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Numerical Integration over Simplexes

1. Introduction. Integration formulae for numerical evaluation of integrals

over the simplex in «-space have been given inductively by Hammer, Marlowe,

and Stroud [1] so that it is possible in principle to determine a formula holding

exactly for the &th degree polynomial in « variables. In the same paper certain

affinely symmetric integration formulae are given for the triangle and tetrahedron.

Using the theory proposed by Hammer and Wymore [2], it is possible to extend

the usefulness of methods developed by transformations of the regions and by

use of Cartesian products.

In this paper we give two integration formulae of affinely symmetric type for

the simplex in «-space which respectively hold exactly for the quadratic poly-

nomial and the cubic polynomial in « variables. The method for establishing the

exact values of integrals needed we believe is new in that the "numerical" formulae

are used for the purpose.

2. The formula for cubic polynomials. Let the vertices of the «-simplex, Sn,
n

be Fo, • • -, Vn and then its centroid is given by C = Y Vi/in + 1). Let A„ be
i

the hypervolume of Sn.

Theorem 1: An integration formula exact for the general cubic polynomial over

Sn for « > 1 is given by

(1) f fdvn = a„¿ fiU¡) + CnfiC)
JSn 0

where

_ jn + 3)» -jn + D2
a"      4(« + l)(« + 2)    "    Cn       4(« + 2)     "

and

2 « + 1
Uim——yt + -^—c ¿ = o, •••,«.

« + 3 w + 3

Proof: It may first be remarked that the points [/,- are on the median lines of

Sn and that the statement of the theorem is in symmetric form. In particular,

under an affine transformation taking Sn onto itself, the set of points { £/,} is

invariant and the centroid C is fixed. Since there exists an affine transformation

mapping any simplex in En onto any other we may choose any particular simplex

Sn to carry out the proof. Our choice is specified by vertices as follows :

F„= (0, ---.O), Vi= (1,0, -..,0),

V2 = (1,1,0, •••,0), •••,    Vn = (1,0, ---.O, 1).
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It is simply verified that the formula given holds for « = 1 and « = 2. Hence

we assume that it holds for En-i and proceed to show that it also holds for En

where w — 1 > 2. Let / be a cubic polynomial in Xi, x2, ■ ■ ■, x„. Then /|x,=i is

a cubic polynomial in x2, ■ • •, x„. Now using a result established in [1] we may

write

fdvn =1(1 fdVn-1) dxi
n Jo     \JxiSn-l /

fl «
=     I       Xi^lttn-l   2~lf(XlÜi)  +Cn-lf(XlCi)~]dXl

Jo

where 5„_i is the (« — l)-simplex with vertices Vi, ■ ■ -, V„ in the hyperplane

2 «      _
xi = 1, C = 1/k X Vi, Ui = —■—- Vi H-—- C, i — 1, 2, • • •, « and a„_i and

! « + 2 « + 2

Cn-i are the weights as indicated in the theorem with « replaced by « — 1. It is

observed that the hypervolume An-i is l/(w — 1)! and A„ is 1/«!. Let / be the

monomial XiiXi'Xzk where 0 <¡ * + j + k < 3. Using (2) we find on substitution

and simplification that:

f      ,-   i   M A„[(« + 2)2-'-kj3' + 3k + n-2)- n»-'-*]
(3) I    xi'x2'xzkdvn = ■-—-——-

•'s» 4(« + 1) (« + z + j + ft)

On the basis of our assumption, (3) gives the value of the integral indicated. On

the other hand, formula (1) applied to / = xiiXtiX3k gives

W    *,    . fw    , ^ {(»+3)*-"-f-t[n<+(n + 2)<(3'+3*+n-2)]-(n + l)»-<-'--t-'}-
4(« + l)(« + 2)

Now it may then be directly verified that (4) gives the same result as the right

of (3) for 0 < i + j + k < 3, 0 < i < 3 and j > k. Hence in view of the

symmetry with which the last « — 1 coordinates appear in the set of vertices

Vo, ■ ■ ■, V„, (4) is verified as correct for all monomials of form x^xU^i, for

0 < i + j + k < 3, ii 9^ ii where ii and ¿2 are taken from 2, ••-,«. The only

monomial type thus omitted is x2x&i provided n > 4. Using formula (2) for this

monomial, we find

(5) fJ s
XlX&idVn   =

sn 4(«+ 1)(« + 2) in + 3)

which coincides with the value obtained on substituting / = x2xzxt in (1). Hence

the formula (1) holds for all required monomials and for the cubic polynomials

provided it holds on 5„_i. Hence by complete induction the formula (1) holds.

3. A formula for the quadratic polynomial.

Theorem 2: The formula

(6) f   fdvn = —~¿Zf(Ui)
J Sn n + 1  o
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holds for the quadratic polynomial over Sn, n > 1 provided Ui = rVi + (7 — r)C

where either r = 1/V« + 2 or r = — 1/V« + 2. The choice of the positive sign for

r gives points Ui inside Sn for all n. If the negative sign is chosen, the points Ui are

outside Sn for « > 2.

The proof of this theorem may be made along the same lines as that of

theorem 1, by induction.

4. Remarks. The formulae given are affinely symmetrical. Those for the cubic

polynomial are based on rational combinations of the vertices whereas the

formulae for the quadratic function are based on irrational combinations unless

« + 2 is a perfect square. The weight of the centroid is negative and increases

numerically with « for the cubic case. The formula for the cubic polynomial may

well be used as an exact integration formula for any polynomial of degree at most

three. Since the general cubic polynomial has (« + 1)(« + 2)(« + 3)/6 terms,

the formula (1) is hyperefficient (see [1] or [2]) for « > 3 since it is based on

« + 2 evaluation points.

The practicality of using simplicial decompositions of regions decreases rapidly

with increasing ». For « = 1, the formula (1) is based on three evaluation points

whereas Gauss' formula uses only two. We conjecture that for no region of

bounded volume in En for « > 2 will it be possible to obtain a numerical integra-

tion formula exact for the cubic polynomial based on fewer than n + 2 points.

Over the hypercube, Tyler [3] has shown that the cubic polynomial may be

integrated exactly by a formula using 2« points. Hammer and Wymore have

extended this result to certain symmetrical regions.

Extension of affinely symmetric formulae for integration over the simplex

to higher degree polynomials promises to offer significantly greater complexity.

In the tetrahedron, for example, we have shown that evaluation points to obtain

a formula exact for the fourth degree polynomial cannot all be taken on the

median lines. However, the methods used here may be of use for higher degree

polynomials.
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