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Numerical Quadrature of Fourier Transform

Integrals

I. Introduction. In applied mathematical problems the need frequently arises

to evaluate numerically integrals of the form

(la) Six) = (f>ik) sin kxdk
Jo

or

(lb) Cix) =   1°° fik) cos kxdk.
Jo

In some cases the function <£(£) or \pik) is given by a closed expression which is

too complicated to permit a sufficiently accurate analytic evaluation of the

integral for the entire range of the parameter x. In other cases 4>ik) or ^(&) may

be available only in numerical form.

The conventional methods of numerical quadrature (e.g., Simpson's rule) are

not suitable for evaluation of the above integrals when x is large. There are two

reasons for the failure of the standard methods in this case. First, because of the

rapid oscillation of the trigonometric function when x is large the integrand

cannot be accurately approximated by simple polynomials unless undesirably

small intervals of integration are chosen. Secondly, the extremely strong cancella-

tion between the contributions to the integral from regions where the trigo-

nometric function is positive and regions where it is negative tends to accentuate

the errors in the conventional integration procedures.

Filon [1] and Luke [2] have suggested methods of integration which avoid

the first difficulty by using polynomial approximations for <t>ik) or \pik) rather

than for the entire integrand. In this note we shall discuss a new scheme which

attempts to alleviate the second difficulty as well. In this scheme all half cycles

of the trigonometric functions are treated in an identical manner so that no can-

cellation errors arise. The integration scheme for the individual half cycles is

based on a Gaussian type integration procedure [3] which minimizes the error

in the final result for a given number of integration points per half cycle. In

developing the integration formulas for the individual half cycles, it is imagined

that the integrals in (la) and (lb) are evaluated by first performing the sum of

the integrand at corresponding points in all half cycles and then integrating the

result over a single half cycle. The sum over corresponding points in all the half

cycles possesses certain properties which, particularly for large x, enable the final

integral to be accurately evaluated with a small number of points per half cycle.

In the actual numerical evaluation of the integral, the integrations are first

performed over the individual half cycles, and then the total contributions of

the various half cycles are summed. Although the integration formulas are not

accurate for the individual half cycles, most of the error cancels when the sum

over half cycles is performed (see section V).

In performing the sum over half cycles, the standard techniques for accelerat-

ing the convergence of the sums of an oscillating series can be employed. This
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greatly reduces the number of half cycles which must be considered to obtain a

final result of specified accuracy.

A disadvantage of the method is that the values of k at which d>(k) or \p(k)

must be evaluated depends on the value of the paramter x. Hence the method is

most useful when results are needed for only a few values of x. If results are needed

for a large number of values of x, the Gaussian integration feature could be sacri-

ficed without serious loss in accuracy. This would enable the points at which

the integrand is to be evaluated to be spaced uniformly instead of at irregular

intervals as in the Gaussian procedure. It is, of course, still necessary for the in-

terval in k to be an integral fraction of tt/x, but the integral can be evaluated

for several values of x with the same spacing in k. Only the simplest example of

the uniform spacing method, i.e., one point per half cycle, will be specifically

treated in this note. The generalization of the uniform spacing method to a

greater number of points is, however, straightforward. The discussion in the

following sections indicates that, although the uniform spacing method is by

no means as accurate as the Gaussian procedure, the loss in accuracy with a

corresponding number of integration points may not be serious for practical

applications.

It must be recognized that although the method described here is designed

to reduce cancellation errors associated with the integration formulas themselves,

the method does not eliminate the possibility of cancellation errors in the nu-

merical application of the formulas. Therefore, the numerical values of <b(k) or

ipik) which are used in the evaluation must ordinarily be accurate to a number of

significant figures equal to the number required in the final answer plus the

number lost due to cancellation. There are, however, circumstances in which

consistent approximations may be made in the calculation of <pik) or \pik) which

do not introduce as large an error in the final result as would be expected on the

basis of a consideration of significant figures. These approximations may usually

be regarded as corresponding to the replacement of the actual physical problem

by a slightly modified problem which, on physical grounds, must lead to almost

the same final result. It is, of course, necessary to retain as many significant

figures in the calculation of <pik) or ipik) in the modified problem as would be

necessary on the basis of elementary considerations. This is true despite the fact

that the integrand as calculated in the modified problem may agree with the

correct integrand to far fewer significant figures than must be retained in the

evaluation of the integral.

In many cases the strong cancellation occurring in integrals of the type appear-

ing in (la) and (lb) may be interpreted as resulting from the fact that there is a

saddle point of the integrand in the complex ¿-plane which, for large x, is far

removed from the real axis. Hence the ¡deal method of numerically evaluating

the integral would be to integrate along a path in the complex ¿-plane passing

through the saddle point. It is interesting to note that one is led to a consideration

of complex values of k by the following independent argument. One expands the

function <t>ik) or \f/(k) in a power series in the variable

(2) u = (1 + k2L2)~\
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where L2 is a suitably chosen parameter. If one then applies the Gaussian inte-

gration procedure to the infinite integrals in (la) or (lb) by using polynomials in

the variable u, one finds that when x is large the optimum points for evaluation

of the integrand cluster around the point i/L in the ¿-plane. If L has been chosen

correctly, this point is, in turn, close to the saddle point of the complex integral.

Although this method of numerically inverting Fourier transforms is in principle

more powerful than the one considered above, it is probably less practical, mainly

because of the need to evaluate the integrand for complex values of k.

II. Preliminary algebraic manipulation. It is necessary to express the integrals

(la) and (lb) as integrations over a single half cycle of the integrand, summed

then over all half cycles, in order to apply the methods outlined in section I.

However, in order to simplify the derivation of the method the order of summation

and integration are interchanged, i.e., the summation is performed first. The

justification of the interchanging of order of summation and integration is given

in section V.

We begin by making the transformation

(3a) y = kx/v — §

in (la), and

(3b) u = kx/ir

in (lb). For purposes of the derivation, it is convenient to extend the integrals

to the range — oo < k < + œ, which may be done if the definitions of the func-

tions <j> and $ are extended to negative values of k by the definitions

(4a) cbi-k) = - *(*),

and

(4b) f(-*) = Hk).

In most applications of interest, the functions thus defined are regular in the

range k = — <x> to +<». (Note that the restrictions implied on ^(¿) and <f>ik),

namely 0(0) = 0 and ^'(0) = 0 are physically reasonable. For example, if (la)

arose from the inversion of a three-dimensional Fourier transform /(¿), then

<t>(k) ~ kfik).)
Applying (3) and (4) to (1) leads to

(5a) Six) = —  I    cos iryaiy, x)dy,
2x J_}

and

cos iruyiu, x)du,<5b> cw =£/_',

where

(6a) *iy,x)= E (-)"*(£Ly + « + !]),
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and

(6b) yiu,x)=   £   (-)"* (Z [« + »])•

The function <r(y, x) has the following properties [all the subsequent remarks

apply equally well to y(y, x)~\ as may be seen from (4) (6) :

(a) aiy, x) = a-(-y,x),

(b) ¡rihx) = <ri-hx) = 0

(c) aiy + n, x) = (-)v(y, *),

(d) o- is regular, — § < y < § if <£ (k) is regular for — oo < k < + ».

Because of these properties, a (and 7) can be expanded in Fourier series of

the form

(7a) aiy, x) = E an(x) cos (2« + l)wy,
n=0

or, since cos n8 is a polynomial of exact degree in cos 8,

(7b) aiy, x) = cos 7ry E an(x) cos2" Try,
n*=0

with a similar expression for y.

III. Gaussian integration procedure. Substitution of (7b) in (5a) gives

x n
(8) Six) = — I    cos2 xy E oinix) cos2n xy¿y.

2x J_} n=0

In order to integrate such an integral as accurately as possible, the Gaussian

integration procedure is employed [3]. A set of polynomials in cos2 xy orthogonal

on the interval ( — 5, 2) with weighting function cos2 xy is found. Representing

these polynomials by Tn(cos xy), one has

(9) cos2 xyrn (cos xy) Tm (cos iry)dy = 0    for   n y¿ m.

The polynomials in cos2 xy which obey (9) may easily be shown to be related to

the Chebyshev polynomials of the first kind [4], Tn(x) :

(10) r„(cosxy) = (cos xy)-ir2n+i(cos xy)

= (cos xy)-1 cos (2« + l)xy.

See, for example, [4]. (The authors are indebted to the referee for pointing out

this relationship.) The 2A-point Gaussian quadrature formula is simply

Xi                                 N    2Wjm
cos iryaiy, x)dy = E-^ tr(yjm, x),

.j                                j=i cos xy/«
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where the y,-CJV) are the zeros of TN (cos xy) :

(12) ^-îW+Ty i-■»•».'•••.».

and the W¡ are the so-called Christoffel numbers. (Since <r(y, x) is an even function

in y, the contribution to the numerical integration from —y¡ is equal to the con-

tribution from +y,-; furthermore, it is easy to show that the Christoffel number

associated with -\-y¡ is equal to the one associated with —y¡. For this reason, we

consider only the positive zeros of IV(cos xy), and introduce the factor of two on

the right side of (11). Thus, although the integrand is evaluated at only N points,

the formula is called a 2A-point formula. In section V, however, where the order

of integration and summation is reversed for numerical convenience, it is neces-

sary to evaluate the integrand at both ±y¡, which gives the numerical integration

formula as stated there a slightly different appearance.)

Note the factor of (cos xy,(JV))_1 in (11), which arises from the fact that a

cos xy was factored out of aiy, x) in (8), and the weighting factor cos2 xy was

used, although the original integrand involved only the first power of cos xy.

The Wj<-N) may be found by requiring that  (11) give an exact answer if

-'-— is a polynomial of degree up to and including N — 1 in cos2 xy. It then
cosxy

follows automatically that (11) will also give an exact result for polynomials

from degree N to 2 A — 1 inclusive in cos2 xy. Since

(13)
v'2    -   ,       i r(x +1)

cos¿* yay = -7= —;- ,
-x/2      yy    V^r(x + i)'

then the W£m are the solutions of the N simultaneous equations :

(14) 4= r(X + ^} = 2 £ cos-2 ( i2j - 1]X ) WPÖ

X = 1,2, ...,N.

(It is also possible to obtain a general closed expression for the Christoffel num-

bers [3], although the actual evaluations of the Christoffel numbers are just as

simple if (14) is used directly.)

The y¡ and W¡ are given below for the two- and four-point formulas :

*'-*»*

(a) Two-point Formula (A = 1) :

cos xyi = §V3

Wi = \

(b) Four-point Formula (A = 2) :

yi = to Vi = tV
cos xyi = 0.58778 52       cos xy2 = 0.95105 65

Wi = 0.06909 832, W2 = 0.18090 169.
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It will sometimes be found that a one-point formula gives sufficient accuracy

(see section IV). This formula gives an exact answer only if-'-— is independent
cosxy

of y. In this special case, (11) becomes

f1
(15) J    cos irya(y, x)dy = \a(0, x).

IV. Choice of N. The number of points which must be used in the Gaussian

procedure in order to obtain a numerical answer within a required degree of

accuracy may be shown to depend upon the magnitude of x. From the arguments

given here, a qualitative dependence of the error introduced by the A-point

formula may be obtained as a function of x. Consider the example

(16) *(*) = (1 + L2k2)-\

The integral (lb) may be evaluated analytically, yielding

(17) C(x) =¿e-*',   x* = x/L.

The 2A-point quadrature formula gives for C(x),

x   N    2Wi(N)
(18) C(x) = - E-'-* rWN\ x),

2x j=l cos xy/"'

where

(19a)    y(y^\x) =    £   (-)•
n=—oo x2 + LViyjW + «)2

x* sinh x* cos xy/m

sin2 xy,(JV> cosh2 x* + cos2 Ty/N) sinh2 x* '

-v(V(JV) x)
(19b)    ÏVy'    ',' = 2x*[e-** - e-3l*][l + (4 cos2 xy/w> - 2)e-2** + • • •].

cos xyy(JV)

Thus, it is seen from (19b) that for large x, (7) is rapidly convergent. From (18)

and (19b), one sees that in the limit of x large

(20) C(x) =¿^ + 0[e-^],

independent of N, so that even the one-point formula may be used. As x decreases,

however, it is necessary to go to larger values of A^.

In Figure 1, the error introduced into the evaluation of C(x) by the one-, two-,

and three-point formulas with \p(k) given by (16) is plotted as a function of x*,

where the numerical evaluation of C(x) is obtained from (18) in conjunction with
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(17a). Note that the error depends on the ratio x/L (i.e., x*) since this quantity

determines how much the integrand decreases in one cycle of the trigonometric

factor. When the rate of decrease is small (i.e., x* is large) the required number

of integration points per half cycle is small.

V. Outline of numerical procedure and discussion. In order to evaluate the

sum appearing in (11), it is convenient to change the order of summation and

(numerical) integration. That is, the order of the two sums on the right side of

.0*

4 POINT FORMULA

2 POINT

I POINT

Fig. 1.    Per Cent Error in Integration Schemes as a Function of x*.

(11) are reversed. This procedure corresponds to a separate integration of every

half cycle, with a subsequent summation over the cycles, as is described in section

I. It may easily be shown that this reversal may be made since if the integrals

(1) exist, then the series (6) for aiy) and yiy) converge uniformly on the range

— \ < y < J. (The only restriction on <f>ik) (and ^(¿)) is that there exist a ko

such that <f>iki) > 4>ik2) if k0 < ¿i < k2.) It is also convenient to change the

formulation slightly so that the half-cycle sums are carried out from zero to

infinity.
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We define

(21a) Six) = - £ Snix),
X n-0

and

(21b) C(x) = - I iCo(x) + £ Cnix)! ,
x L „_! J

with

(22a)    5„(x) = (-)» J   <f> I ï (y + n + |)J cos xydy

» W.W

= (-)"E
i=1 cos xy,(iV)

X {f (; b>/N) + n + «) + * (l [- y/"' +* + *])[,
and

(22b)    C„(x) = (-)" !•.#(-[« + »lj cos xwdw

*        W.W)

= (-)«E
! COS XMj(JV)

x {* ( ̂  C«^ + »]) + * ( ; [- */** + "]))•

In order to sum the series in (21) any standard method [5] [6] for the summa-

tion of oscillating series may be employed. A method suggested to the authors

by Mrs. M. Ray has been found to be quite convenient; it appears to be suffi-

ciently accurate for most purposes, and is quite simple. The method is to form

the sequence of partial sums,

n

(23) ßn   =    E   Saix),
a-*0

so that

(24) Six) = - Lim ßn.
X   n—»oo

The limit of the sequence ßo, ßi, • • •, ßn, ■ • •  is then found by the "averaging"

technique. That is, we define

(25) tti<»> - iCSn + ftn-i),

Ö2w = f(0l<»> +fli<"+1)),

etc.,

(26) Lim ßn m Lim a¡.
7Ï—»CO J—»00
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The sequence of a/s in general converges much more rapidly than does the

sequence of j3„'s. (Note that a¡, as defined by (25), is given in [7] (Exercise 120,

p. 271), as the j-th partial sum of a series equivalent to the original oscillating

series. Thus, our procedure corresponds to summing the equivalent series which

is defined in [7] (paragraph 144, p. 244). The summation procedure described

here is useful because the equivalent series converges more rapidly than the

original series. Still faster convergence could presumably be obtained in typical

cases by the application of the more refined procedures discussed in the references

given in [6] and [7].)

Table I. Replica of Portion of Work Sheet, Demonstrating a Convenient
Method of Setting Up Calculations

n   *(^[yi+« + *])   Sn = (-)»Wv(^Qy,+ n-f+])    0.-2^     oiw = i (ft. +Ä.+0

10 0.27763 71           +0.13881 86 +0.06689 27 +2.6191 X 10~»
11 0.25709 43           -0.12854 72 -0.06165 45 -1.8693 X 10-»
12 0.23914 07           +0.11957 04 +0.05791 59 +2.0741 X 10"»
13 0.22336 71           -0.11168 36 -0.05376 77 -1.4098X10"»
14 0.20943 14           +0.10471 57 +0.05094 80 +1.6853 X 10"»
15 0.19705 09           -0.09852 545 -0.04757 74 -1.0791 X 10"»
16 0.18599 31           +0.09299 66 +0.04541 92

Table I is the replica of a portion of a work sheet in which the integral

k
(27) Six) = f"j + k2

sin kxdk = \-ne~z,

was evaluated by the single-point formula, with x = 10, demonstrating a con-

venient method of setting up the calculation. In Table II, the summation process

is illustrated for this case. The criterion for ending the calculation is the near con-

stancy of the last two or more terms in the upper diagonal of Table II (ajn) = aj+i)

Table II. Illustration of Summation Procedure

n oi(n) X 103        a2(n) X 104     a3(n) X 104     a4("> X 104     a6(n) X 104

10
+2.6191

11 3.749
-1.8693 2.386

12 1.024 2.271
+ 2.0741 2.173 2.270

13 3.322 2.270
-1.4098               2.350

14 1.378
+ 1.6853 2.204

15 3.031
-1.0791

16

which indicates the sequence has closely approached its limit. We then take

Six) ^-a6(n).
x
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The numerical result for Six) is 7.131 X 10~6, compared to the rigorous value

of 7.1314 X 10-6. Since the error introduced by the quadrature rule is only of the

order er2x — e~20, the main error in this procedure is introduced in the summation

process, during which significant figures are lost. Thus, the numerical result ob-

tained here agrees with the analytical result to as many significant figures as were

retained during the numerical procedure. However, three of the seven figures to

which <b(k) was originally evaluated were lost during integration.

The same integral has been treated numerically by Simpson's and Filon's

methods, and it has been found that in order to obtain accuracy comparable to

that obtainable by the method described here the integrand must be evaluated

at at least 10 times as many points.

The tables and graph in this paper were prepared by Miss D. M. Keaveney.
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Formulas for the Partial Summation of Series

1. Introduction. The paper gives a table of the coefficients Amin) in the
10

"partial"   summation   formula   Sn —   E Amin)Sm.   The   coefficients   Amin),
m =4

m = 4(1)10, are tabulated exactly in the fractional form Cm(«)/Z)(w) for

n = 11(1)50(5)100(10)200(50)500(100)1000. For every n, except 47, D(n) is the
least integer containing no more than ten digits exclusive of final zeros, to permit

ready division on a ten-bank calculating machine using Sn—\  E Cm(«)5m I I Din).

The purpose of Am(n) is the calculation of the sum of n terms of a slowly con-

vergent series, or, more generally, the evaluation of the w-th term of a sequence Sm

which is either slowly convergent or asymptotically characterized by Sm ~ f(m)

(convergent or divergent), in such a manner that the auxiliary sequence Sm/f(m)

is slowly convergent. The formula for Sn was obtained by Lagrangian extrapola-

tion upon Sm considered as a polynomial in \/m, based upon the last 7 values of


