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and fast rules for doing so. In the above example, for instance, if we substitute

some other number, k say, for 2.507, the desired effect does not occur for all

values of k. An integral power of ten will not work (since we are assuming round-

ing-off is done in the decimal system). Also one finds experimentally in this case

that k = 1.001 and k = 2 are unsatisfactory choices.

In our present study we might use a transformation of the type

(64) s = ks'

and re-evaluate the ay in equation (2) by expanding the function

(65) <p(s') = fits')

around the point

(66) a' = |,

obtaining quantities ay' as coefficients of (s' — a')', from which, theoretically

(67) ay = a{.

Then by comparing the original quantities ay, with those obtained from (67), as

j increases, one could estimate the cumulative building up of round-off errors.
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Numerical Integration over Simplexes and Cones

1. Introduction. In this paper we develop numerical integration formulas for

simplexes and cones in »-space for n > 2. While several papers have been written

on numerical integration in higher spaces, most of these have dealt with hyper-

rectangular regions. For certain exceptions see [3]. Hammer and Wymore [1]

have given a first general type theory designed through systematic use of cartesian

product regions and affine transformations to extend the possible usefulness of

formulas for each region.
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Particular formulas were developed by Hammer and Wymore for certain

symmetrical type regions including spheres and hyper spheres, cubes and hyper-

cubes. The methods they have used make it possible to obtain numerical integra-

tion formulas for a much larger class of regions than heretofore. However, it is

not practical to obtain specific integration formulas for all regions of interest.

Hence, in this paper we develop methods for obtaining numerical integration

formulas over simplexes which may be used, in principle, to approximate other

regions. Since one of the methods is applicable to cones in general if a formula is

given for the base, we include that in the development.

While we have calculated certain formulas in specific cases for « = 2,3, and 4,

we use these as illustrations and hope to build a more complete table later.

Inductively we give integration formulas holding exactly for the £-th degree

polynomial in n variables over the «-simplex. Another method which may be

more valuable in some applications requires affine symmetry of the evaluation

points. Here the general theory is missing, but a general type of method is pro-

posed for which illustrations are provided.

2. Approximate integration formulas for cones. In the following a theorem of

Hammer and Wymore will be used which we state as follows :

Theorem 1. If

Z»if&) -  f SWV = £(/),
, Jr

then

Z Wajg(Vj) -   f   giv)dV = WE if),
j J TR

where T is an affine transformation, t¡ = A% + 770, of En onto itself; gin) = /(£) ;

W is the absolute value of the determinant of A; R is an n-dimensional region included

in the domain of f and £1, ■ ■ ■, £&, ■ • •, are points in the domain of f.

This theorem permits us to consider convenient, specific regions R to develop

formulas for the class of all their affine transforms.

We want integration formulas of the form

(1) f fdV+Zajfib),
Jr 1

where the numbers a¡ are constants ; £ 1, ■••,£» are points in the domain of /; R is

a bounded closure of an open set in En. From this standpoint the most interesting

simple regions are the simplexes, which are special cones, since every polyhedron

is composed of a finite number of simplexes.

Let an «-dimensional region R be embedded in the hyperplane x = 1 in En+i

where we represent the points in £n+i by (£, x), where £ is a point in En. Then the

set of all points xR, where 0 < x < 1, is a cone C with base R and vertex at the

origin in En+i.

Let /(£, x) be a function defined over C and suppose that a suitable numerical

integration formula is given over the base R of C. If, for example,

(2) f/(M)aF„ = Ea,/fe,l),
Jr
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then

(3) f f(i,x)dV=   Cdx f f(i,x)dVn=   f x" £ Oifixt,-, x)dx,
Jc Jo        Jxr Jo -

since the Jacobian of the affine transformation from R to xR is x~n. Define a

function

g(x) = E ßy/fe, x)
i

and then we have

I fdv =   I   x"gix)dx.
Jc Jo

Now we ask for numerical integration formulas of the form

(4) I   xngix)dx = 2Zbig(xi).
Jo i

Since such formulas may certainly be found we then have

(5) I fdv = Y. L bia¡fix£j, x,),
Jc i      j

which is of the form required, that is, a weighted sum of integrand values.

Theorem* 2. If a formula (2) holds precisely for polynomials f of « variables of

at most degree m over a region R and if a formula i4) holds precisely for polynomials

g of at most degree minx, then (5) holds over Cfor all polynomial functions f contain-

ing terms of at most degree m in its n + / variables.

We will forego a formal proof of Theorem 2 since it follows from the affine

invariance of the class of polynomials of at most a certain degree, so that

í"I«i/(4«)=   I   f(í,x)dVn.
JxR

In order to develop specific formulas one may start with any of the numerous

formulas for a line segment integration and proceed to obtain a formula for a

triangle; using this obtain a formula for a tetrahedron and so on. This is the type

we consider now. In higher spaces, to keep the number of points smaller, the

integration formulas we choose for So1 xng(x)dx are based on orthogonal poly-

nomials with weight function xn so that with m values of x¡ the formula holds

precisely for a polynomial of degree at most 2?« — 1 by formula (3). For « = 0

this gives the Gauss integration formula on the line with points of evaluation the

roots of the m-th. Legendre polynomial. Then if the formula (2) for the base is

exact for polynomials of at most degree 2m — 1 in the first n variables, the final

formula holds for polynomials of degree 2m — 1 at most. Thus by this means

we obtain with mn points a formula valid for all (2m — l)-degree polynomials over

a simplex in «-space. While we have discussed a range from 0 to 1, the affine

invariance permits us to give the formulas as valid for all simplexes, the necessary
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adjustment of coefficients and points being given by the transformation as in

Theorem 1.

The orthogonal polynomials, qm(x), over the interval (0, 1) with weight func-

tions xn are given by Christoffel's formula in terms of the Legendre polynomials,

Pm(x), on the interval (0, 1):

Pm(x) Pm+l(x)       ■ ■ ■  Pm+n(x)

Pm(0) Pm+l(0)        •••Pro+„(0)

In this formula and in the tables the value of w is one less than the dimension

of the space—for the line, n = 0 ; for the plane, w = 1 ; and so on. The resulting

P'm(0) P'm+l(0)      ■■■P'm+n(0)      ■

p^io)  Pft-fOO) •••pK'(o)

; tables the value of w is one less than the dimension

n = 0 ; for the plane, w = 1 ; and so on. The resulting

(6)        xnqm(x)  =

m   j x¡

1 1 0.66666 66666 66666 667

9 1 0.35505 10257 21682 190L    2 0.84494 89742 78317 810

1 0.21234 05382 39152 944
3 2 0.59053 31355 59265 287

3 0.9114120404 87296 044

1 0.13975 98643 43780 552
.    2 0.41640 95676 31083 175*   3 0.72315 69863 61876 278

4 0.94289 58038 85482 299

m   j x¡

1  1 0.75000 00000 00000 000

9 1 0.45584 81559 88774 713z 2 0.87748 51773 44558 620

1 0.29499 7790111501618
3 2 0.65299 62339 61648 121

3 0.92700 59759 26850 269

1 0.20414 85821 03227 136
. 2 0.48295 27048 95632 480
* 3 0.76139 92624 48137 593

4 0.95149 94505 53002 709

1 0.14894 57870 52983 580
2 0.36566 65273 69113 217

5 3 0.6101136129 34480 701
4 0.82651 96792 28304 566
5 0.96542 10600 81784 870

Table I. » = 1

h
0.50000 00000 00000 000

0.18195 86182 56022 831
0.31804 13817 43977 169

0.06982 69799 01454 1224
0.22924 11063 59586 248
0.20093 19137 38959 648

0.03118 09709 50008 0822
0.12984 75476 08232 439
0.20346 45680 10271 322
0.13550 69134 31488 149

0.01574 79145 21692 2766
0.07390 88700 72616 6584
0.14638 69870 84669 768
0.16717 46380 94369 395
0.09678 15902 26651 7818

Table II. n  = 2

hi

0.33333 33333 33333 333

0.10078 58820 79825 431
0.23254 74512 53507 905

0.02995 07030 08580 6981
0.14624 62692 59866 020
0.15713 63610 64886 615

0.01035 22407 49918 0652
0.06863 38871 72923 0663
0.14345 87897 99214 191
0.11088 84156 11277 894

0.0041138252 03099 00782
0.03205 56007 22961 9169
0.08920 01612 21590 0168
0.12619 89618 99911 440
0.08176 47842 85770 9715

_Qm(x)

\4(2 - 3x)

V6(3 - Ux + 10x2)

V8(4 - 30* + 60z2 - 35k3)

Vl0(5 - 60* + 210x2 - 280x3
+ 126x4)

Vl2(6 - 105* + 560x2 - 1260*3
+ 1260*1 - 462x6)

Jm{x)

V5(4x-3)

V7(15x2-20x+6)

V9 (56x3 -105*2+60* -10)

Vll(210x4-5043e3
+420x2-140x-H5)

Vl3(792x6-2310x*
+2520r,-1260x2+280x-21)

1 0.09853 50857 98826 4273
2 0.30453 57266 46363 885

5    3 0.56202 51897 52613 862
4 0.8019865821 26391 897
5 0.96019 01429 48531218
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Table III. n = 3

m

1

3 Xj

1 0.80000 00000 00000 000

hi

0.25000 00000 00000 000

1 0.52985 79358 94884 910 0.06690 52498 06888 7467
2 0.89871 34926 76543 662 0.18309 47501 93111 252

1 0.36326 46302 16511947
2 0.69881 12691 63613 535
3 0.93792 41006 19874 523

1 0.26147 77888 30889 686
2 0.53584 64460 88250 229
3 0.79028 32299 69286 800
4 0.95784 70805 66118 662

0.01647 90592 82671 7230
0.10459 98975 56806 681
0.12892 10431 60521 608

0.00465 83670 60069 48897
0.04254 17241 42766 6674
0.10900 43689 38641 000
0.09379 55398 58522 9295

Qm(x)

V6(4-5x)

\8(10-30x+21x2)

V10 (20 -105* +168x2 - 84x3)

Vl2(35-280x+756x2 -840x3
+330x4)

Table IV. Integration Formula over Triangle Exact for 7 th Degree Polynomial

k yk

1 0.86113 63115 94052 580
2 0.33998 10435 84856 264
3 -0.33998 10435 84856 264
4 -0.86113 63115 94052 580

ak

0.34785 48451 37453 860
0.65214 51548 62546 143
0.65214 51548 62546 143
0.34785 48451 37453 860

Points of evaluation (x¡, x¡yk)

J

1
2
3
4

Xi

0.13975 98643 43780 552
0.41640 95676 31083 175
0.72315 69863 61876 278
0.94289 58038 85482 299

X£h = —Xjyt

0.12035 22940 89888 328
0.35858 53991 82305 152
0.62273 67399 39136 723
0.81196 18147 75453 378

Xjyi = —Xjy3

0.04751 57045 30876 4547
0.14157 13593 61934 441
0.24585 96668 98990 366
0.32056 66993 96768 242

J
1
2
3
4

Wjk = b¡ak = weights for points (x>, x¡yk)

k - 1,4 k = 2,3

0.01084 64518 21050 5090
0.04516 80985 64739 8624
0.07077 61357 96171 8794
0.04713 67363 86764 6765

0.02033 45191 28957 5733
0.08467 94490 43492 5770
0.13268 84322 14099 443
0.08837 01770 44723 4729

qm(x) are orthogonal, but not necessarily normal. The roots are the values of x¡

required. Normalization of the qm(x) gives the weights b¡ by:

(7)

m—1

bf1 =  E [<Z.-(*y)]2
i=0

where x¡ is a zero of qm(x).

The orthogonal polynomials, qm(x), over the interval (0, 1) with weight func-

tion xn are the Jacobi polynomials under the linear transformation x' = ^(1 + x).

The standard definition of the Jacobi polynomials gives the weight function as

(1 — x)"(l + x)fi and the interval of orthogonality as (—1, 1). In this case,

a = o, ß = « and the linear transformation given above takes (1 + x)n into (2x')n

and (—1, 1) onto (0, 1). From this fact, explicit representations of qm(x) are

available.
We consider an example of how to combine a formula for « = 0 (the Gauss

formula on the line) and one for « = 1, to obtain a formula for the triangle. In

the following discussion we consider a plane triangle with vertices (0, 0), (1, 1)
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and (1, — 1). Use of the formulas may be made for arbitrary triangles by applying

theorem 1. If we take, in each of the above cases, m = 4, a formula is obtained

which is exact for the general polynomial of degree 2m — 1 = 7. For « = 1, xy

shall denote the roots of q*(x), and b¡ the corresponding weight. The roots of the

Legendre polynomial, Pi, shall be denoted by yk, and the corresponding weights

by ak. Table IV gives the values of x¡, b¡, and yk, ak ; the points, (x¡, Xjyk), at which

the integrand is to be evaluated, and the weights, Wjk, at these points.

The first three tables give: 1) the polynomials qm(x) obtained from equation

(6) for « = 1, 2, 3 respectively, and values of m indicated in each table, 2) the

roots Xj of qm(x), and 3) the values of b¡ obtained from equation (7). The calcula-

tions were made at the University of Wisconsin Numerical Analysis Laboratory

using a CPC with Eugene Albright's 18-digit floating decimal board. The approxi-

mate error in the x,'s is no more than 1 in the seventeenth significant figure ; the

approximate error in the b/s is no more than 1 in the sixteenth significant figure.

The sum of the èy's is l/(« + 1) where « is defined as in equation (6).

3. Symmetrical formulas. While the foregoing development makes it possible,

in principle, to obtain numerical integration formulas for the «-simplex to hold

exactly for polynomials of at most degree k, we do not mean to suggest that such

formulas are the most desirable. One feature of these formulas is that they are

unsymmetrical—i.e., in a given simplex the particular points of evaluation are

not an invariant set under affine transformations taking the simplex onto itself.

In this section we give the preliminary results of our investigations resulting

from a requirement of affine symmetry. We give these results since we believe that

formulas for triangle and tetrahedron will be most useful and we have certain

specific formulas for these regions.

The requirement of affine symmetry we make is simply this: If an integration

formula involves calculation of the integrand at a certain point P to be multiplied

by a weight, w, then all images of P under all affine transformations of the region

onto itself will appear in the formula with the same weight, w. While such a re-

quirement would appear to increase the number of points, in dealing with poly-

nomials this is not the case ; actually we have obtained fewer points than with

the other method.

Let us represent points in the space as vectors and write the vertices of a
3

triangle as Vi, V2, Vs, and the centroid as C = \ Jl V{. The first affine invariant
i

formula for the triangle is to use the centroid as the sole evaluation point with

weight equal to the area. This method works for all bounded regions in all finite

dimensional spaces to give a formula for the general linear function over the region.

For simplexes or for hypersquares, this is likely to be useful.

The quadratic function over the triangle we have shown to be integrated

exactly by evaluations at rVi + (1 — r)C, where i = 1, 2, 3. Since this is an

affinely symmetric set, we find that the weight (for each point) is one-third the

area, and r = ± §. For r = + $ the evaluation points are the distinct trisection

points of the median chords and for r = — \ the evaluation points are the mid-

points of the sides. These formulas we consider to offer prospects of extensive

usefulness, especially the latter. Since the general quadratic function has 6 terms,

we have used three fewer points than an arbitrary specification of evaluation

points would have permitted.
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The cubic polynomial is integrated over the triangle with rV{ + (1 — r)C

and C as evaluation points where r = f ; the weight associated with the centroid

is (~-io)A and the weight with each of the other three points is (25/48)A, where

A is the area of the triangle.

The quintic polynomial is integrated precisely with seven points in the triangle

using rVi + (1 — r)C, weight a; sVi + (1 — s)C, weight b; and C, weight c. We

1 + VÏ5 1-VÎ5 /155 - VTS\ A  .      / 155 +VÎS \
find r =-, s =-, and a = I- 1 A, 0 = 1 ——- J A,

7 7 V      1200      / \      1200      /
c = (9/40)A. Since the general quintic polynomial in two variables has 21 terms

this formula appears to be a type we call efficient noting that one might not hope

to accomplish a formula with fewer than 7 = 21/3 points. Here the "3" is the

number of degrees of freedom for each point due to coordinates and weight.

However, there are known hyperefficient formulas (cf. [1]), which use fewer points

than indicated by this argument. While we will not reproduce the argument here,

we used a triangle with vertices (0, 0), (1, —1), (1, 1). Then the requirements of

the affine symmetry of the formula with the form of the region assured that all

monomials with odd powers of y could be omitted. This left 12 equations. We

chose five of these and solved them for a, b, c, r, and s, and verified that the

remaining 7 were satisfied.

Over the tetrahedron we have a formula for the general quadratic in three

variables involving rVi + (1 — r)C, i = 1, 2, 3, 4, and weight a. We calculate

r = 1/V5 and the weight a = (I)A, where A is the volume of the tetrahedron.

Another formula with points outside the tetrahedron results if r = — 1/V5. This

type of formula will generally be less used than one with points inside.

For the cubic polynomial over the tetrahedron we have r = \, a = (9/20)A,

and c = ( —f)A; the centroid C must now be included and c is its weight. This

formula is efficient since it involves 5 points and the number of terms in the general

cubic is 20.

Generalization and extension of the affinely symmetric methods is now being

carried out. However, these specific results seem sufficiently useful to include now.

4. Conclusion. In this paper we have taken a step towards obtaining reason-

able numerical integration formulas over simplexes and cones. The cones which

are not simplexes have not been emphasized. However, the method devised for

cones permits obtaining a formula for integration over a cone (finite) provided

a formula is at hand for the base. Thus later on we hope to obtain other formulas

for the solid sphere which is a special cone based on its surface.

Error analysis has not been attempted. Experimental calculations on simple

regions indicated that for "reasonable" functions there is a decisive factor in favor

of the classical formulas here presented over Monte Carlo methods.
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Numerical Integration over Simplexes

1. Introduction. Integration formulae for numerical evaluation of integrals

over the simplex in «-space have been given inductively by Hammer, Marlowe,

and Stroud [1] so that it is possible in principle to determine a formula holding

exactly for the &th degree polynomial in « variables. In the same paper certain

affinely symmetric integration formulae are given for the triangle and tetrahedron.

Using the theory proposed by Hammer and Wymore [2], it is possible to extend

the usefulness of methods developed by transformations of the regions and by

use of Cartesian products.

In this paper we give two integration formulae of affinely symmetric type for

the simplex in «-space which respectively hold exactly for the quadratic poly-

nomial and the cubic polynomial in « variables. The method for establishing the

exact values of integrals needed we believe is new in that the "numerical" formulae

are used for the purpose.

2. The formula for cubic polynomials. Let the vertices of the «-simplex, Sn,
n

be Fo, • • -, Vn and then its centroid is given by C = Y Vif in + 1). Let A„ be
i

the hypervolume of Sn.

Theorem 1: An integration formula exact for the general cubic polynomial over

Sn for « > 1 is given by

(1) f  fdvn = a„¿ fiUi) + CnfiC)
JSn 0

where

_ jn + 3)2 - (« + 1)»
a"      4(« + l)(« + 2)    "    Cn       4(« + 2)     "

and

2 « + 1
£/< = —7-*Vt + --T-;C »-0, •••.».

« + 3 w + 3

Proof: It may first be remarked that the points Ui are on the median lines of

Sn and that the statement of the theorem is in symmetric form. In particular,

under an affine transformation taking Sn onto itself, the set of points { £/,} is

invariant and the centroid C is fixed. Since there exists an affine transformation

mapping any simplex in En onto any other we may choose any particular simplex

Sn to carry out the proof. Our choice is specified by vertices as follows :

F„= (0, ---.O), Vim (l.o, -..,0),

V2 = (1,1,0, •••,0), •••,    Vn = (1,0, •••,0,1).


