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REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

1[A, L].—A. D. Booth, "A note on approximating polynomials for trigonometric

functions," MTAC, v. 9, 1955, p. 21-23.

Jn(h*) is given to 11D for n = 0(.5)12.5.

J- T.

2[B, C].—John von Neumann & Bryant Tuckerman, "Continued fraction

expansion of 2*," MTAC, v. 9, 1955, p. 23-24.

Let Sn(x) be the sum of the first n partial quotients of the continued fraction

for x. A table of n log «/log 2 and S„(2*) is given for n = 100(100)2000; the first

expression is given to 1D ; the second is given exactly.

J- T.

3[D].—Birger Jansson, Numerisk fourieranalys for hand-och halkortsberakning.

44 leaves of blue line prints from transparencies, 29.7 cm., deposited in the

UMT File.

This contains tables of sin ( vn- ) and cos ( vn- ) for v = 0(1)25 and
\     100/ V     100/

/ 360 \ , / 360 \
I vn —— I and cos I vn —— I
\    400/ \     400/

n = 1(1)25 and of sinlvn— ) and cos[vn17J. ) for » = 0(1)100, n = 1(1)50,

all to 4D. The tables are prepared to assist in Fourier analysis using desk calcu-

lators or punched card machinery. A remarkably detailed description of pro-

cedures for Fourier analysis included ; this is based mainly on an assumption that

punched card machinery similar to International Business Machines is avail-

able. The discussion leads up to a careful time estimate for the calculation.

The author announces but does not include tables of si (        360\ An I vn- I  and
\     1200/

cos (tire- )   for  v = 0(1)300,   n = 1(1)160.   Tables  designed   for  the  same

application have been prepared also by L. W. Pollak and by Owen Mock ; these

are reviewed in MTAC, v. 5, 1951, p. 19-21 and p. 149, and in MTAC, v. 9,
1955, p. 72 and p. 196. No earlier tables are known to contain as detailed in-

structions for machine analysis.

C. B. T.

4[F].—Andrew S. Anema, A table of primitive Pythagorean triangles with their

generators, having identical perimeter totals. 13 typewritten pages deposited in

the UMT File.

The main table is a set of 107 primitive Pythagorean triangles with identical

perimeters. The table contains two primitive Pythagorean triangles with perimeter

1716 (sides 364, 627, and 725; 748, 195, 772), three primitive Pythagorean
triangles with perimeter 14280, four primitive Pythagorean triangles with

perimeter 3 17460, and 107 primitive Pythagorean triangles with perimeter

60850 05270 54420.
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These were computed without aid of machines. The author, an old hand at

lightning calculation, includes several comments about the method of calculation.

One example from each of the sets with 3, 4, and 107 entries follows:

From set of three :

P = 14280 = 2-22-3-5-7-l7
3-5-7 = 105, 22-17 = 68 (generator a), 37 is generator b;

A = 2ab = 5032, B = a2 - b2 = 3255, C = a2 + b2 = 5993.

From set of four :

P = 3 17460.

A  = 1 53868, B  = 9435, C = 1 54157.

From set of one hundred seven :

P = 60850 05270 54420,

A = 2763 24098 54668,

B = 28977 68095 17195,

C = 29109 13076 82557.
C. B. T.

5[F].—N. G. W. H. Beeger, Table of the Least Factor of the Numbers that are

not Divisible by 2, 3, 5 of the Eleventh Million. 429 tables, 34 pages of form,

33| cm., deposited in the UMT File.

In 1949 D. Jarden and A. Katz published, Page 477 to D. N. Lehmer's

"Factor Table for the First Ten Millions" [1]. It contains the table of the least

factor of all the numbers not divisible by 2, 3, 5, and 7, in the interval 10 017 000-

10 038 000. I have checked this extension against the part of Kulik's table,

"Magnus Canon Divisorum" [2], and against the part of a table constructed by

L. Poletti by means of his printed fasciles, Neocribrum. No discrepancy was

found. Therefore my construction of the table of the least factors of the eleventh

million was commenced at cycle 335, that is to say at 10 030 021.

In the printed fasciles (conceived by L. Poletti), mentioned above, the least

factors 7, 11, 13 are printed. I used "stencils" to insert the least factors 17, 19,

23, • • •, 359. All insertions in the fasciles were made by rubber stamps. Therefore

I calculated by means of a calculating machine and using J. Glaisher's table of

the differences of consecutive primes [3]: the products 367c, 373c, ■ ■■, 33l3q

(q are suitable primes) in the eleventh million. These were then inserted in the

fasciles. The resulting table was checked : first against Kulik's table, second

against the mentioned table by L. Poletti. The discrepancies were corrected.

This work confirmed the primality of all the numbers of Liste des nombres premiers

du onzième million (plus précisément de 10 006 741 à 10 999 997), d'après les

tables manuscrites de J. Ph. Kulik, L. Poletti, et R. J. Porter. Imprimerie

"Werto," Amsterdam, 1951.
N. G. W. H. Beeger

Amsterdam
Holland
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1. D. Jarden & A. Katz, Additional page (477) to D. N. Lehmer's Factor Table, Riveon Lemat.,
v. 3, p. SO.

2. J. Pe. Kulik, Magnus Canon Divisorum. [See UMT 48, MTAC, v. 2, 1946, p. 139-140.]
3. J. Glaisher, Factor Table for the Fourth Million, London, 1879, p. 48-52.

6[F, Z],—Edgar Karst, Tables for converting 4 digit decimal fractions to periodic

octal fractions. 4 Tables, 13 handwritten sheets, 10.8 cm., deposited in the

UMT File.

The author lists the complete period of 4, 20, 100, and 500 octal digits for the

decimal fractions .2, .04, .008, and .0016. For any other fraction, the period is a

cyclic permutation of one of these periods and the proper starting place is tabu-

lated. If the fraction is not a multiple of 5**, determine the first digit or two in

the usual way (multiply by 8) and the table may now be consulted for the periodic

digits. The tables are arranged for the convenience of the table maker, rather

than the user. A complete description is :

Table V—i

S-*Ä    Ind8 k    n   8B5-'' (mod 8)

where k = 1 (1)5* (k, 5) = 1 n = 1(1)4-5<_1 i = 4(1)1 and indices are with re-

spect to 5*.

J. L. Selfridge
University of California
Los Angeles, California

7[I].—Francis L. Miksa, Stirling numbers of the first kind. 27 leaves reproduced

from typewritten manuscript on deposit in the UMT File.

After completing a table [4] of Stirling numbers of the second kind, rSn, for

n = 1 (1) (50) the writer decided to prepare a companion table of Stirling numbers

of the first kind, S(r, n), computed for the same range.

Both kinds of Stirling numbers arise in formulating relationships between

algebraic factorials and powers. For the Stirling I numbers we need only to express

the factorials by means of power series.

It is customary to define the coefficients in these power series as the Stirling

numbers of the first kind, and this of course includes the algebraic sign. For our

purpose of tabulation, however, it is more convenient to consider only the absolute

value of the coefficients.

The table was computed by means of the recurrence relation

S(r, n + 1) = n-S(r — 1, n) + S(r, n)

and was checked by means of

n

S S(r, n) = n!.
r—1

Comparison with the table of Exact Values of the First 200 Factorials [1 ] showed

that the agreement was complete.

The most extensive earlier table known to the writer is that published during

1900 by J. W. L. Glaisher [2], where they are listed up to n = 23 in our notation.
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A more detailed treatment of applications of the Stirling I numbers appears

in C. Jordan [3].
Francis L. Miksa

613 Spring St.
Aurora, Illinois

1. H. S. Uhler, Exact value of the first 200 factorials, New Haven, Conn., MTAC, v. 1, RMT
158, 1943-45, p. 312.

2. J. W. L. Glaisher, "Congruences relating to the sums of products of the first n numbers
and to other sums of products," Quart. Jn. Math., v. 31, 1900, p. 1-35.

3. C. Jordan, Calculus of Finite Differences, Chelsea Pub. Co., New York, 1947, p. 142-168.
4. Francis L. Miksa, Stirling Numbers of the Second Kind. Deposited in M TA C, UMT File.

See Review 85, MTAC, v. 9, 1955, p. 198.

8[I].—Kuo-chu Ho, "Double interpolation formulae and partial derivatives in

terms of finite differences," MTAC, v. 9, 1955, p. 52-62.

Expressions for partial derivatives of hßka~ß(daf/dxßdya~ß) where a = 1(1)4,

ß = 0(l)a are given in terms of the differences of / at intervals h in x, k in y.

The expressions given include the fourth order terms. These are given in various

forms suitable for use at the edges and corners of a table as well as in the center.

The corresponding Lagrangian expressions are given for a = 1(1)3.

J- T.

9[I].—H. E. Salzer, "Osculatory quadrature formulas," /. Math. Physics, 34,

1955, p. 103-112.

Quadrature formulas such as

fxo+sh

I(r, s) = f(x)dx = hZAifi + h22Z W + #Ä2n+7(2n) (0)
*J xQ+rh

can be found by integration of osculatory interpolation formulas. The exact values

of the Ai, Bi, R, expressed as rational fractions in their lowest terms, are given in

the case of n points for n = 2(1)7. For each n the appropriate coefficients are

given for all possible sub-intervals : thus for n = 4, with / and /' given at points

Xi = xo + ih, i = — 1, 0, 1, 2, we find expressions for the integrals I(r, s) for

the following values of (r, s) : (-1,0), (0, 1), (1, 2); (-1, 1), (0, 2); (-1, 2) in

terms of all the data.

J- T.

10[I].—T. N. E. Greville & H. Vaughan, "Polynomial interpolation in terms

of symbolic operators," Trans. Soc. Actuar., v. 6, 1954, p. 413-476.

Table 6, p. 450-451, gives the exact values of the basic function L(x) = L(—x)

of the following continuous operators: Af6, /¿AP, M\ 52M\ ôiMi, pM3, pb2M3,

ô*M2, M5, ííM\ M3, h2M3, for x = 0(.1)4 or less (usually around 3), up to the

value of x where L(x) — 0. The basic function L(t) for the continuous operator

K is defined by K = JL™ L(t)E~'dt where E denotes the displacement operator

of the calculus of finite differences. The operator K is also called the characteristic

operator for the interpolation formula of which L(t) is the basic function, and it is

analogous to the graduation operator which the authors have associated with a

discrete interpolation formula.
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Preceding Table 6, on p. 443-449 are the following collections of formulas :

Table 1, p. 443-445, Characteristic Operators of Certain Published Interpolation

Formulas, giving name or originator of formula, place and date of publication,

and characteristic operators.

Table   2,   p.   446,   gives   the   symbolic   expansions   of   certain   operators,

namely,   combinations   or   separate   powers   of   M,   p,   and   5   in   terms   of

d
D m — •     (5 = Ei — E-i, p = § (£» + -E~è), and M is a new operator defined by

dx

Mf(x) = f4f(x + t)dt.)
Table 3, p. 446, Traces of powers Mk and mean powers pMk, k = 1(1)8, in

terms of even powers of o, where the author defines the trace of a continuous oper-

ator K with basic function L(t) as the discrete operator t(K) = 2Z-oo L(n)E~n.

Table 4, p. 447, Powers and mean powers of M, up to the 10th, in terms of

special operators for both endpoint and midpoint formulas.

Table 5, p. 448-449, Various special operators for endpoint, midpoint, or

mixed endpoint-midpoint formulas in terms of M, 6, p, and D.

H. E. Salzer
Diamond Ordnance Fuze Laboratories
Washington 25, D. C.

11[K].—The RAND Corp., One Million Random Digits and 100,000 Normal
Deviates, The Free Press, Glencoe, Illinois, 1955, 26.5 cm., xxv + 200 p.

$10.00. The tables are also available on punched cards from The RAND

Corporation, 1700 Main St., Santa Monica, Calif. $25.00 an order +$3.00

per 1000 cards.

This book contains one million random decimal digits and 100,000 normal

deviates, computed from the random digits to 3D. This succeeds [1] as the largest

table of random numbers known to be available. The book also contains intro-

ductory material describing production of the digits, tests of the digits, production

and tests of the normal deviates, and use of the tables.

Random numbers have long been used in various ways for the simulation of

random or imponderable effects in various calculations. In recent years a growing

popularity of the so-called Monte Carlo type of calculation in various shielding

problems in physics and other problems of mathematics and applied mathematics

has led to a greatly increased demand for random numbers ; some of this recent

work is described in [2], [3], [4]. The increasing power of modern computing

equipment has also led to higher demands for random numbers in their more

classical uses. The present publication was prepared in order to meet these in-

creased demands. The largest earlier publication [1] is reported to have been

completely inadequate in size for the needs of The RAND Corporation.

Generally speaking, workers have been content with the generation of numbers

conforming with frequency distribution requirements and believed to be essen-

tially independent of the process being simulated in their method of production.

Many systematic ways of generating such numbers have been proposed for digital

computers; references to some of these are contained in [6], and other schemes

may be found in [7]. The present numbers were not generated by any known

formula, but they were rather generated by a process which (if current physical



40 REVIEWS  AND  DESCRIPTIONS  OF  TABLES  AND  BOOKS

theory is correct) was completely random, yielding output which could not have

been predicted with any amount of knowledge available before the generation

of the numbers. The digits were prepared by driving electronic counters by elec-

tronically generated noises. (Another random method of generating binary digits

is described earlier in this issue [11].)

The random digits were subjected to numerous tests described in the intro-

ductory material. The originally generated digits showed unacceptable biases in

their distribution, and a new table was generated systematically by adding pairs

of digits modulo 10 to improve (that is, to flatten) the distribution. This was

successful. Standard tests of frequency distributions, poker hands, frequencies of

digraphs (ordered pairs of digits), and lengths of runs of a single digit were carried

out, presumably on the digits as they were punched on the IBM cards.

The printed version was prepared automatically from these IBM cards, and

it is unlikely to differ from the punched card version in more than a few digits.

All the standard tests as reported were passed adequately by the digits.

However, one test was improperly analyzed, and the authors have requested that

the following correction be made in the text. It is believed that the desirability

of some such modification was brought to the Corporation's attention by I. J.

Good; it is based upon his analysis of a serial test [8].

Replace the paragraph beginning at the bottom of page xv by the following:

Table 5 can be tested by a criterion originally due to Kendall and Smith and

revised by Good. Assuming all pairs equally likely we get a normalized sum of squared

deviations of 107.8. However, this statistic does not have a -^-distribution. On the other

hand, it is the sum of the error variation and twice the row (or column) variation,

where under the assumption of perfect randomness, the error variation is asymptotically

distributed like x2 with 81 degrees of freedom. We take the error variation as our test

criterion. This gives a x2 of 107.8 — 2(7.56) = 92.7, which is about the 0.18 level

for 81 degrees of freedom.

The modification above cannot be interpreted as challenging the randomness

of the digits.

It seemed conceivable that the standard tests reported as having been made

in the introduction to the book would have failed to detect variable instability

of counters (which, in any event, would be unlikely to have a bad effect on the

randomness of the digits after the smoothing transformation made above). The

reviewer did test a hypothesis that such instability occurred and led to excessive

lengths of coupon collector's sequences [9]. Accordingly the digits were trans-

formed from decimally punched card form to binary coded decimal form suitable

for introduction to the SWAC computing machine located at the University of

California at Los Angeles. The coupon collector's test described by Greenwood

was run by the reviewer with the help of F. H. Hollander, J. L. Selfridge,

and David A. Pope. The longest single sequence which was required in order to

provide at least one of each of the 10 digits had length 115 digits; the total number

of sequences tested before the digits were exhausted was 34,248; the longest

sequence of length 115 was not inordinately long. Based on the total number of

sequences observed and the probabilities reported by Greenwood [9], the follow-

ing comparison is possible between the numbers of sequences observed of various

lengths and the numbers expected.
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Length of Number Number

Run Observed Expected

i Vi ppi

10 14 12.428
11 63 55.926
12 152 143.542
13 284 276.832
14 462 446.786
15 640 638.190
16 813 834.267
17 1017 1020.064
18 1264 1184.234
19 1342 1319.539
20 1415 1422.517
21 1480 1492.752
22 1528 1532.020
23 1515 1543.501
24 1576 1531.128
25 1488 1499.087
26 1431 1451.483
27 1375 1392.115
28 1299 1324.359
29 1189 1251.116
30 1269 1174.806

31 1136 1097.397
32 977 1020.446

33 972 945.150
34 839 872.401
35 792 802.832

36 689 736.868
37 695 674.765
38 618 616.647
39 554 562.532
40 494 512.363
41 490 466.026
42 408 423.364

43 386 384.196
44 357 348.322
45 338 315.534
46 304 285.622

47 265 258.376
48 235 233.594

49 196 211.081

50 196 190.651
51 188 172.129
52 148 155.352

53 139 140.166
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Length of Number Number

Run Observed Expected

* "i                                       ppi

54 114 126.428
55 117 114.009
56 104 102.788
57 84 92.652
58 74 83.502
59 70 75.243
60 67 67.793
61 53 61.072
62 62 55.012
63 53 49.549
64 42 44.624
65 47 40.186
66 37 36.186
67 22 32.583
68 41 29.337
69 21 26.413
70 28 23.780
71 20 21.408
72 15 19.273
73 18 17.349
74 14 15.618
75 11 14.059
76 and more 102 126.631

The reviewer cannot find any significant indication in these data to support a

hypothesis that the digits are not random. A calculation of x2 based on the as-

sumption that 34,248 samples were divided into 67 categories with 66 degrees of

freedom gave a value of x2 about 0.135<r below the expected mean value. More

detailed results of this coupon collector's test may be obtained by addressing

the reviewer.

The normal deviates were computed from the random digits according to a

standard procedure, see [6]. In particular, if D is a five-digit number taken from

the table of random digits and read as an integer, then the numbers listed are

values of x solving the equation

(D + 0.5) 10"6 = -7== I     e~>''2dt.
y2irJ-x

For the right hand number of this equation the National Bureau of Standards

tables of the normal distribution [10] were used.

The printing is satisfactory. Reproduction was by photographic offset printing

from pages printed by an International Business Machine Model 856 Cardatype.

Each page of the table of random digits contains fifty lines ; each line contains a

serial number and ten groups of five decimal digits. The digits are easily legible.

Each page of the table of normal deviates contains fifty lines; each line contains
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a serial number and ten deviates. The material was proofread only on a sample

basis, but the probability of serious error in printing seems low.

C. B. T.

1. M. G. Kendall & B. B. Smith, Random Sampling Numbers, Cambridge University Press,
1939.

2. National Bureau of Standards, The Monte Carlo Method (Proceedings of a Symposium
held in 1949), NBS AMS 12, U. S. Gov. Printing Office, Washington, D. C, 1951.

3. J. H. Curtiss, "Sampling methods applied to differential and difference equations," Seminar
on Scientific Computation, International Business Machines Corp., New York, 1949.

4. H. Kahn, Applications of Monte Carlo, The RAND Corp. (to be published).
5. P. Davis & P. Rabinowitz, "Some Monte Carlo experiments in computing multiple in-

tegrals," MTAC (this issue), v. X, 1956, p. 1.
6. D. L. Johnson, "Generating and testing pseudo random numbers on the IBM Type 701,"

MTAC (this issue), v. X, 1956, p. 8.
7. L. Sacco, Manuel de Cryptographie, Payot, Paris, 1951, Chap. XI, p. 74-119.
8. I. J. Good, "The serial test for sampling numbers and other tests for randomness," Camb.

Phil. Soc, Proc, v. 49, 1953, p. 276-284.
9. Robert E. Greenwood, "Coupon collector's test for random digits," MTAC, v. IX, 1955,

p. 1-5. (Note also Corrigendum, MTAC, v. IX, 1955, p. 229.)
10. Tables of Probability Functions, 2nd ed., U. S. Gov. Printing Office, Washington, D. C,

1948.
11. Z. Pawlak, "Flip-flop as Generator of Random Binary Digits," MTAC (this issue),

v. X, 1956, p. 28.

12[K].—NBS Applied Mathematics Series, No. 44, Table of Salvo Kill Prob-
abilities for Square Targets, U. S. Gov. Printing Office, Washington, D. C,

1954, ix + 33 p., 26 cm. Price $0.30.

Let {x, y, a} denote the circular normal distribution centered at (x, y) with

standard deviation <r in each direction. A salvo of N bombs is "centered" at (£, r¡),

which has the distribution {0, yo, <ta}- The bombs of the salvo are independently

distributed according to {£, r¡, <tr). If a bomb hits the square target (x2 ^ 1,

y2 á 1), there is chance Pk of a kill. Assuming the bombs act independently,

the chance Psk that the salvo kills the target is computed for Pk = .1, .4, .7, 1 ;

y0 = 0, 1, 2, 4, 7, 11, 16, 22; aA, uR = 1, 2, 4, 7, 11, 16, 22; N = 1, 5, 10, 25, 50,

100, 150, 200. The entries are 4D with possible error of two in the last place.

In an introduction, A. D. Hestenes warns the user against interpolating in this

quintuple-entry table, except in the PK direction for small N.

J. L. Hodges, jr.
University of California
Berkeley, California

13[K].—K. C. S. Pillai & K. V. Ramachandran, "On the distribution of the

ratio of the ith observation in an ordered sample from a normal population

to an independent estimate of the standard deviation," Ann. Math. Stat.,

v. 25, 1955, p. 565-572.

Tables to 2D are given for (1), the 95th percentile of distribution of qn = xjx ;

(2), the 5th, and (3), the 95th percentiles of the distribution of un = |x„/.s| where

xn is the largest of a sample of n observations from a normal population with

zero mean and unit variance and s is independently distributed with v degrees

of freedom, for (1): n = 1(1)8: v = 3(1)10(2)20, 24, 30, 40, 60, 120, oo ; (2):
n = 1(1)10: k = 1(1)5(5)20, 24, 30,40,60, 120, oo ; (3):n = 1(1)8: v = 5(5)20,

24, 30, 40, 60, 120, », respectively.
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A table used in the derivation of the above tables is given to 8S for coefficients

at(k) which are defined by

forx' = 0(1)30; ^ = 1(1)7.

W. J. Dixon
University of California
Los Angeles, California

14[K].—P. B. Patnaik, "A test of significance of a difference between two sample

proportions when the proportions are very small," Sankhyä, v. 14, 1954,

p. 187-202.

The paper is concerned with the following problem: "if there is a random

sample of Ni individuals from a population, of which Xi have the characteristic A,

and a random sample of N2 from a second population, of which x2 have A, then

it is desired to test whether the chance of possessing A is the same in the two

populations." Consideration is restricted to cases in which Poisson distributions

are acceptable approximations to the binomial distributions which give the

probabilities for various values of Xi and of X2. The problem thus becomes one

of testing, using one observation from each Poisson distribution, the hypothesis

that the ratio of the parameters of the two Poisson distributions is a given con-

stant. Two test procedures are proposed. Randomized tests are not considered.

(A) It is pointed out that, if the conditional probabilities of falling in the critical

region for fixed sum of the two observations is kept below some preassigned value,

the size of the critical region is, for small sum of the parameters, very much below

this preassigned value. One of the many possible methods of interpolating is pro-

posed to keep conditional probabilities near, but not necessarily below, the pre-

assigned number and to make the size of the critical region near this number.

Some tables illustrate the effects on conditional and unconditional sizes of critical

regions. (B) The idea of a "test with minimal bias" is introduced. The power

curve must be at or below the nominal size at the parameter value for the hy-

pothesis under test, derivatives at this point must satisfy certain conditions,

and among tests satisfying these conditions, that one is chosen which minimizes

the length of the interval of parameter values for which the power curve is below

the nominal size. The requirement of minimal bias is imposed on the conditional

regions, making the test that of a binomial varíate. Critical values for a binomial

varíate are given (in Table 6) for a(nominal size) = 0.05, 0.10; p(parameter of

the binomial) = §, f, f, f, «(index at the binomial) = 6(1)25. Several typo-

graphical errors in titles are obvious.

K. J. Arnold
Michigan State University
East Lansing, Michigan

1S[K].—Benjamin Epstein, "Truncated life tests in the exponential case," Ann.

Math. Stat., v. 25, 1954, p. 555-564.

With n items on a life test, it is decided in advance that the experiment is

terminated either at a fixed truncation time Tu or at the time X(r0, n) necessary
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for the r0th failure, whichever is smaller (stopping rule), and it is assumed that

the distribution of lives X(X > U) is exponential with unknown mean 8. If

X(r0, n) < To(> T0) the null hypothesis 8 = 60 is rejected (accepted). Two cases

are considered, non-replacement and replacement from the same population.

Formulae are derived for Ee(r), the expected number of observations, and Ee(T),

the expected waiting time necessary to reach a decision. In the replacement case
a

they are related simply by Eg(T) = —Ee(r). The probability L(6) of accepting
n

6 = do where 8 is true is calculated as the probability of reaching a decision re-

quiring up to r failures. However, in Epstein's formulae (2), (13), (21), the

sign = should read >. ■ ■ '» . >

Table 1 gives the values of r and x2i-<r(2r)/(2r) such that the test based on

using 8r,n > C = Oox2i-a(2r)/2r as acceptance region for 8 = 0O will have the

probabilities L(80) = 1 — a and L(8X) > ß for the errors of the first type with

a = .01, .05, .10 and of the second type with ß = .01, .05, .10 for 80/6i = |, 2,.$,
3, 4, 5, 10. (The heading of the last column should be ß = .10 instead of ß = .01.)

Table 2 gives some integer values of n = [0ox2i-a(2fo)/2T^o] to be used in trun-

cated non-replacement procedures for a = .01, .05; ß = .01, .05 for 8o/6i = 2,

3, 5 and 80/T0 = 3, 5, 10, 20.

Excellent practical illustrations are given as solutions of problems of the

following type: Find a truncated replacement plan for which Tu = 500 hours

which will accept a lot with mean life 8 = 10,000 hours at least 95% of the time

and reject a lot with mean life 8 = 2000 hours at least 95% of the time. Then

a = ß = .05. The values L(8), Ee(T) and Ee(r) are computed for both values of 8.

E. J. Gumbel

Columbia University
New York, N. Y.

16[K].—D. B. Duncan, "Multiple range and multiple F tests," Biometrics,

v. 11, 1955, p. 1-42.

Let q(p, n2) = w/s where w is the range of p independent normal variables

having the same mean and unit standard deviation, and n2s2 is distributed inde-

pendently of w as chi square with n2 degrees of freedom.

Table II labeled "Significant studentized ranges for a 5% level new multiple

range test" lists the (.95)p_1 percentiles of the sampling distributions of q(p, n2)

for p = 2(1)10(2)20, 50, 100 and n2 = 1(1)20(2)30, 40, 60, 100, ». Table III
lists the (.99) p-1 percentiles for the same distributions. These tables are used in

performing comparisons among the means of equal sized samples from p popula-

tions. Tables of the 95th and 99th (same percentiles for all p) percentiles of

9\(P, ni) are given in Biometrika Tables [1].

Care should be taken not to confuse the 5% level heading in the table (what

the author calls 95% two mean protection level) with 5% level of significance in

an analysis of variance test since they actually refer to different probabilities. If

an analysis of variance test is to be performed at the 5% level to test the hy-

pothesis that the p populations have equal means then, if the p means are equal,



46 REVIEWS  AND  DESCRIPTIONS  OF  TABLES  AND   BOOKS

there is a 5% probability that the data will be such that the hypothesis is re-

jected. For the tests suggested in this paper there is a 5% least upper bound to

the probability that any one pre-specified pair of populations having equal means

will be judged to have unequal means. Using the suggested test for a case where

all p populations have equal means the probability that at least one pair will be

declared significantly different is 1 — (.95)p_1.

This is an attempt to make the suggested tests more comparable in overall

level of significance to the case in analysis of variance where single degrees of

freedom are used, and repeated tests at the 5% level are used.

Tables I and IV describe an example.

Table V classifies several discussed test procedures according to the measure

of variability used among the means (range or variance), whether having other

observed means between two specified means changes the difference labeled

significant, and whether these differences depend on a fixed level a or a level which

changes with the number of means between the two specified ones.

Table VI lists for comparison some "significant ranges for 5% level tests" of

four discussed tests. Table VII compares the power of two classification of tests

(p = 20, 5% level) to recognize a difference in the means of two pre-chosen

populations.

Due to the fact that "5% level" means different things for the different tests

Tables VI and VII are likely to give a somewhat slanted comparison of the various

discussed tests.

Frank Massey
University of Oregon
Eugene, Oregon

1. E. S. Pearson & H. O. Hartley, Biometrika Tables for Statisticians, v. I, Cambridge, 1954.

17[K].—E. C. Fieller & H. O. Hartley, "Sampling with control variables,"

Biometrika, v. 41, 1954, p. 494-501.

Let x and y be jointly distributed, and let f(x, 8), g(y, <j>) be the respective

marginal distributions. Information about the control variable x is available,

e.g., f(x, 8) may be completely known or 8 may be known. The authors are con-

cerned with using this information in the estimation of <b for the case where

Xi, ■•-, Xi are observations from an N(p, 1) population, x = Jl(Xi — X)2,

y = ATmax — A"min ; the distribution of y is assumed unknown and that of x known.

In the determination of the variance of the proposed estimate, the expectation of

the reciprocal of a binomial variate, excluding the zero class, is needed.

"   1 (n\
Values of  (1)  E'(np, n) = JL    [      ) prqn~r for m = np = 1(1)10,  n = 25,

r-i r \ r /

50, « are computed directly. For m = 12(2)20, n = 25, 50, 100,

1 1 21
(2)  E'(m n) ~-1-1_:-h • • •
v ' '   v   ' m+p      (m+p)(m + 2p)      (m+p)(m + 2p)(m + 3p)

is used; for m = 25(5)45, n = 50, 100 a control is used with (2). E'(m, <*>) may

be calculated from E'(m, °°) = e~m{Ei(m) — log« m — 7) using available tables
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[1, 2]. For large np, the approximation E' ~-\--—\- -,-r: is
m — q      (m — q)3       (m — q)i

is given. Values of (1) for m = 1(1)10 are given to 4D, all others to 5D.

Ingram Olkin
Michigan State University, East Lansing, Mich,
and University of Chicago, Chicago, 111.

1. BAAS Math. Tables, v. I, London, 1931.
2. E. Jahnke & F. Emde, Tables of Higher Functions, 5th ed. Leipzig: 1952

18[K].—P. N. Somerville, "Some problems of optimum sampling," Biometrika,

y. 41, 1954, p. 420-429.

Let

f(y) - f(yu ■ ■ -,y*) = (27r)-*'2|z|-*'2exp - í trys-y,

where y = (yu ■ ■ -, yk), 2 = (er«), ttu = 1, <t¿, = § and let F*(x) = fRf(y)wdyi,

where R: — œ < y{ < x, i = 1, ■ • -, &. In Table 3.1 the author computes

F*(s), x = 0(.1)2(.5)3 to 5D for k = 1, 2; 4D for k = 3, 4; 3D for k = 5. ^(x)
is available in a number of tables. F2(x) was computed using Table VI11 of part

II of the Pearson Tables [1], and Fi(x). For Fk(x), k = 3, 4, 5, an expansion

°f /(y) m terms of Hermite polynomials was used [2].

Ingram Olkin
Michigan State University, East Lansing, Mich.,
and University of Chicago, Chicago, 111.

1. K. Pearson, Tables for Statisticians and Biometricians, London, 1931, part II.
2. W. F. Kibble, "An extension of a theorem of Mehler's on Hermite polynomials." Camb.

Phil. Soc, Proc, v. 41, 1945, p. 12-15. See p. 15.

19[K].—H. F. Dodge, "Skip-lot sampling plan," Industrial Quality Control,

v. XI, no. 5, 1955, p. 3-5.

For derivations, formulae, and basic procedure, see the author's earlier

paper [1]. The procedure developed there is as follows: (1) inspect 100% of

units consecutively as produced until i successive good units are found (each unit

is good or bad), (2) thereupon, inspect only an unbiased proportion /, (3) if in

the proportion / a bad unit is found, revert to 100% inspection until i successive

good units are found, etc., (4) replace bad by good units. For given / and i, the

average outgoing proportion defective (AOQ) as a function of the incoming pro-

portion defective (p), and (consequently) the maximum AOQ (AOQL) are

determined.

In the current paper, the series of units are replaced by series of lots, inspection

of a unit by analysis of a sample, bad unit by bad lot (lot whose sample fails to

meet a standard). Corresponding changes of meanings of p, AOQ, and AOQL to

apply to lots rather than units.

Figure 1 gives the AOQL = .01(.01).06, .08, .10 as a function of i = 1(1)50,

(2)100 and / = .01 (.001).05(.002).10(.01).50. Figure 1 is essentially an abridge-
ment of Figure 3 of his 1943 paper cited above (p. 272) though the AOQL curves

are now fully shown for low i.

Harold Freeman
Massachusetts Institute of Technology
Cambridge, Mass.

1. H. F. Dodge, "A sampling plan for continuous production," Ann. Math. Stat., v. 14, 1943,

p. 264-279.
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20[K].—J. Aitchison & J. A. C. Brown, "An estimation problem in quantitative

assay," Biometrika, v. 41, 1954, p. 338-343.

A popular model for the quantitative response u to a stimulus of concentration

x is : u = HP (a + ßx) + e, where H is the maximum expected response ; P(a + ßx)

is the normal cumulative based on a linear function of x; and e is A(0, cr2), inde-

pendent of x. The authors consider a model of the form :

In u = v = In H + In [P(a + /Sx)] + e = K + In P + e,

i.e., Var (m) is proportional to [-E(tt)]2. Iterative equations, familiar to probit

users, are set up to estimate a, ß, and K.

A table of working probits, to facilitate the solution of these equations, is

given for initial guessed probits, Y = a0 + bBx = 1.0(0.1)9.0. This table contains

values of the minimum working probit to 4D ; of the auxiliary variable, P/Z

to 4D or 5S; and of the weighting factor, Z2/P2 to 4D. The working probit for

/ P        \ P
this model is y = I  Y - — In P ) + (v - K) -■

R. L. Anderson
North Carolina State College
Raleigh, N. C.

21 [K].—A. R. Jonckheere, "A distribution-free iC-sampIe test against ordered

alternatives," Biometrika, v. 41, 1954, p. 133-145.

Let Xi, i = 1,2, • • •, k, be independent random variables with the continuous

cumulative probability functions Fi(x), and let Xa, j = 1,2, • • -, w¿, be samples

of size mi of the Xi. To test the hypothesis that Xi, ■ ■ ■, Xk have the same dis-

tribution (Ho) : Fi(x) = Fi(x) = • ■ ■ = Fk(x) against the alternative that these

random variables are stochastically increasing (A) : Fi(x) > F2(x) > ■ ■ ■ > Fk(x)

(on p. 134 the sense of these inequalities is inverted, as it is in the footnote on p.

135), the author considers the following statistic: Let pa = number of pairs Xu,

XjS such that X,> < Xjt, among all possible mmi pairs, for given * = 1, ■ ■ ■ ,k — 1;

j = i + 1, • • -, k.   The   test   statistic   is   S = 2 JL    2~2   Pa —  Y.    Y.   m%mj,

identical with a statistic considered by M. G Kendall [1] and closely related

to the rank correlation coefficient.

In his study of the probability distribution of S under (H0) the author obtains

the first four cumulants, studies their extreme values, and obtains asymptotic

distributions under several assumptions. He finds in particular that if at least

two of the sample sizes w,- tend to infinity, then the limit distribution of S is

normal, and he proposes a somewhat better approximation by Student's dis-

tribution. Finally, the exact distribution for small samples is given.

Table 3 gives Pr {S > So} to 3 or 4S for k samples, each of size m, covering

the range: k = 3 and m = 2, 3, 4, 5; k = 4 and m = 2, 3, 4; k = 5 and m = 2,3;

k = 6 and m = 2 ; 50 = 0(2) • • • until Pr {S > S0\ becomes negligible.

Z. W. Birnbaum
University of Washington
Seattle, Wash.

1. M. G. Kendall, Rank Correlation Methods, London, 1948.
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22[K].—R. A. Bradley, "Rank analysis of incomplete block designs II. Addi-

tional tables for the method of paired comparisons," Biometrika, v. 41, 1954,

p. 502-537.

The present article extends the 1952 tables of Bradley and Terry [1] to

include 7 and 8 repetitions for 4 treatments (t — 4; » = 7,8) and 1 to 5 repetitions

for 5 treatments (t = 5 ; n = 1, 2, 3, 4, 5). The problem considered is to estimate

true treatment ratings (irL, • • •, ir¡; 2jt< = 1) and test the hypothesis H0: all

wí = l/t. The tables give, for all combinations of total rank sums, estimates of the

■Ki to 2D, the value of the testing statistic, Bi to 3D, and the significance prob-

ability for Bi to 4D. Only two treatments are tested at a time, giving (     J pairs

per repetition. The favored treatment in each pair is given a rank of 2 and the

other a rank of 1 ; hence, the total rank sum for any treatment can fall between

n(t - 1) and 2n(t - 1).

The author includes (i) a study of the usefulness of an approximate statistic,

(ii) a discussion of various uses of 5j, and (iii) two errata for the original tables.

R. L. Anderson
North Carolina State College
Raleigh, N. C.

1. R. A. Bradley & M. E. Terry, "Rank analysis of incomplete block designs. I. The method
of paired comparisons," Biometrika, v. 39, 1952, p. 324-345 \_MTAC, v. 8, 1954, p. 17].

23[K].—Edward Walter, "Über die Ausnutzung der Irrtumswahrschein-

lichkeit," Mitteilungsblatt für Math. Stat., v. 6, 1954, p. 170-179.

Tests of significance based on statistics which can assume only a finite number

of different values usually do not attain their asserted level of significance. It is

always possible to modify the test (by introducing a randomized test) in order to

attain the asserted level of significance. The author is interested, however, in a

modification based on the observations. He considers the sign test for testing the

null hypothesis that the distribution function is symmetric about zero. The

modified sign test is defined as follows. Let y equal the number of negative ob-

servations in the sample of n ; let y' be the rank of the negative observation with

largest absolute value among the absolute values of all the observations ; let y"

be the rank of the negative observation with second largest absolute value among

the absolute values of all the observations ; etc. The null hypothesis is to be re-

jected if y < y0, or y = y0 and y' < y0, or y = y0, y' = y0' and y" < y0", etc.

In table 1 values of y0, yo', yó', • • ■ are given for n = 5(1)25, a = .01, .05, and

for one- and two-sided tests. The two-sided test is the same as the one-sided test

except that one considers either the number of positive observations or the

number of negative observations, according to which is the smaller.

In table 2, empirical results are tabulated to compare the power of the sign

test, modified sign test, and the ¿-test for a = .01, .05 in the case where the dis-

tribution is normal with variance 1 and mean p = .6, 1, 1.4.

In table 3, the effective levels of significance of the sign test and modified sign

test are given for n = 5(1)30.

Cyrus Derman
Columbia University
New York, N. Y.
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24[K].—Shozo Shimada, "Power of i?-charts," Reports of Statistical Application

Research, Union of Japanese Scientists and Engineers, v. 3, 1954, p. 70-74.

Let Xi, x2, x3, x4 be independent and normally distributed random variables

with means mi, m2, m3, mi and common variance a2. The range R is defined as

the difference between the largest and smallest value among the four successive

observations.

If mi = m2 = i»j = OT4, then the range provides an estimate of a. On the

other hand, if not all the mïs are equal then the range may include the effect of

the variability of the mïs in its estimation of <r.

The author finds the distribution of R based on four observations when the

mïs are not all equal. He then plots the power curves of the range chart for three

special cases, approximating a two fold integral by using "Circular Probability

Paper" [1].

He considers the following three cases :

Case 1. «j = a + (i — \)i) where a and r¡ are constants.

Case 2. w,- = m¡ = mk + 5 = ra¡ + 5 (i, j, k, or / represents one of four integers

1, 2, 3, 4, with no two equal).

Case 3. m¡ = m¡ = m¡¡ = m¡ + ô.

Table 1 gives the probability that a point plotted on a range chart falls outside

a specified control limit for the three different cases. Table 2 gives the probability

that Xi and x¡ take on the smallest and largest value for Case 1 where n = .05.

Some typographical errors are listed below :

1. Fig. 2 Case 1 should be Fig. 3 Case 2.

2. Fig. 3 Case 2 should be Fig. 2 Case 1.

3. In Table 2, the headings Max. and Min. should be interchanged.

Seymour Geisser
National Bureau of Standards
Washington 25, D. C.

1. F. C. Leone & C. W. Topp, "Circular probability paper," Industrial Quality Control, v. 9,
1952, p. 10-16.

25[K].—C. T. Fan, "Note on the construction of an item analysis table for the

high-low-27-per-cent method," Psychometrika, v. 19, 1954, p. 231-237.

The table whose construction is described in this article provides a means of

translating the observed proportions of success in the high and low 27 percent

groups (denoted by pu and p£) into measures of item difficulty (denoted by p

and A) and of item discrimination (denoted by r). Values are tabled for the diffi-

culty index, p, and the discrimination index, r, as functions of pu and pi. These

results are based on Karl Pearson's tables of the normal bivariate surface.

A second item difficulty index, A, can be determined from p and is expressed in

terms of a normal curve deviate with mean 13 and standard deviation 4. The

final complete table is not given in this paper but has been published by the

Educational Testing Service, Princeton, N. J. However, a graphical version of

the final results is given as figure 2 in this paper. Preliminary computations in the

table construction are presented in table 3, which furnishes pu and pi values to

4D for .5000 < p < .9713 and r = .05 (.05)1.00. Figure 2 furnishes a simplified
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version of the final chart for use in graphical estimation of p and r for given values

of Ph and pr,. This graph contains a square grid for p,r = .00(.10)1.00 and curves

of corresponding pH and pL values for pHpn = .10(.10).90, .99 and pL = .01,

.10(.10).9C.

John E. Walsh
Military Operations Research Division
Lockheed Aircraft Corporation
Burbank, California

26[K].—W. T. Sharp, J. M. Kennedy, B. J. Sears, & M. G. Hoyle, Tables of
Coefficients for Angular Distribution Analysis, Atomic Energy of Canada, Ltd.,

Chalk River, Ontario, A.E.C.L. Report No. 97, 1954, xxxix + 38 p., $2.00

The functions of angular momentum quantum numbers introduced by Racah

have related closely the studies of the various correlations in angle of particles

and radiation absorbed or emitted by nuclei. In the Chalk River tables the authors

have compiled and calculated values of the Racah IF-function, the associated

coefficients Z and Zx, and the 9-j symbol, X, for ranges of parameters which occur

in low energy nuclear reactions.

The coefficients W(ljl'j'; sk) and Z(ljl'f; sk) are in the main taken from the

tables of Biedenharn [1] and Obi et al [2]. The range of s, the channel spin

parameter, is extended to 7/2 ; a few values for 5 = 4 not given by Obi are newly

computed. Except in a few cases, j' = j; the range of j is 0(|)5. / and I' are

restricted to integers less than 4, whether or not the selection rules give non-

zero coefficients for higher integers. A table of W(jjijji ; Lk) is provided for

3,ji = MD¥-andL = 1,2.
The coefficients Zi (LjL'f ; Ik) are for f = j closely related to the Fk (LIj)

and Gk(LL'Ij) of Biedenharn and Rose [3]. The present tabulation, for L,

V = 1, 2, 3, j' = j = 0(|)6, / = 0(^)6, extends previous tables [4] to the

parameter values I = 5, 6 and j = 6.

In all cases k is restricted to the even integers.

abc\

New tables of the coefficient X are given for a, d = 1, 2, e = b, f = c,def
ghk

b, c = 1(§)5 and g, h, k = 0(2)8. A second specialization is made to k = 1,

a = d = 1(^)3, g = h = 2, 4, with the other parameters in the range l(j)3.

Finally, auxiliary tables are provided for the triangle coefficient A (a, b, c), and

for the Clebsch-Gordon coefficients (U'00\k0),l,ï = 0(1)6,and (LU - 11|¿0),

L, U = 1, 2, 3.
The square of a coefficient is in each case a rational fraction. The quantities

tabulated are the (positive or negative) powers of the prime factors of each

square, and the sign of the coefficient.

A useful introductory section lists many of the important properties of the

coefficients and discusses their application in the theory of nuclear reactions,

heavy particle-gamma ray correlation, gamma-gamma correlation, transforma-

tions between angular momentum coupling schemes, triple correlation, and

transition probabilities for electromagnetic radiation.

P. V. C. Hough
University of Michigan
Ann Arbor, Michigan
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1. L. C. Biedenharn, Oak Ridge National Laboratory, Reports No. 1098 and 1501.
2. S. Obi et al., Annals of the Tokyo Astronomical Observatory III, 1953, p. 89.
3. L. C. Biedenharn & M. E. Rose, Rev. Mod. Phys., v. 25, 1953, p. 729.
4. W. T. Sharp, Gove, & Taux, Chalk River Reports. PD. no. 254, unpublished.

27[K].—J. M. Kennedy, B. J. Sears, & W. T. Sharp, Tables of X Coefficients,
Atomic Energy of Canada, Ltd., Chalk River, Ontario, 1954, A.E.C.L.

Report No. 106, ix + 16 p., $1.00.

This work extends the authors' table of X coefficients in "Tables of Coeffi-

cients for Angular Distribution Analysis" [1]. The following tables are provided :

1. X-
abc

abc

ghk
for a = 1, 2, b, c = 1 (1)5. Here and throughout g, h, k run over all

even integers compatible with the selection rules for X.

\bc

2. X2 2bc fore, c = 1(1)5.

3. X2

4. X''

5. X2

2bc

ghk

abc

abc

ghk

Ibc

2bc

ghk

a\c

abc

ghk

fora = 1,2, b,c = |(l)f; and for a = 3, 4, b = l(l)f, c = f(l)$.

forô, c = §(1)|.

fore = }ff, a = 1(1)4, c = J(l)f.

P. V. C. Hough
University of Michigan
Ann Arbor, Michigan

1. W. T. Sharp, J. M. Kennedy, B. J. Sears, & M. G. Hoyle, A.E.C.L. Report No. 97, 1954,
Chalk River, Ont. See preceding review.

28[L].—N. W. McLachlan, Bessel Functions for Engineers, Oxford University

Press, New York, 1955. Second edition, xii + 239 pages, 24 cm. Price, $5.60.

This second edition is considerably larger than the first edition, which ap-

peared about twenty years ago. It still is a satisfactory text on the use of Bessel

functions in classical physics and engineering problems. A little more has been

added on the mathematical properties of the functions and a number of different

applications have been added. The tone is strictly practical throughout, funda-

mental equations are quoted, discussed and applied, but not always proved. The

style is condensed but readable. Short five-place tables, included at the back of

the book, are for Jn(x) for n = 0, 1, x = 0(0.1)16; for n = 2, 3, 4, x = 0(0.1)5;

for zeros of these J's; for Yn(x) and Hn(x), n = 0, 1, x = 0(0.1)16; for J0, I\, Ko,

Ki for x = 0(0.1)10; and for similar ranges of Ber and Bei, Ker and Kei, and

their derivatives.

Philip M. Morse
Massachusetts Institute of Technology
Cambridge, Massachusetts
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29[L].—Morio Onoe, "Formulae and tables, the modified quotients of cylinder

functions," Report of the Institute of Industrial Science, University of Tokyo,

v. 4, 1955, No. 5 (Serial No. 32), 22 p.

C,(z) being any cylinder function [1], the author sets

(&M = zC,-M/CM,   *&M = zC+M/CM,

and similarly for Bessel functions of the first, second, and third kinds. He gives

a collection of formulas regarding these functions, and also numerical tables to

4 to 7S, each accompanied by graphs.

Table 1. 3n(x) for n = 1(1)5, x = 0(.1)5 and the first zero and the first pole

of SiM with corresponding values of 3v

Table 2. $n(iy) for n = 1(1)5, x = 0(.2)6.

Table 3. §)„(x) for n = 1(1)5, x = 0(.1)5 with the first two zeros of 2)i and

the first zeros of §)2, 2)3, 2ta-
Table 4. §nm(iy), n = 1(1)5, x = 0(.1)5.

Table 5. ¿„(w), g)„(w) for « = 1(1)50.

Appendix. Some coefficients in power series expansions of 3» and asymptotic

expansions of ¿p„(1>, n = 1(1)5.

A. Erdélyi
California Institute of Technology
Pasadena, California

1. G. N. Watson, Bessel Functions, Cambridge, 1922, p. 82.

30[L].—H. E. Salzer, "Complex zeros of the error function," /. Franklin Insti-

tute, 260, 1955, p. 209-211.

Let f(z) = fo* e~u2du. The zeros z„ of f(z), for which Jir < arg z„ < %ir, and

0 < \zi\ < |z21 < • • • are tabulated as follows: n = 1 to 12D, n = 2(1)10 to 9D.

This table extends and corrects one of T. Laible (Z. ang. Math. u. Phys., 1951,

p. 484-486).
J- T.

31[L].—Harold Osterberg & Gordon L. Walker, Table of Jl' \_Ji(x)/x~\dx,

Research Center, American Optical Company, Southbridge, Massachusetts,

Communication No. 1, September 1, 1955. 7 multilithed pages with cover.

28 cm., deposited in the UMT File.

This table lists the function f(z) = fa'x~lJi(x)dx for z = .01 (.01)3.85 and

2 = 4(1)25 plus about seven special values of the argument. This is the function

g(z) of "A guide to tables of Bessel Functions," by R. C. Archibald, MTAC,

v. 1, 1944, p. 247. The numbers shown are usually 7S, and accuracy is claimed

through 5S or 6S.

For the early range, the calculations were carried out on an International

Business Machines Card Programmed Calculator, and for the later range they

were carried out on a desk machine, using tables of Bessel Functions already

published.

A similar, less extensive table has been published by R. Gans, "Mikro-

skopische problème," Annalen der Physik, s. 4, v. 78, 1925, p. 1-34. The authors
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note that their function is equal to So' Jo(x)dx — Ji(z). The function So' Jo(x)dx

has been tabulated to 10D by A. N. Lowan and M. Abramowitz in "Tables of

integrals of J0(x) and Y0(x)," J. Math, and Phys., v. 22, 1943, p. 2-12, and this

table has been reprinted as AMS 37 by the National Bureau of Standards; its

range is 2 = 0(.01)10.

C. B. T.

32[L].—B. Zondek, "The values of T(%) and T(f) and their logarithms accurate

to 28 decimals," MTAC, v. 9, 1955, p. 24-25.

TABLE ERRATA

Reviews in this issue mention errata in the following works :

The  Rand Corporation,  One  Million Digits and 100,000 Normal Deviates,

Review 11, p. 39-43.

Benjamin Epstein, "Truncated life tests in the exponential test," Ann. Math.

Stat., v. 25, 1954, p. 555-564, Review IS, p. 44-45.
R. A. Bradley & M. E. Terry, "Rank analysis of incomplete block designs. I.

The method of paired comparisons," Biometrika, v.  39,  1952, p. 324-345,

{MTAC, v. 8, 1954, p. 17], Review 22, p. 49.
Shozo Shimada, "Power of ^-charts," Reports of Statistical Application Research,

Union of Japanese Scientists and Engineers, v. 3, 1954, p. 70-74, Review 24,

p. 50.
T. Laible, "Höhenkarte des Fehler-integrals," Z. ang. Math. u. Phys., 1951,

p. 484-486, Review 30, p. 53.

247.—Giuseppe Palama & L. Poletti, "Tavola dei numeri primi dell'intervallo

12 012 000-12 072 060," Unione Matemática Italiana, Bollettino, s. 3, v. 8,

1953, p. 52-58. (MTAC, v. 7, 1953, p. 173, Review 1101[F].)
The following errata have been found.

Entry Division         Probably intended prime

12 019 307 277                               —
12 020 023 1901

12 023 381 31                        12 023 383
12 028 813 131                        12 028 817
12 045 149 457
12 047 023 107
12 071 881 2081                               —

In addition the following primes should be added to the list.

12 047 309
12 069 919

N. G W. H. Beeger
Amsterdam
Holland

Editor's note: Primality of each number listed above as prime has been verified on the SVVAC
computer by J. L. Selfridge.


