
Coupon Collector's Test for Random Digits

1. Introduction. Increasing use of random numbers, especially in Monte Carlo

procedures and in large computing installations, has served to focus attention on

the various tests for randomness. Kendall and Babington-Smith1 list four tests

for so-called local randomness. While not giving the coupon collector's test (to

be described below) a place in their now classical list of four tests, they did use

a modified coupon collector's test in some of their investigations.

In an ordered set of digits, say, one may count the length of a sequence,

beginning at a specified position, necessary to give or include the complete set

of all ten digits. Or one may count the length required to give a set of k, k < 10,

different digits. The distribution of these observed lengths for different initial

positions can then be compared with a theoretically computed distribution. Such

a test will be called the coupon collector's test from an analogy with certain sales

promotion schemes.

The theoretical distribution may be computed from formulas given by H. von

Schelling,2 which formulas hold for the case where the individual category prob-

abilities might be unequal. For the random digital case with category prob-

abilities equal to 1/10, von Schelling's formulas simplify readily and may be

conveniently related to the "differences of zero." These latter quantities are tabu-

lated by Fisher and Yates3 up to sequences of length 26. But in using the coupon

collector's test for a complete set of all 10 digits it has been found that the mean

of the length distribution is slightly greater than 29, and a table of probabilities

associated with the sequence lengths 10 to 26 inclusive would hardly give a realistic

picture of the entire distribution.

The present author has therefore extended this tabulation, and exact prob-

abilities are given for sequence lengths 10 < n < 35 and approximate probabilities

for sequence lengths 36 < n < 75. The probabilities were computed from the

relation

and are listed in Table 3.

If one were interested in sequence lengths necessary to obtain five different

digits, the mean of this distribution is approximately 6.46. The range 5 to 26

inclusive available from Fisher and Yates3 might be sufficient here.

2. Sequence Lengths for Decimal Expansions of « and e. It would be a simple

matter to program a large digital computing machine so that it would tabulate

the distribution of the sequence lengths needed for complete sets for a given

ordered digital collection. However, the author did not have such a digital com-

puting machine available, and he made a tabulation by hand for the decimal

expansion of 7r. The 2035 decimal approximation to it given by George W.

Reitwiesner4 was used as the raw material for this count. Beginning with the

initial position 3 in w on 3.14159- • •, it was recorded that a sequence length of 33
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positions was needed to get all the ten digits. Beginning anew with the thirty-

fourth position digit (which is a 2), it was recorded that a sequence of 18 positions

was needed to get a complete set of all the 10 digits. Continuing this procedure,

67 sequences of complete sets were obtained, plus an incomplete sequence (at

the end of the decimal expansion) of length 15. It was considered advisable to

make the sequences non-overlapping as described above since there is considerable

dependence among the set of sequence lengths if every position in the decimal

expansion of t is regarded as a new starting point.

The sequence lengths for x are also included in Table 3. This tabulation

for it was checked by Mr. Wayne Jones of the Department of Defense, Wash-

ington, D. C.

Mr. Jones also made a tabulation based on the decimal expansion of e.

Reitwiesner4 gave a 2010 decimal approximation to e. An additional 490 places

was given by Metropolis, Reitwiesner and von Neumann.5 Mr. Jones found

82 complete sequences using 2486 digits in the expansion of e. This tabulation is

also given in Table 3. The author desires to thank Mr. Jones for this count.

3. Statistical Tests. The mean and the standard deviation of the theoretical

distribution may be computed from results given by von Schelling2 or Feller.6

These theoretical values and the corresponding observed values for x and e are

given below.

Table 1
Observed

Theoretical it e

Mean
Standard deviation

29.29
11.21

30.16
11.83

30.32
10.64

To use a chi-square test, it is desirable that the expected values all exceed 10

in size. Since the sample size for r is small (67) some grouping of the sequence

lengths is necessary to meet this desired minimum. The following results were

obtained for a convenient grouping.

Table 2

Sequence lengths, n

10-19
20-23
24-27
28-32
33-39
40 and over

Totals

Chi-squared test
values

Observed

13
13
9
5

13
14

67

Expected

11.604
11.720
11.491
11.480
10.195
10.510

Observed Expected

67.000

6.436

12
11
14
15
17
13

82

14.202
14.344
14.064
14.050
12.477
12.863

82.000

2.826

Neither of these chi-square test values is unusually out of line. It has been

previously reported5'7 that (using a sample of 2000 digits for e) excessive flatness

in the single frequencies was noted, and an indication was obtained that the single

digits in e are "non-random."5 Apparently, this phenomenon did not reflect itself
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Table 3

Table of Probabilities and Empirical Distributions

Observed for

n            pn t e

10 .0003 6288 0 0
11 .0016 3296 0 0
12 .0041 9126 4 0 0
13 .0080 9315 2 0 0
14 .0130 4560 8576 0 1

15 .0186 3435 9744 1 2
16 .0243 5958 6451 2 1 1
17 .0297 8461 8864 6 2
18 .0345 7819 0373 1264 3 2
19 .0385 2892 7611 5744 2 4

20 .0415 3577 5577 4998 4 2 3
21 .0435 8654 2461 1780 8 2 2
22 .0447 3311 6259 6932 2752 3 3
23 .0450 6836 4358 6388 8896 6 3
24 .0447 0706 5704 2485 9072 2 3

25 .0437 7151 9771 4451 888 1 1
26 .0423 8153 3617 2618 0440 544 3 5
27 .0406 4806 4094 7299 5986 8 3 5
28 .0386 6968 0608 0430 0677 8256 2 3
29 .0365 3106 7596 0890 3842 8456 2 1

30 .0343 0291 1584 0099 4076 1298 5728 0 4
31 .0320 4266 1164 2497 4751 5573 3056 1 2
32 .0297 9578 2029 8315 1051 7926 5414 4 0 5
33 .0275 9724 1577 4565 5030 9198 2083 2 1 2
34 .0254 7304 5949 3494 9321 3424 0393 4016 2 2
35 .0234 4171 8456 6112 5667 0619 1553 5264 2 3

36 .0215 1565 5696 6141 0012 3 3
37 .0197 0233 0293 7275 2140 2 5
38 .0180 0533 0690 9430 5978 3 1
39 .0164 2524 1844 5333 7918 0 1
40 .0149 6037 8429 7183 4300 1 3

41 .0136 0738 6073 5944 1433 1 1
42 .0123 6172 7525 9630 8189 1 1
43 .0112 1807 0507 6953 1223 6 1
44 .0101 7059 2895 9431 7444 1 0
45 .0092 1321 9356 5092 1003 1 1

46 .0083 3980 1802 1014 6739 0 0
47 .0075 4425 4318 8464 5255 0 1
48 .0068 2065 1566 0407 8968 0 1
49 .0061 6329 8170 0629 7386 0 0
50 .0055 6677 5325 1020 3197 0 0
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n

51
52
53
54
55

56
57
58
59
60

61
62
63
64
65

66
67
68
69
70

71
72
73
74
75

.0050 2596 9683

.0045 3608 8658

.0040 9266 5455

.0036 9155 6480

.0033 2893 3218

Table 3—Continued

5475 6580
5862 1077
6666 7056
2793 7180
7175 0148

Observed for

tt e

.0030 0127 0238 7102 7949

.0027 0533 0592 0946 3793

.0024 3814 9607 8519 0648

.0021 9701 7828 5704 8789

.0019 7946 3656 1777 4941

.0017 8323 6124 7283 4517

.0016 0628 8101 7164 6560

.0014 4676 0128 6430 1251

.0013 0296 5041 3524 9640

.0011 7337 3456 8177 1422

.0010 5660 0172 2241 9129

.0009 5139 1491 6632 0338

.0008 5661 3473 2828 0290

.0007 7124 1073 6049 1625

.0006 9434 8154 4810 4916

.0006 2509 8310 7043 5014

.0005 6273 6471 7289 2795

.0005 0658 1228 5628 1531

.0004 5601 7836 1436 4579

.0004 1049 1841 9142 4169

0
0
0
0
0

0
0
0
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
0
1
0
0

0
0
0
0
0

0
0
0
0
0

1
0
0
0
0

0
1
0
0
0

76 .0036 9745 8744 5702 0432
and over

1   (77) 0

Total 67 82

in materially changing the characteristics of the sequence length distribution for

the coupon collector's test. Some question arises as to whether the single frequency

test and the coupon collector's test are independent, and also which test has the

greater power.

The chi-square test values in Table 2 were calculated by assuming that the

sequence lengths for complete sets of digits are independent draws from a known

(infinite) multinomial probability distribution. (Null hypothesis.) The alterna-

tives would include unspecified sorts of dependency and other underlying prob-

abilities different from those given in Table 3.

Robert E. Greenwood
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A Method for the Evaluation of a System
of Boolean Algebraic Equations

With the advent of large scale electronic devices whose logical design is de-

scribed by a system of Boolean algebraic equations, a method to mechanize the

evaluation of such a system and shorten this evaluation with respect to time will

be increasingly useful. Such a method will be described in this paper.

The problem may be described as follows: Given a set of n variables, Qk,

(k = 1, 2, ■ • •, n) each of which may take on the value 1 (true) or 0 (false) at

any time t; then the value of any Qk at time t + 1 may be defined by the system

of Boolean equations

(1) Rf = MQt")

(2) Stk = gk(Qt")

(3) Q«t+1 = <b(Qtk,Rtk,Stk)

where 1 < q < n. For example, the recirculation loop of a dynamic flip-flop may

be defined simply by
Q*(+1 = <K<2A Rtk, stk) = RtK

In another system, a more complex definition

QVi = <p{Qtk, Rtk, Stk) = Qtk-Rj-S} + Rtk-S? + Qt~k-Rtk-Stk

may be taken, where Rtk and Stk are the two inputs to flip-flop Qk.

We shall use the symbols for conjunction, disjunction, and negation

Q--Q2 "Q1 and Qv' conjunction

qi _|_ q2 "Qi or disjunction

Q~l "Not Q}" negation

which are defined by the truth tables1

(ji c? <?•<? Q' + Q2 Q1
0 0 0 0 1
0 10 11
10 0 10
11110.

A "term" is defined as one or more variables conjoined together, e.g., G^-Q^-Q*;

and an "equation" as M terms, Tm, (m = 1, 2, • • •, M) disjoined together, e.g.,

Q}-Q2-X? + <21-Q4- Now note that the value of a term is zero if any variable in


