
Stability Configurations of Electrons on a Sphere

An unsolved mathematical problem created by J. J. Thomson's efforts to

visualize the nucleus of an atom is the determination of stable configurations of

a given number (n) of electrons bound to the unit sphere and interacting under

mutual (newtonian) repulsion. Clearly, one such position would be that of lowest

potential energy, but uniqueness and presence of symmetries are still unsettled

questions. As an analytic procedure a stable configuration can most often be deter-

mined by a lucky guess supported by the explicitly calculated potential energy,

checked to be a semi-definite quadratic form in the infinitesimal displacements

from the conjectured configuration. On the other hand from the point of view of

the computing machine a feasible method is to start with an "arbitrary" con-

figuration and attain the minimum potential energy by descent. The former

method (of infinitesimal displacements) was used by L. Föppl [1] to find stable

configurations for all n < 8 and several larger n, some of which are summarized

below in terms of "rings."

5=1+3+1 8=1+3+3+1
6=1+4 + 1 10 = 1+4 + 4 + 1
7 = 1+5 + 1      12 = 1+5 + 5 + 1

14 = 1 +6 + 6 + 1.

The notation "n = 1 + m + 1" denotes one electron at each pole (0, 0, ±1) and

m electrons forming a regular polygon (or ring) on the equator (z = 0). The

notation "w=l+w + w + l" denotes one electron at each pole and two

regular polygons of m electrons at equal and opposite latitudes situated so that

each electron in the upper hemisphere (z > 0) is antipodal to an electron in the

lower hemisphere (z < 0). Stable configurations for n = 4, 6, 8, 12, 20 were seen

by Föppl to correspond to the five regular solids. The first two omissions in

Föppl's work were n = 9 and n = 11. The purpose of this study is to find stable

configurations for these values of n by descent, using the IBM 701. The principal

new results (December 1955) are that n = 9 leads to three rings of equilateral

triangles with rotational symmetry, while n = 11 is quite irregular, having

planar but not rotational symmetry, on the basis of the numerical evidence

submitted here.

We start with an "arbitrary" configuration standardized as Pi(0) = (0, 0, 1),

P2<°> = (0, .6, -.8),P3(0) = (.6,0,.8),P?+4 = (sin2x//(»-3),cos2irf/(»-3),0),

where 0 < t < n — 4, so as to avoid superimposing any artificial symmetry.

More generally let us consider the main loop as consisting of one step in the

descent, where the general configuration is given by 3w quantities :

(1) Pi = (Xi, yb Zi),    1 < • < »,    (x,2 + y? + z¿2 = 1).
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The (tangential) force on the particle at Pi is (Xi, F„ Z<) where

(?)     Y   = V (*¿ - xi) - Xi[(xj - Xj)xj + (yj - y/)yj + (z¿ - z^z,]

K) m {.(xi-x])2+(y,-y1)2+(Zi-z1)2J

and the point Pi is moved to (x/, yl, 8,') where

(3) x,-' = Xi + AX¿, etc.

Here h is a positive constant to be determined automatically as described later on.

Then, replacing P¿ by Pi(h) = (xi(h), y¿(A), Zi(h)), where

(4) *,(*) = Xi'/(xi'2 + y/2 + z/2), etc.,

we close the loop. The exit occurs when

(5) £ = max { \xí - x{(h) |, |y< - y,-(A) !, |z,- - z<(«) |} < e.

The choice of "step-size" h has to be made internally. We consider only those

h of the type h = hopk where ho is a positive parameter (initially .1 and variable

with each circuit of the main loop), p(>l) is a fixed ratio taken as 2% and k is

an integer to be chosen. We call V(= £ |P¿P,-|-1) the potential of the configura-
os

tion Pi and V(h) that of the configuration Pi(h). There are two possibilities. The

first possibility is that V(ho) < V. In that case we choose h = ho (k = 0) unless

F(Aop) < V(ho), in which case we choose k to be the minimum positive integer

for which V(hoP') < V(hop<-1), t=\,2,---,k, while V(hoPk+1) > V(hoPh). (We

must exclude (by programming) the possibility that i be » or that the 3n

corrected coordinates x/, y/, z/ be parallel to the force vectors Xi, Yi, Zi. This

might happen accidentally when radius vectors parallel to the force vectors repre-

sent a configuration of lower potential energy than the configuration Pi.) Then

h = hopk and h replaces ho. The second possibility is that V(ho) > V. In this

case, letting k be the minimum positive integer for which V(hop~k) < V, then

h = hop~k with h now replacing A0. (Here again h might become zero through

round-off loss in the computation of V(h), and this possibility must be excluded

by programming.)

In practice, h = h0 in at least f of the cases; and when h changed, it changed

only by the factor p±l. Generally .2 < h < A.

The program was coded in Speed Code III and read in from IBM instruction

cards and floating decimal cards for n, h, p, e, etc. The use of a binary instruction

deck cut the read-in time of 150 cards per minute to less than two minutes. The

machine generated the P¿(0) internally and, in cases of reruns, accepted the last

Pi and h and modified entrance instruction from correction cards. Each major

(descent) loop took about .3w2 seconds (slightly longer if h was changed by the

loop). At the end of each loop the machine loaded the pairs h, V(h) in an output

block of the memory, dumping the pairs 25 at a time to provide some means of

observation. The machine also loaded the 3« + 3 values £, V, h, Pi on tape,

although there was no occasion to dump the tape later on. As a further monitoring

device the sensing switch P was made available to print these 3n + 3 values at
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the end of each loop when desired. At the exit, the residual (h, V(h)) pairs, 3n + 3

aforementioned values, and the n2 mutual distances |P*Pj[ were printed out;

and the Q switch was used to bring the computation to the exit at the end of the

current loop in case of shortage of time. Print-out time was used sparingly since

each printing operation takes 5/3 + 2//5 seconds for / lines of 5 words per line.

The descent described becomes badly oscillatory; and although we need not

regard this fact as wholly unfavorable, we should see the descent in more conven-

tional terms. (The oscillations simulate vibrations in that normal modes can be

identified. This will be the subject of a more complete study later on.) We

imagine the particle positions parametrized in terms of 2w independent variables

qi such as two of the three displacement coordinates of each point from equi-

librium. We assume small displacements. Then some real, symmetric, and (pre-

sumably) positive, semi-definite matrix [|a;y[| exists such that 2 V = £ 0¿y<7«<7>

The matrix has the eigenvalues X,(>0) and normal coordinates Q, for which

2 V = 2~2 X<f2i2- Thus equation (3) becomes approximately

(3a) Aqi = —hdV/dqi = — h 2~2 a-aqj,

or

(3b) AQi = -h\iQi,

suggesting exponential decay rather than "dynamic" oscillation. The oscillatory

behavior here is (presumably) caused by the large range of non-vanishing X¿, or

by the fact that no one h can make all the "decay ratios" | (Qi + AQÎ)/Qi\

= |1 — AX,-1 appreciably less than unity (for X¿ > 0).

Certainly, for purposes of establishing a (conjectured) local minimum for V,

it would be reasonable to check the X,. We are concerned more with the pre-

liminary process of obtaining the initial conjecture in the face of very slow con-

vergence. The procedure will be to cut the number of degrees of freedom, and

(effectively) the range of X¡ through conjectured symmetries. For instance when

n = 9 (n = 11) for the initial configuration P,(0) described earlier V = 27.07665314

(= 43.03629491) and after 32(51) circuits of the main loop V had descended to

the value 25.76006543 (40.59907213), stable to four (two) decimal places, while
the oscillations in particle position, £, had the order of magnitude of 10~2 (10_l)

with no perceptible improvement. Yet a drawing on graph paper of the "final,"

i.e., the thirty-second (fifty-first) approximation for n = 9 (n = 11) displayed

enough symmetry to enable us to cut down the number of degrees of freedom

from 18 to 1 (22 to 5).

In particular, when n = 9 it becomes graphically clear that the arrangement

is 9 = 3 + 3 + 3, i.e., an equilateral triangle on the equator with two symmetric

equilateral triangles, one in each hemisphere, giving the nine points (1, 0, 0),

(-1, ±3V2,0), ((1 - a2)»/2, ±(3[1 - a2])V2, ±a), (-[1 - a2]*, 0, ±a), where
a is the remaining degree of freedom.

Likewise, when n = 11 it becomes graphically clear that the arrangement is

five points on the equator and three in each of the hemispheres, symmetric with

respect to the equator (z = 0) and meridian (y = 0), yielding the configuration
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(-1,0,0), (-«!, ±(l-ai2)*,0), (at, ±(1-«,«)», 0), (-a3, ±a4, ± (1 -a32-a42)»),

((1—as2)*, 0, ±05), with five degrees of freedom a¿.

Thus we observe the final configuration for w = 9 (w = 11) and regenerate tak-

ing initially a = .699929 (ai = .505694, a2 = .507286,03 = .089001, a4 = 492006,

at, = .571672). These are crude guesses based on averages of diagonal lengths.

In fact V now increases to 25.76028061 (40.64744085) which brings us back to

the twenty-third (eleventh) step of the descent process! We are further ahead,

however, by virtue of the new self-preserving symmetry. In fact in five (thirty)

additional circuits of the main loop we find V has come to the even lower value

25.75998651 (40.59645048) probably correct to eight decimal places at which
point the particle positions change by { < 10-5 = e. The final values of the coordi-

nates of the configuration are given by a = .703648 (et\ = .515358, a2 = .552626,

az = .168322, a4 = .488923, a6 = .591930), probably correct to five decimal
places, in a total of about 15(60) minutes of computing time.

The author is indebted to G. Pólya and J. L. Ullman for illuminating discus-

sions and to Don Hart and George Ryckman of the General Motors Technical

Center at Warren, Michigan for kindly making the IBM 701 available.
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An Iterative Method for Taylor Expansion of

Rational Functions, and Applications

1. The iteration and some applications. A simple iterative procedure can be

set up for determining the coefficients of the Taylor expansion of a rational func-

tion at any point in the complex plane other than one of the singularities of the

function. This procedure would have many applications, particularly in the

evaluation of inverse Laplace transforms. We shall discuss the general method

first, and then some applications, followed by a discussion of truncation and

round-off errors.

Suppose f(s) is a rational function, that is,

» '« - ïl
where p(s) and q(s) are polynomials. We shall assume that we have p(s) and

q(s) expressed in powers of 5, rather than in their factored form.

Now consider any point "a" in the complex plane, with the restriction that

q(a) 9e 0. Then by Taylor's theorem, within the circle of convergence around "a",

we have

(2) f(s) =£~=ao + ai(s - a) + a2(s - a)2 + • • •.
5 (s)


