186 {MTAC,
v. 8, p. 97], where further details are given.

A. E.

1250fjL].—J.  M.  Hammersley,  "Tables of complete elliptic integrals,"
NBS Jn. of Research, v. 50, 1953, p. 43.

The functions tabulated are K, E, and fa/K. The argument used is

p = 1/k. The tables are for p = 1(.01)1.3(.02)2; 10S. The last figure is
doubtful.

D. H. L.

1251[L].—Aldo Muggia, "Sul calcólo dell' integrale di Poisson," Accad.
Sei. Torino Cl. Sei. Fis. Mat. Nat., Atti, v. 87, 1953, p. 116-126.

5D tables of

A (t) = 2 In
T

sin- B(t) =  J    t cot-dt

C(t) =-cot^, D(t) =- rcot^ + 2 In
.      T

sin-

for r =- 7T,  -3.12(.04)-.04(.01).04(.04)4.6. The tables were computed
by Lia Errera of the computing center of the Politécnico di Torino.

A. E.

1252pL].—Uno Olsson, "Non-circular cylindrical gears," Acta Polytechnica,

Mechanical Engineering Series, v. 2, no. 10, Stockholm, 1953, p. 1-215.

The author not only develops the theory for the construction of different

types of non-circular gears but also furnishes directions for the production

of the wheels. As a by-product of the investigation, he gives the following

tables :

Table I : The arc length of the hyperbola,
Table II : The arc length of the ellipse with imaginary axes or the arc

length of the sinh-curve,

Table III : The arc length of the parabola,
Table IV : The arc length of the exponential curve,

Table V: The hyperbolic argument u as a function of the hyperbolic

amplitude <p.
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Tables I and II are given for <p (the amplitude angle) = 0°(1°)90° and a

(the eccentric angle) - 0°(5°)90°; Table III for <p = 0°(1°)90° with A'j
and A»" + A/'; Table IV for <p = 0°(.1°)10°, 0°(1°)90° and Table V for
<p = 0°(.1°)90°. All tables are given for the most part for modified functions

to about 5 significant figures. A short section describing the use of higher

degree interpolation, necessary in the tables, is also given.

Irene A. Stegun
NBSCL

1253[L].—L.  J.  Slater,  "Some  new results on equivalent  products,"

Cambridge Phil. Soc, Proc, v. 50, 1954, p. 394-403.

Table 1 gives values, mostly to 8D or 8S, of

[ n (i - a<z»)]-

for a = - .9(.05).95 and q = 0(.05)1.
Table 2 gives 8D or 8S values of the same quantity for a = i,q = 0(.005)

.89.
The first table is stated to be accurate to 7D except where fewer figures

are given, the second, to 8D. The tables were computed on the EDSAC.

A. E.

1254[L].—L. J. Slater, "The evaluation of the basic confluent hypergeo-

metric functions," Cambridge Phil. Soc, Proc, v. 50, 1954, p. 404-412.

The functions discussed and tabulated in this paper are

m f (g")nyB
w nts (q»)n (a).

,   (g°)n y" gi"("+i)

W h       (q")n (q)n
where

(<r)n = a - <rt a - 2-+o • • • (i - g*t~*)
Table 1 is of the function (2) for a = 0(.2)2, b = .2(.2)1, g « .9, y•-

(1 -g)* = .1(.1)1.
Table 2 is of the same function, for the same values of a and b, and for

q = .99, y = .01(.01).l.
Table 3 is of the function (1) for the same values of a and b, and for

2 = .9,y = .1(.1).9.
The values are mostly given to 7 or 8S: they were computed on the

EDSAC.
A. E.

1255[L].—Robert L. Sternberg, "A general solution of the two-frequency

modulation product problem. II. Tables of the functions Amn(h,k)," Jn.

Math. Phys., v. 33, 1954, p. 68-79.

"The purpose of this paper is to provide tables and evaluation methods

for the functions

Amn(h,k) = (2/ir2)    I   I     (cos u + k cos v — h) cos mu du cos nv dv
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for m,n = 0,1, \h\ < 2, 0 < k < 1 where R is the region defined by

R : cos u + k cos v > h,    0 < u,v < %

and subsequently also to tabulate briefly the first six higher order functions

The functions arise in the problem indicated in the title and have been

investigated in an earlier paper1 where there are also further references. The

tables are to 6D.

A. E.

1 R. L. Sternberg & H. Kaufman, "A general solution of the two-frequency modulation
product problem. I," Jn. Math. Phys., v. 32, 1953, p. 233-242.

1256[L].—A. Walther & H. Unger, "Mathematische Zahlentafeln, nu-
merische Untersuchung spezieller Funktionen," Naturforschung und

Medizin in Deutschland, 1939-1946, Band 3. Angewandte Mathematik,
Teil I, p. 167-183. Verlag Chemie, Weinheim, 1953.

This valuable report covers numerical tables of special functions com-

puted in Germany during the period under review, and also analytical work

of importance in connection with the numerical computation of special

functions. The report consists of three parts: A. Introduction, B. Survey of

developments and results, C. Bibliography. Each of parts B and C is divided

in four sections: 1. elementary functions, 2. tables pertaining to astronomy

and geodesy, 3. Bessel functions, 4. other higher transcendental functions.

The bibliography lists some eighty items. Many of these have been published

(and reviewed in MTAC). In the case of most of the tables which have not

been published a brief description (in the style of the FMR Index) is

appended.

A. E.

1257[L].—M.  W.  Wilkes,   "A  table  of  Chapman's grazing  incidence
integral Ch(x,x)," Phys. Soc. Proc, v. 67 B, 1954, p. 304-309.
This table gives

Ch(x,x) = x sin x  I    exp (x — x sin x/sin a) cosec2 X d\

to 3D for x = 50(50) 500(100)1000, x = 20° (Io) 100°, excluding values of
Ch(x,x) which exceed 100. The table was prepared on EDSAC, using a

Gauss 5-point formula repeatedly, with automatic adjustment of the length

of the interval. A more complete discussion of the machine techniques used

is to appear elsewhere. Various checks were applied : recalculation for

X = 20°, 21°, 70°, differencing in both directions, and use of the relation

Ch(x,x) + Ch(x,ir — x) = 2 exp (x — x sin x) Ch(x sin x, 5*0 •

The values are expected to be correct to within a unit in the last place.

J-T.


